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An explicit analytical solution of the critical-state problem is obtained for long thin superconducting strips
in a perpendicular magnetic field Ha when a sharp order-disorder transition occurs in the vortex lattice. We
model this transition from the quasiordered Bragg glass into the disordered amorphous vortex phase by a jump
of the critical current density occurring at a value Bdis of the local magnetic induction. Explicit expressions are
presented for the magnetic-field profiles at the surface of the strip, for the distribution of the sheet current, and
for the magnetization loop.
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I. INTRODUCTION

Most experiments on high-Tc superconductors deal with
thin flat samples in a perpendicular magnetic field Ha—for
example c-axis-oriented single crystals or films. In recent
years the problem of the critical state of pinned vortices in
such samples has attracted considerable interest; see, e.g.,
Ref. 1 and references cited therein. Explicit analytic solu-
tions were obtained for a circular disk2 and a thin infinitely
long strip.3–5 A very accurate approximate two-dimensional
solution, which reproduces the solutions for the disk and for
the strip in the limiting cases, was also obtained for an
elliptic-shaped platelet.6 In all these solutions the simple
Bean model was implied; i.e., the critical value of the sheet
current, Jc, was assumed to be constant �the sheet current is
the current density integrated over the thickness d of a flat
superconductor�. An analytical solution for the case when Jc
depends on the magnetic induction B was derived only for a
strip with a particular dependence Jc�B�.7 This special depen-
dence can be used to describe, for example, anisotropic flux-
line pinning in superconductors with columnar defects.8 In
this paper we obtain an explicit analytical solution of the
critical-state problem for one more case of the B dependence
of Jc. Namely, we shall deal with a piecewise-constant func-
tion Jc�B�. Such a dependence of Jc on B enables one to
describe the critical state in superconductors with a sharp
order-disorder transition.9–11

At the order-disorder transition, which is induced by
quenched disorder in the vortex system at a certain value Bdis
of the local magnetic induction, a transformation of a quasi-
ordered Bragg glass12 into the disordered amorphous vortex
phase occurs via the proliferation of dislocations in the flux-
line lattice; see, e.g., Ref. 13 and papers cited therein. Under
this transformation the flux-line pinning increases, and this
leads to an abrupt increase of the critical value of the sheet
current, Jc, at an induction Bdis. At present the peak effect in
low-Tc superconductors14–19 and the second magnetization
peak �or fishtail effect� in high-Tc superconductors20–25 are
frequently associated with this proliferation of
dislocations.14–18,26–34 In local magnetization experiments
which use arrays of small Hall sensors placed on the surface
of a flat superconductor9 or in magneto-optic investigations
of magnetic-field profiles on the surface,35,36 this transition is

identified with a sharp change in the gradient of the local
magnetic field. However, as was noticed in Ref. 37, in a thin
sample the assumption of a sharp jump of Jc at the front
where this change occurs is not compatible with the macro-
scopic electrodynamics of such superconductors. A sharp
boundary between two different currents in a thin sample
would produce a similar singular peak �or dip� in the mag-
netic field as it occurs at its edges, rather than the observed
jump in the gradient. Numerical analysis37 of this problem
showed that near the front where the change of the gradient
occurs there is a region in which the sheet current continu-
ously changes from one critical value to another and the
front marks only one of the two boundaries of this region.
Inside the region a mixture of the two vortex phases inevita-
bly exists. Our analytical solution supports this view and
gives a full description of the critical state in a thin super-
conducting strip.

Of course, in analyzing experiments it is necessary to take
into account that in high-Tc superconductors flux creep plays
an important role. This creep affects the magnetization and
the magnetic field profiles measured on the surface of flat
superconductors. Moreover, in experiments with NbSe2 �Ref.
16� and with Bi2Sr2CaCu2O8 �Ref. 35 and 36�, metastable
states of the amorphous vortex phase, so-called transient vor-
tex states, were observed, and the existence of these states in
the superconductors can explain a number of findings.16,38,39

Beside this, the edge barrier40,41 is essential for understand-
ing the vortex dynamics in superconductors.42,43 In our paper
we disregard all these effects: the flux creep, the edge barrier,
and the metastable states of the disordered vortex phase. But
our simple critical-state model and its analytical solution ob-
tained below take properly into account the geometry of thin
flat superconductors and thus provide a basis for analyzing
various phenomena in such superconductors with an order-
disorder transition.

II. CRITICAL-STATE PROBLEM AND ITS SOLUTION

Consider an infinitely long and thin strip of thickness d
and width 2w with d�w. Let this strip fill the space �x �
�w, �y � ��, and �z � �d /2, and be in a constant and uniform
external magnetic field Ha directed along the z axis—i.e.,
perpendicularly to the strip plane, Fig. 1. We shall model the
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order-disorder transition with the following critical-state
model:

Jc�Bz� = Jc1 for Bz � Bdis,

Jc�Bz� = Jc2 for Bz � Bdis, �1�

where Jc1 and Jc2 are constants and Jc2�Jc1. We shall as-
sume that Bdis exceeds �0Hc1, where Hc1 is the lower critical
field, and so we use B=�0H everywhere below. Since we are
interested in the critical state at the fields near the order-
disorder transition, we shall disregard the effect of this tran-
sition on the initial penetration of the applied magnetic field
into the sample and on the reversal of the magnetization of
the strip when the hysteresis loop is considered. For this to
be justified, it is sufficient that Hdis exceed the penetration
field Hp��Jc1 /��ln�2ew /d��Jc1 �Ref. 44� and the maxi-
mum amplitude Hmax of the applied magnetic field be larger
than Hdis+ �Jc2 /��ln�2ew /d�.

According to the Biot-Savart law, the magnetic field in the
strip is expressed in terms of the sheet current J�x� as fol-
lows:

Hz�x� = Ha +
1

2�
�

−w

w J�t�dt

t − x
. �2�

The symmetry of this problem gives

J�x� = − J�− x� , �3�

and one has J�0 at x�0 for increasing applied field Ha and
J�0 at x�0 for decreasing field. Taking into account this
symmetry, it is convenient to rewrite Eq. �2� in the form

Hz�x� = Ha �
1

2�
�

0

w2 �J�u��du

u − x2 , �4�

where the minus and plus signs correspond to the cases of
the increasing and decreasing field Ha, respectively.

For increasing Ha the critical-state problem reads

�J�x�� = Jc1 for 0 � x2 � b1
2, �5�

Hz�x� = Hdis for b1
2 � x2 � b2

2, �6�

�J�x�� = Jc2 for b2
2 � x2 � w2. �7�

Here �x � =b1 defines the boundary of the region where
�J�x� � =Jc1 and Hz�x��Hdis—i.e., where the ordered vortex
phase exists—while �x � =b2 describes the boundary of the
amorphous-vortex-phase region where �J�x� � =Jc2 and H�x�
�Hdis. At the boundaries the field H reaches Hdis, and at
b1� �x � �b2 one has H�x�=Hdis, while the sheet current lies
in the interval Jc1� �J � �Jc2. Note that these critical-state
equations include, as a special case, the situation when b1
=b2—i.e., when immediate contact of the above-mentioned
regions occurs. But we shall see that the parameters b1 and
b2 cannot be chosen arbitrarily but are found self-
consistently from Eqs. �5�–�7�, and hence immediate contact
of the regions is forbidden. In a similar manner the critical-
state problem can be formulated for the case of decreasing
Ha �in this case b2�b1�.

Taking into account formula �4�, Eq. �6� for the case of
increasing Ha can be rewritten in the form

1

2�
�

b1
2

b2
2 �J�u��du

u − x2 = F�x2� , �8�

where

F�x2� = Ha − Hdis +
Jc1

2�
ln� x2

x2 − b1
2� +

Jc2

2�
ln� b2

2 − x2

w2 − x2� .

�9�

The last two terms in function �9� are the magnetic fields
Hz�x� generated by the sheet currents Jc1 and Jc2 flowing in
the regions 0�x2�b1

2 and b2
2�x2�w2, respectively. Equa-

tion �8� is a linear singular integral equation with Cauchy-
type kernel. The theory of such equations45 yields for the
sheet current J�x� in the interval b1

2�x2�b2
2

J�x� = −
2

�
Y�x2��

b1
2

b2
2 F�u�du

Y�u��u − x2�
, �10�

where Y�u���b2
2−u�1/2�u−b1

2�1/2 and the integral is in the
sense of the Cauchy principal value. This solution of the
critical-state equations exists only under the following con-
dition, which, in fact, is a relationship between b1, b2, and
Ha:

�
b1

2

b2
2 F�u�du

Y�u�
= 0. �11�

Considering x2 and u as complex variables, making ap-
propriate cuts in this complex plane, and using the residue
theory, we calculate explicitly integrals �10� and �11�; see the
Appendix. Knowing the sheet current in the whole interval
0�x2�w2, we then find the magnetic-field profile Hz�x� in
the strip. But for this solution of the critical-state problem to
be self-consistent, three simultaneous conditions should be
fulfilled: the obtained sheet current J�x� lie in the interval

FIG. 1. Schematic distribution of the sheet current J in a thin
strip with the order-disorder transition described by model �1�. The
lines x= ±b2 and x= ±b1 mark the boundaries of the disordered and
ordered vortex phases, respectively. At b1� �x � �b2 a mixture of the
two vortex phases occurs with Jc1�J�x��Jc2. Shown is the case of
increasing applied field Ha when b2�b1.
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Jc1�J�x��Jc2, Hz�x� at x2�b1
2 be less than Hdis, and Hz�x�

at b2
2�x2�w2 exceed Hdis. These requirements lead to the

second relationship between b1 and b2,

Jc2�w2 − b2
2�1/2b1 − Jc1�w2 − b1

2�1/2b2 = 0. �12�

We now present the final results.

A. Solution for the case of increasing Ha

The sheet current at b1
2�x2�b2

2 has the form

�J�x�� =
2Jc1

�
arctan

b1
	b2

2 − x2

b2
	x2 − b1

2

+
2Jc2

�
arctan

	w2 − b2
2	x2 − b1

2

	w2 − b1
2	b2

2 − x2
�13�


while �J�x��=Jc1 at x2�b1
2, and �J�x��=Jc2 at b2

2�x2�w2�.
The magnetic field outside the interval b1

2�x2�b2
2 is given

by

Hz�x� = Ha +
Jc1

�
ln

�x��b1 + b2�

b2
	�b1

2 − x2� + b1
	�b2

2 − x2�

+
Jc2

�
ln

	w2 − b2
2	�b1

2 − x2� + 	w2 − b1
2	�b2

2 − x2�
	�w2 − x2��	w2 − b1

2 + 	w2 − b2
2�

�14�


while Hz�x�=Hdis at b1
2�x2�b2

2�. The region boundaries b1

and b2 are found from the equations

b1
2

w2 =
Jc1

2 b2
2

Jc1
2 b2

2 + Jc2
2 �w2 − b2

2�
, �15�

Hdis = Ha +
Jc1

�
ln

	b1 + b2

	b2 − b1

+
Jc2

�
ln

	b2
2 − b1

2

	w2 − b1
2 + 	w2 − b2

2
.

�16�

Formulas �13�–�16� completely describe the critical state for
the case of an increasing Ha. Using these formulas, we find
the two equivalent expressions for Mz=�−w

w xJ�x�dx, the mag-
netic moment of the strip per unit length,

Mz�Ha� = − Jc1b1b2 − Jc2
	w2 − b1

2	w2 − b2
2 = − Jc1w2b2

b1
,

�17�

where b1�Ha� and b2�Ha� are found from Eqs. �15� and �16�.
Note that in the limiting case Jc1=Hdis=0 formulas �13�–�17�
reproduce the known result3–5 for the penetration of the mag-
netic field into a strip with constant sheet current, Jc=Jc2.

B. Solution for the case of decreasing Ha

For the case of decreasing field Ha, all the calculations are
similar to those of the increasing field. The sheet current at
b2

2�x2�b1
2 has the form �note that now b2�b1�

�J�x�� =
2Jc1

�
arctan

	w2 − b1
2	x2 − b2

2

	w2 − b2
2	b1

2 − x2

+
2Jc2

�
arctan

b2
	b1

2 − x2

b1
	x2 − b2

2
�18�


and �J�x��=Jc2 at x2�b2
2, and �J�x��=Jc1 at b1

2�x2�w2�.
The magnetic field outside the interval b2

2�x2�b1
2 is given

by

Hz�x� = Ha −
Jc2

�
ln

�x��b1 + b2�

b2
	�b1

2 − x2� + b1
	�b2

2 − x2�

−
Jc1

�
ln

	w2 − b1
2	�b2

2 − x2� + 	w2 − b2
2	�b1

2 − x2�
	�w2 − x2��	w2 − b1

2 + 	w2 − b2
2�

�19�


and Hz�x�=Hdis at b2
2�x2�b1

2�. The parameters b1 and b2

are found from the equations

b1
2

w2 =
Jc2

2 b2
2

Jc2
2 b2

2 + Jc1
2 �w2 − b2

2�
, �20�

Hdis = Ha −
Jc2

�
ln

	b1 + b2

	b1 − b2

−
Jc1

�
ln

	b1
2 − b2

2

	w2 − b1
2 + 	w2 − b2

2
.

�21�

FIG. 2. The boundary positions b1 �solid lines� and b2 �dashed
lines� as functions of the applied magnetic field Ha for increasing
and decreasing Ha, Eqs. �15�, �16�, �20�, and �21�, respectively.
Here Jc2 /Jc1=3, Hdis /Jc1=4, and b1 and b2 are in units of the half-
width w.
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As to the magnetic moment, we have

Mz�Ha� = Jc2b1b2 + Jc1
	w2 − b1

2	w2 − b2
2 = Jc2w2b2

b1
,

�22�

where b1�Ha� and b2�Ha� are found from Eqs. �20� and �21�.
Interestingly, it follows from a comparison of Eqs. �20� and
�21� with Eqs. �15� and �16� that these bi �i=1,2� for de-
creasing Ha are equal to �w2−bi

2�1/2 calculated for the case of
increasing Ha. Hence, Mz�Ha� in Eqs. �22� and �17� differ
only in their signs.

III. ANALYSIS OF THE SOLUTION

The obtained solutions, Eqs. �13�–�22�, essentially depend
only on the two parameters: Jc2 /Jc1 and �Ha−Hdis� /Jc1. A
change of Hdis leads to a trivial shift of the profiles Hz�x� and
of the functions Mz�Ha� along the Hz and Ha axes, respec-
tively. In Figs. 2–4 we show an example of the solution for
the cases of increasing and decreasing field Ha. It is seen that

the width �b2−b1� of the region where the magnetic-field pro-
files are flat, Hz�x�=Hdis, can be a noticeable part of w. This
width increases with increasing Jc2 /Jc1, and at Jc2	Jc1 and
Ha�Hdis the field profiles are practically composed of a
nearly flat part and a steep part with J=Jc2. We also empha-
size that in agreement with the numerical results of Ref. 37,
a sharp change of the gradient of Hz�x� and of J�x� occurs
only at �x�=b2—i.e., at the boundary of the amorphous vortex
phase—while at the boundary of the ordered phase, �x�=b1,
the profiles are smooth.

This smoothness of the profiles at the point �x�=b1 results
from condition �15� 
or �20��. Consider, for example, the
case of increasing field Ha. Formulas �13�, �14�, and �16�
with b1 different from that of Eq. �15� also describe a solu-
tion of Eq. �8�. However, this formal solution is not self-
consistent since it does not satisfy the physical requirements
Hz�x��Hdis at �x��b1 and Jc1� �J�x���Jc2 at b1� �x��b2;
see Fig. 5. It is straightforwardly verified that the derivative
d�J�x�� /dx at the point x tending to b1 from above is propor-
tional to the left-hand side of Eq. �12�, while the derivative
dHz�x� /dx at the point x tending to this b1 from below is
proportional to the same expression but with opposite sign.

FIG. 3. Magnetic-field and sheet-current profiles Hz�x� and
�J�x�� in the strip at Jc2 /Jc1=3, Hdis /Jc1=4, and Ha /Jc1=4.5 for the
cases of increasing Ha, Eqs. �13�–�16� �top�, and decreasing Ha,
Eqs. �18�–�21� �bottom�.

FIG. 4. Evolution of magnetic-field and sheet-current profiles
Hz�x� and �J�x�� in the strip at Jc2 /Jc1=3, Hdis /Jc1=4 when the
applied field Ha increases, Ha /Jc1=4.30, 5.44, 6.91 �top�, and de-
creases, Ha /Jc1=5.40, 4.28, 3.68 �bottom�.
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To fulfill the above physical requirements, both these deriva-
tives should not be negative. Thus, condition �12�, equivalent
to Eq. �15�, has to be valid. This condition means that these
derivatives are equal to zero at x=b1, and hence they are
continuous at this point. Figure 5 also explains why the re-
gions of the ordered and disordered phases have no immedi-
ate contact in the strip and what is the nature of the vortex
state in the interval b1�x�b2. If during the formation of the
critical state in the strip the two regions practically touch �see
the profiles with b1

��b2 in Fig. 5�, then the magnetic field
Hz�x� at x�b1

� exceeds Hdis and nucleation of the disordered
vortex phase begins there. This nucleation increases J and
decreases b1

� until this b1
� reaches the value b1 determined

by Eq. �15�. A further decrease of b1 stops since, if b1
��b1,

the sheet current J�x� becomes less than the critical value Jc1

�see Fig. 5� and any vortex motion is impossible.
It follows from the above consideration that in the interval

b1�x�b2 a mixture of the ordered and disordered vortex
phases exists and the concentration of these phases, nord and
ndis, at a point x is determined by J�x�, ndis�x�= 
J�x�
−Jc1� / 
Jc2−Jc1� and nord�x�=1−ndis�x�. Probably, this mix-
ture can be visualized as drops or islands of one of the phases
in the other phase, with the concentration or the size of the
drops �islands� changing with x. Alternatively, if the sample
is not too thin and the nucleation of the disordered phase
begins at the upper and lower surfaces of the sample, it is
also possible that there are two fronts z= ±zfront�x� separating
the phases across the thickness of the strip and these fronts
are determined by zfront= �d /2�nord�x�. Of course, one cannot
decide between these scenarios within our static approach
that disregards kinetics of the nucleation process.

In Fig. 6 we show an example of the magnetization loop
for the strip. As was explained in Sec. II B, this loop is sym-
metric relative to the axis Mz=0. The characteristic width of
the region of Ha where �Mz�Ha�� changes from its minimum
value Jc1w2 to its maximum value Jc2w2 is finite even at

Jc2→Jc1 and is of the order of Jc1. With increasing Jc2 /Jc1,
this width increases, too. Interestingly, the maximum of
d�Mz�Ha�� /dHa is always slightly above the point Ha=Hdis,
while the position of the maximum of the second derivative
d2�Mz�Ha�� /dHa

2 practically coincides with this point. In
other words, the point Ha=Hdis is, in fact, the point of the
maximum curvature for the curve �Mz�Ha��. This finding may
be useful in analyzing the fishtail or the peak effect in thin
flat type-II superconductors.

It is instructive to compare the obtained magnetization
loop with the appropriate result for a slab of thickness 2w in
the magnetic field Ha applied parallel to its surface, Fig. 6.
The magnetic moment of this slab �calculated per length d

FIG. 5. The magnetic-field and sheet-current profiles Hz�x� and
�J�x�� in the strip at Jc2 /Jc1=3, Hdis /Jc1=4, for increasing field Ha,
Eqs. �13�, �14�, and �16�, when b1 is larger than the b1 given by Eq.
�15� �b1=b1

�, solid lines� and smaller than this value �b1=b1
�,

dashed lines�.

FIG. 6. Magnetic hysteresis loop �solid lines� in the strip, Eqs.
�17� and �22� �top�, and in the slab, Eqs. �23� and �24� �bottom�, for
Jc2 /Jc1=3. Note the different scales of the Ha axes which are due to
the different fields of full flux penetration into the strip and the slab.
The arrows mark the increase and decrease of Ha. The dashed lines
show the first and second derivatives of the dimensionless �Mz� over
Ha /Jc1. In the strip the maximum of the second derivative practi-
cally coincides with Hdis. The magnetization loop in the strip is
symmetric relative to the axis Mz=0, while in the slab this loop is
asymmetric. The inset shows an example for the half loop of the
slab when Hdis=2.5jc1w and Hmax=5Hdis.
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along Ha and per unit length in the perpendicular direction�
in the case of increasing Ha is

Mz�Ha� = − Jc1w2 for h � 0,

Mz�Ha� = − Jc1w2 − w2�Jc2 − Jc1�
2h
Jc1

Jc2
−

Jc1
2

Jc2
2 h2�

for 0 � h �
Jc2

Jc1
,

Mz�Ha� = − Jc2w2 for
Jc2

Jc1
� h , �23�

while in the case of decreasing Ha one has

Mz�Ha� = Jc1w2 for h � − 1,

Mz�Ha� = Jc2w2 + w2�Jc2 − Jc1�
2h + h2� for − 1 � h � 0,

Mz�Ha� = Jc2w2 for 0 � h . �24�

Here h��Ha−Hdis� / �jc1w�, Jc1= jc1d, and Jc2= jc2d where jc1

and jc2 are the critical current densities in the ordered and
disordered vortex phases, respectively. In contrast to the case
of the strip, the magnetization loop for the slab is asymmetric
relative to the axis, Mz=0. This asymmetry is mainly caused
by the fact that with increasing Ha a sharp boundary between
the ordered and disordered vortex phases appears in the slab
at Ha�Hdis, while with decreasing Ha the boundary exists at
Ha�Hdis. On the other hand, in the strip the boundaries b1
and b2 exist both above and below the field Hdis when Ha
increases or decreases, Fig. 2. These b1 and b2 for decreasing
and increasing Ha are related to each other, and this relation-
ship leads to a symmetric loop; see Sec. II B.

ACKNOWLEDGMENT

This work was supported by German Israeli Research
Grant Agreement �GIF� No. G-705-50.14/01.

APPENDIX: CALCULATION OF THE INTEGRALS

As an example, let us calculate the integral

I�x2� = �
b1

2

b2
2 du

Y�u��u − x2�
ln� b2

2 − u

w2 − u
� , �A1�

where Y�u���b2
2−u�1/2�u−b1

2�1/2 and the integration is in the
sense of the Cauchy principal value. For this integral one has
I�x2�= 
I�x2+ i
�+ I�x2− i
�� /2 where 
→0 and I�Z� is the in-
tegral depending on the complex parameter Z,

I�Z� = �
b1

2

b2
2 du

Y�u��u − Z�
ln

b2
2 − u

w2 − u
. �A2�

To calculate I�Z�, we cut the complex plane from b1
2 to w2

and consider the closed contour � consisting of the upper
and lower sides of this cut. The integrand f�u� in Eq. �A2� is
an analytical function outside the cut and the point u=Z at
which f�u� has a pole. Integrating f�u� over �, we obtain the
relation

2I�Z� + �
b2

2

w2 2�du

	�u − b2
2��u − b1

2��u − Z�
= 2�iR�Z� , �A3�

where R�Z� is the residue of the function f�u� at the point Z
and we have taken into account that the difference of
ln
�b2

2−u� / �w2−u�� calculated on the upper and lower sides
of the part of the cut from b2

2 to w2 is −2�i. In Eq. �A3� we
may put Z=x2 in the integral from b2

2 to w2. This integral is
calculated by standard methods. Allowing for R�x2+ i
�
+R�x2− i
�=0, we eventually obtain

I�x2� = −
2�

Y�x2�
arctan

	w2 − b2
2	x2 − b1

2

	w2 − b1
2	b2

2 − x2
. �A4�

The other integrals in Eqs. �10� and �11� are calculated in a
similar manner.
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