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We study the classical Heisenberg model on a recently identified three dimensional corner-shared equilateral
triangular lattice, a magnetic sublattice to a large class of systems with the symmetry group P213. Since the
degree of geometric frustration of the nearest neighbor antiferromagnetic model on this lattice lies on the
border between the pyrochlore �not ordered� and hexagonal �ordered� lattices, it is nontrivial to predict its
ground state. Using a classical rotor model, we find an ordered ground state with wave vector � 2�

3a0
,0 ,0�

featuring 120° rotated spins on each triangle. However, a mean field approximation on this lattice fails to find
an ordered ground state, finding instead a nontrivially degenerate ground state. As the mean field approach is
known to agree with Monte Carlo on the pyrochlore lattice, the reasons for this discrepancy are discussed. We
also discuss the possible relevance of our results to MnSi.
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I. INTRODUCTION

Systems with magnetic moments usually order as one ap-
proaches zero temperature. However, magnetic systems that
form triangle-or tetrahedron-based lattices are often able to
avoid ordering until unusually low temperatures, and have
been found to have interesting properties both theoretically
and experimentally.1–5 Such lattices are generally referred to
as geometrically frustrated as, for example, antiferromag-
netic interactions between spins render the systems unable to
find a unique ground state from magnetic considerations
alone. It has been argued6 that the degree of frustration of a
lattice can be quantified in terms of the connectivity of its
triangular units. This leads to a hierarchy of lattices increas-
ing in frustration from the ordered edge-shared hexagonal
lattice, through the corner-shared triangle kagomé, garnet
and �−Mn lattices, to the corner-shared tetrahedral lattice
�common to the pyrochlore, cubic Laves and normal spinel
structures�. As we will show, the three dimensional corner-
shared equilateral triangle structure of Fig. 1 is a fascinating
new addition to this hierarchy. To avoid the cumbersome use
of the terminology “three dimensional corner-shared tri-
angle” �which also applies to the “distorted windmill”
�−Mn structure�, we will henceforth name this lattice the
trillium lattice.7 The trillium lattice is a sublattice of the CO
�B21�, NH3 �D1�, NiSSb �F01, Ullmanite�, and FeSi �B20�
structures. For example, the Mn atoms of MnSi �B20 struc-
ture� form the trillium lattice.

Recently Pfleiderer et al.8 reported the observation of a
“partially ordered” magnetic state in single crystals of MnSi
near and above the critical pressure of this itinerant helimag-
net. In this neutron scattering measurement, the well-defined
magnetic Bragg peak �q�0.0214 Å−1� with wave vector
along �111� was seen to shift to point predominantly along
�110� �with q�0.0304 Å−1� upon the application of pressure.
The magnetic scattering pattern was seen to feature a sphere
at fixed wave vector magnitude, with anisotropic intensities
which weakly peaked along �110�. This sphere was found to
onset at temperatures consistent with a continuation of the
slope of TN �where helimagnetism sets in�. Coincident with
the appearance of this unusual magnetic signature an anoma-

lous non-Fermi-liquid resistivity ��T1.5 has been observed
and found to persist up to twice the critical pressure.9 The
lack of a rapid recovery of ��T2 in such an apparently clean
system ��0�0.33 �� cm� poses an important challenge to
our understanding of Hertz-Millis-Moriya spin-fluctuation
theory near a ferromagnetic or helimagnetic10 quantum
critical point.

Magnetic susceptibility measurements have been found to
exhibit high temperature Curie-Weiss tails11–14 with Curie-
Weiss constants tuning continuously from weakly positive
temperatures,15 consistent with the onset of helimagnetic or-
der at ambient pressures, to weakly negative offsets above
the critical pressure. This may be indicative of a crossover
from ferromagnetically to antiferromagnetically dominated
fluctuations, although debate exists in the literature on this
point.16 Therefore, we ask whether any link might possibly
be made between an enhancement of the antiferromagnetic

FIG. 1. �Color online� The trillium lattice. Each site belongs to
three equilateral corner-sharing triangles. �� ,� ,	 ,
� denote the
four atoms of the cubic unit cell. Normal vectors to each triangle
point along local �111� axes. �1,1,1� is a C3 rotation axis of the
crystal; the front right lower triangle is related to the front left top
triangle by translation. In blue �at left� we identify the layer number
that each point of the equilateral triangles shown belongs to. The
separation between layers 4 and 5 is 4ua0 /�3; between 3 and 4,
�1–4u�a0 /�3 and alternates. After triangles, the next smallest near-
est neighbor connection has five sides as shown by the dashed line.
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couplings and the observed quasidegenerate nature of the
spin-spin correlations in this material at high pressures.

To begin to address this question, we need to understand
the role of antiferromagnetic interactions on this lattice. Here
we advance a microscopic description of the physics on the
magnetic lattice of MnSi. It is important to notice that the
Mn bonds of this lattice form a trillium lattice12 �see Fig. 1�
whose degree of geometric frustration lies on the border be-
tween previously studied frustrated systems and those known
to order despite frustration inherent to their lattices. We first
classify the degree of magnetic frustration of the classical
Heisenberg antiferromagnet on this lattice, and then use
mean field theory and a mapping to a classical rigid rotor
model, to explore the corresponding low energy physics.

In our model, we have chosen only to include the local-
ized spin degrees of freedom. For the majority of magnetic
systems forming on this lattice this is clearly an oversimpli-
fication, and a more complete model for the monosilicides
might be the Kondo lattice model. Within this model mag-
netic correlations which arise between neighboring localized
spins are mediated by conduction electrons. The basic mag-
netic physics of such a Ruderman-Kittel-Kasuya-Yosida
�RKKY� interaction17 is thought to be captured by the ex-
tended Heisenberg model. This paper represents the first step
toward such a treatment which will be presented in the near
future18 and is expected to yield a rich phase diagram and
potentially account for the small positive Curie-Weiss offset
seen in MnSi near its critical pressure.

Mapping the antiferromagnetic Heisenberg model to a
classical rotor model, we find an ordered ground state with
wave vector � 2�

a0
,0 ,0� featuring 120° rotated spins on each

triangle. Monte Carlo calculations have been carried out19

and support this conclusion. However, the commonly used
mean field approximation does not find an ordered ground
state. Rather, mean field theory finds a macroscopically de-
generate ground state with degenerate wave vectors forming
a spherelike surface in momentum space, reminiscent of the
partially ordered state of MnSi. Although the detailed aniso-
tropy of the structure factor is not reproduced, to our knowl-
edge this is the first model to find such a partially ordered
ground state. The disagreement between Monte Carlo and
mean field approximations is surprising in light of the excel-
lent qualitative agreement between these methods on the

kagomé and pyrochlore lattices, and the reason for this dis-
agreement is discussed. The strength of magnetic order
within the rotor model and its relationship to the mean field
results is presented, laying the groundwork for future finite
temperature studies where Monte Carlo and mean field re-
sults find qualitative agreement to reasonably low
temperatures.19

The outline of this paper follows. In Sec. II an overview
of recent excitement in the study of geometrically frustrated
materials allows us introduce the trillium lattice in its proper
context. In Sec. III we employ the standard20,21 mean field
approximation which implicitly relaxes the constraint on the
spin ��i=1

4 si
2=4� at each site and calculate the neutron struc-

ture factor. In Sec. IV we numerically impose a hard spin
constraint �si

2=1� at each site. We use a classical rotor model
to characterize the low-lying excitations and ground state.
Section V contains a discussion of the main results of this
work.

II. GEOMETRIC FRUSTRATION

A. The trillium lattice

The B20 crystal structure to which MnSi belongs contains
two interpenetrating sublattices. For MnSi, one sublattice
consists of the magnetic Mn atoms, while the other consists
of non-magnetic Si atoms. Each sublattice forms an infinite
three-dimensional lattice of corner-shared equilateral tri-
angles, which we have named the trillium lattice. The tril-
lium lattice forms a simple cubic lattice with a four site ba-
sis. Elements of this basis are listed in Table I and shown in
Fig. 1. First, second, and third nearest neighbor bonds are all
found12 to form networks of independent, corner-shared
equilateral triangles, such that even in systems with domi-
nantly ferromagnetic correlations between nearest neighbors,
frustration may play a role. The symmetry properties of this
lattice P213�T4� are known to include C3 axes through the
center of each triangle and a screw axis, as discussed for
example in Bradley and Cracknell.22

The history of the corner-shared tetrahedral lattice sug-
gests that it is worth investigating systems other than the one
of current interest to lay the basis for future work. It surely
was not appreciated by Pauling that his famous estimate23 of
the entropy of water ice �a strongly polar molecule� might
lead to the explosion of interest in antiferromagnetically cor-
related Heisenberg spin systems on this lattice. Harris et al.24

found that large spin systems with ferromagnetic correlations
could exhibit spin ice behavior with its large low temperature
entropy. Such a realization so many years after Anderson25

and Villain’s26 pioneering works on antiferromagnetic spins
on this lattice, must have come as a surprise to the early
workers on magnetically frustrated lattices. As Harris et al.
explained, spin ice physics can arise due to crystal anisotro-
pies which can pin large spins to lie along local Ising-
direction symmetries of the crystal structure.

While the focus of this paper is on the antiferromagnetic
Heisenberg model on the trillium lattice, we briefly summa-
rize systems that form the trillium lattice. The trillium lattice
is a sublattice of the CO �B21�, NH3 �D1�, NiSSb �F01,

TABLE I. The nearest neighbor sites in relation to the unit cell
depicted in Fig. 1. The subscript denotes translation by one unit cell
in the direction noted.

Label Position Nearest neighbors


 �u ,u ,u� ��−ẑ ,�−x̂−ẑ ,	−x̂ ,	−x̂−ŷ ,�−ŷ ,�−ŷ−ẑ�

� �u+
1

2
,
1

2
−u ,1−u� �
+ẑ ,
+x̂+ẑ ,	 ,	+ẑ ,� ,�−ŷ�

	 �1−u ,u+
1

2
,
1

2
−u� �
+x̂ ,
+x̂+ŷ ,� ,�−ẑ ,� ,�+x̂�

� �1

2
−u ,1−u ,u+

1

2 � �
+ŷ ,
+ŷ+ẑ ,� ,�+ŷ ,	 ,	−x̂�
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Ullmanite�, and FeSi �B20� structures. Although both CO
and NH3 �D1� are nonmagnetic, they have large dipolar elec-
tric fields. Magnetically interesting B20 structure systems in-
clude binaries of most of the transition metal elements with
Si or Ge, although structures have also been reported27 with
Sn, Al, Ga, Hg, Mg, and Be as the second member in addi-
tion to ternary compounds. Among these, the “Kondo
insulator”28 FeSi has achieved prominence as an important
constituent of the Earth’s mantle. Fe1−xCoxSi behaves as a
doped magnetic semiconductor and exhibits a large anoma-
lous Hall effect which has been argued to have spintronics
applications,29 and MnSi is an enhanced mass metal close to
criticality. The FO1 structure is believed to include EuPtSi
and EuPdSi, spin 7

2 systems exhibiting �ferromagnetic� Curie
laws from 300 down to 5 K. Mössbauer spectroscopy has
shown the europium atoms to be in a divalent �Eu2+� 4f7

state.30 If crystal fields are such that this large moment aligns
along the local �111� axes, this could be a good candidate for
the realization of spin-ice physics on the trillium lattice as
we will outline in future work.31 In light of the large number
of systems which have shown some evidence for strongly
correlated physics and the prospect for future systems to
study, it is surprising that to our knowledge, this is the first
treatment in terms of local moment based magnetism on the
trillium lattice.

B. Itinerant frustrated magnetism

Upon encountering unusual magnetic signatures on a geo-
metrically frustrated lattice, even for metallic systems, it is
common to isolate the magnetic degrees of freedom by first
treating a Heisenberg model. A number of frustrated systems
show metallic behavior with reasonably enhanced effective
masses. Among these, the 12 magnetic sites of �-Mn �A15
structure� have been shown to form the distorted windmill
�corner-shared equilateral triangle� lattice, which has a
P4132 symmetry. The Heisenberg model on the distorted
windmill lattice has been studied at a mean field level and
shown to possess a macroscopic ground state degeneracy
along the �111� axis.32 The magnetic sites of both LiV2O4
�the only d-electron heavy fermion� and �Y0.97Sc0.03�Mn2 re-
side on corner-shared tetrahedral lattices. As detailed below,
this lattice has been the subject of intense theoretical study.
To date all such strongly correlated frustrated metals have
shown evidence of strong nearest neighbor antiferromagnetic
correlations.

Theoretically, the classical antiferromagnetic Heisenberg
model for O�N� spins was first solved on the kagomé lattice
where the results were reported to be exact in the N→�
limit33 and recently this treatment was extended to the
corner-shared tetrahedral lattice.34 Isakov et al.20 showed that
the spin correlations could be understood in terms of a
ground state constraint requiring the total spin on each tetra-
hedron to vanish. These results agree remarkably well with
classical Monte Carlo simulations, in particular reproducing
a “bow-tie-like” structure first found in results of Zinkin et
al.35 Qualitatively similar structures are seen in quantum
treatments of the Heisenberg model on the corner-shared tet-
rahedral lattice.36 Experimental evidence for such quasi-

degenerate bow-tie structures has been found in the neutron
scattering measurements37 of itinerant �Y0.97Sc0.03�Mn2.
Moreover, the authors20 have pointed out that these results
are additionally applicable to both spin ice �which has net
ferromagnetic correlations� on the pyrochlore lattice and cu-
bic �water� ice. In this paper, we study a Heisenberg model
on the trillium lattice to understand the geometric frustration
inherent to this lattice and its possible relevance to MnSi.

C. Quantifying frustration

For a true energetic minimum, we know6 that the Heisen-
berg model can be expressed as,

H = J�
�ij	

si · sj = J
�
�

�S��2 − �
i

b�si�2� = − bJ per spin.

�1�

Here ��ij	 is taken as the sum over all nearest neighbor sites,
such that on the lattice each bond is double counted, S� is the
total spin on each corner-shared triangular �or tetrahedral�
unit of the lattice, and b is the number of connected units at
each site as illustrated in Fig. 2. Here we have used the
constraint �si�2=1. However, note that the same minimal en-
ergy state is reached if one relaxes this constraint to, �si

��2
+ �si

��2+ �si
	�2+ �si


�2=1 where �, �, 	 and 
 might represent
different sites in the unit cell. Minima �for J
0� occur when
�S��2=0 and have energy −bJ �per spin�. Note the difference
between the minimal energy state on the trillium lattice
�−3J� and that of the corner-shared tetrahedral lattice �−2J�.

It is instructive to classify the degree of frustration of the
trillium lattice in relation to previously studied lattices �see
Table II�. Counting of the number of degrees of freedom
minus the constraints to maintain the ground-state
condition,6 �S��2=0, we find the number of degrees of free-
dom of the ground state D to be given by,

D

N̄
=

q̃�N − 1�
b

− N �2�

for �si�2=1 and

FIG. 2. The number of units b common to a given site on com-
mon lattices: �a� kagomé: b=2; �b� hexagonal: b=6; �c� corner-
shared tetrahedra: b=2; and �d� corner-shared triangle �trillium, dis-
torted windmill�: b=3.
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D

N̄
=

q̃
N −
1

4
�

b
− N �3�

for �si
��2+ �si

��2+ �si
	�2+ �si


�2=4. Here q̃ is the number of spins

per triangular/tetrahedral unit, N̄ is the number of units, and
N is the number of spin components �N=1 Ising and N=3
Heisenberg�. We see that upon strongly enforcing the con-
straint in Eq. �2� �rotor, Monte Carlo� the Heisenberg model
is expected to order. The mean field approximation enforces
the relaxed constraint in Eq. �3� to produce a less negative
value of D. From now on we will refer to the constraint of
Eq. �2� as the hard spin constraint, while that of Eq. �3� will
be referred to as a soft spin constraint.

From this naive counting argument, we would expect to
find a degenerate ground state only when D
0. However, it
is known that this counting argument can go wrong if the
constraints on the spins are not independent,6 such that a
macroscopic degeneracy of the ground state can be present
as seen in Table II. Note that despite this ground state degen-

eracy, the classical Heisenberg model on the kagomé lattice
is believed to order by disorder in the T→0 limit.40,41

III. A MEAN FIELD APPROXIMATION

A. A remarkable degeneracy

The nearest neighbor Heisenberg model can be expressed
as

H = J�
�ij	

si · sj =
2J

N
�

q

SqMq
abS−q. �4�

Here J
0 corresponds to antiferromagnetic interactions, N
is the number of unit cells in the lattice and Sq
= �sq


 ,sq
� ,sq

	 ,sq
��. The four sites of the unit cell are labeled by

�
 ,� ,	 ,�� as shown in Fig. 1 and Table I. The second equa-
tion has been obtained by the Fourier transformation si

�

= 1
N�qsq

�eiqri
���

, where � is chosen from �
 ,� ,	 ,�� and ri
���

demarks both the unit cell and the position within the unit
cell, with

Mq
ab =


0 cos
qx

2
�ei��2u−1/2�qy+2uqz� cos
qy

2
�ei�2uqx+�2u−1/2�qz� cos
qz

2
�ei��2u−1/2�qx+2uqy�

cos
qx

2
�e−i��2u−1/2�qy+2uqz� 0 cos
qz

2
�ei��2u−1/2�qx−2uqy� cos
qy

2
�ei�2uqx−�2u−1/2�qz�

cos
qy

2
�e−i�2uqx+�2u−1/2�qz� cos
qz

2
�e−i��2u−1/2�qx−2uqy� 0 cos
qx

2
�ei��2u−1/2�qy−2uqz�

cos
qz

2
�e−i��2u−1/2�qx+2uqy� cos
qy

2
�e−i�2uqx−�2u−1/2�qz� cos
qx

2
�e−i��2u−1/2�qy−2uqz� 0

� , �5�

TABLE II. Degeneracy of the ground state of the classical Heisenberg model for several common
triangle/tetrahedra based lattices. From Eqs. �2� and �3�, a naive count of the number of degrees of freedom
available to the ground state helps to classify the degree of frustration of a lattice. For the trillium lattice, the

hard spin constraint �rotor model� yields D / N̄=−1, which is found to order; the soft spin constraint �mean

field� leads to D / N̄=−1/4 which seems to exhibit a partial ordering. Note that the Heisenberg model is
believed to order by disorder on the kagomé lattice �Refs. 40 and 41� so strictly speaking having a macro-
scopic number of zero energy spin structures is not sufficient to avoid order. The spin-ice model on the
trillium lattice will necessarily break the �S��2=0 condition, so Eqs. �2� and �3� do not apply to this model and
a larger ground state degeneracy is possible.

System
D

N̄
q̃ N b Ground state

Corner-shared tetrahedra 1 4 3 2 Degenerate

Kagome 0 3 3 2 Degenerate �Refs. 6 and 38�
Garnet 0 3 3 2 Degenerate �Ref. 39�
Distorted windmill −1 3 3 3 Degenerate at mf �Ref. 32�
Trillium −1 3 3 3 This work

Hexagonal −2 3 3 6 Non-degenerate
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where u=0.138 for MnSi.
Within the mean field approximation, the energy disper-

sion curves, �a�q�� can be obtained by diagonalization of the
matrix Mq. Here a= �1, . . . ,4� labels the four bands arising
from the four-site unit cell. In Fig. 3, energy dispersion
curves are plotted for various directions of q� . The ground
state is given by the minimum of �a�q��. A remarkable feature
of this spectrum is that the minimum energy solution is de-
generate, u independent, and occurs on a spherelike surface
�see Fig. 4� demarked by

cos2
qxa0

2
� + cos2
qya0

2
� + cos2
qza0

2
� =

9

4
, �6�

where we have restored a0, the length of the unit cell for
clarity. Hence, within this approximation, at T=0, the classi-
cal solution of the nearest neighbor Heisenberg model on the
trillium lattice has a degenerate �or partially ordered� ground
state. This apparent degeneracy is a hallmark of frustrated
magnetism.

Note that, for each direction of q� , a minimum of the dis-
persion occurs at a single wave vector magnitude, but there
are infinite directions of q� satisfying Eq. �6� with the same
minimal energy state −3J. The partial order of the classical
ground state observed here �with a finite q� minimum� is
qualitatively different from the completely degenerate
ground state observed in the corner-shared tetrahedral, dis-
torted windmill and kagomé lattices, whose dispersions show
at least one flat band for their ground state.21,32 This implies
that the trillium lattice is less frustrated than both the corner-
shared tetrahedral lattice and the kagomé lattice. This was
expected from the naïve counting of Table II as three tri-
angles must meet at a point vs two for the kagomé lattice.
However, the different behavior of the distorted windmill
lattice was quite surprising to us. The trillium and distorted
windmill lattices have remarkably different dispersions given
the qualitative similarity of their local structures.

Additionally, it is curious to note that along certain
directions42 in momentum space there is a dispersionless

FIG. 3. Dispersion curves for J
0, a0=1.
Notice the degenerate minimum at energy −3J,
and in the lowest graph a band crossing. The total
energy spectrum is invariant under independent
operations of qx→−qx, qy→−qy, and qz→−qz.

FIG. 4. �Color online� Within the mean field approximation, the
ground state is found to be degenerate around the spherelike sur-
faces corresponding to solutions of Eq. �6�. Here we show �the qz

=0 half of� the degenerate spheroid centered at q= �0,0 ,0�. When
T→0+ and J
0, as shown in Fig. 5, one expects at low tempera-
tures a surface of magnetic Bragg peaks to arise in the neutron
scattering structure factor coincident with the degenerate spheroids.
Within each Brillouin zone, the relative weight of each of the Bragg
peaks is given by the geometrical factor of Eq. �14�. Interference
between the two length scales �cubic unit cell, nearest neighbor
distance� leads to unusual patternings of intensity of the static struc-
ture factor S�q� around each degenerate spheroid. The pattern cov-
ering this surface in the first Brillouin zone shows areas of high
intensity �purple/dark� along �110�, moderate �yellow� around the
surface and vanishes along �100� and �111� �red�. However, the
overall magnitude of the signal is approximately 1000 times smaller
than that seen in MnSi, and this pattern does not hold about the
� 2�

a0
, 2�

a0
,0� lattice Bragg point �although the signal would be sub-

stantial there�.
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band at finite energies. Peculiarly, a band crossing occurs
where this can become the lowest energy state for a given
wave vector. If a similar band structure arises within a
strongly correlated nearest neighbor hopping model, exten-
sions of this work might favor the creation of heavy mass
particles at chemical potentials close to this energy. Such a
hybridization model is common to most heavy fermion de-
scriptions and the flat bands of the corner-shared tetrahedral
lattice have been argued to lead to an explanation for the
unusual physics of the only d-electron heavy fermion
LiV2O4.43

B. Spin-spin correlation functions

To calculate the spin-spin correlation functions and neu-
tron scattering structure factor within this approximation, it
is helpful to write the partition function. Following Isakov et
al.,20 we introduce N spin components and constrain each
site to have unit spins

Z =� DSD�e−��ij	��=1
N ��Jsi

�·sj
�+i�i
i,j�si

�si
�−1�� �7�

=� DSD�e−1/N�q��Sq
����2JMq

ab−�1�+i��S−q
�

ei�N4N. �8�

Note that in moving from Eq. �7� to Eq. �9� we have
implicitly made the mean-field assumption �i=� for the
Lagrange multiplier. This is in fact an assumption inherent to
the treatment of the corner-shared tetrahedral lattice by Isa-
kov et al.,20 which was found to agree remarkably well with
Monte Carlo results.35 As the four sites within the unit cell
are in principle different,44 this is a fourfold relaxation of the
constraints on the system, and implies that we are only en-
forcing the single-spin constraint on average within the unit
cell. Additionally, we have introduced a chemical potential �
in such a way as to shift the value of the minimal energy to
0, and defined Sq

�= �sq

,� ,sq

�,� ,sq
	,� ,sq

�,��. To find the saddle-
point solutions, we need to minimize Eq. �9� with respect to
�. Introducing Sq

�=Sq
�U and U−1S−q

� =S−q
� to diagonalize

M̃q
aa=U−1Mq

abU−� / �2J�, we obtain

Z =� �
q,�

DSq
�D�e−��/N��q,a,�Sq

��2JM̃q
aa+i��/���S−q

�
ei4�NN

=� D�
ei4�NN

�
q,a

det��

N

J�q

a + i
�

�
��N

=� D�ei4�NNe−�q,aN ln���/N��J�q
a+i��/����, �9�

where �q
a=�q

a+3J is the energy of the ath band. The con-
straint on � is found to be, 4N=�q,a

1
�J�q

a+i�
. To calculate the

spin-spin correlators, we introduce an auxiliary field �q
�

= ��q

,� ,�q

�,� ,�q
	,� ,�q

�,�� coupling to the spins as

exp�−
1

N
�

q
�
�=1

N ��sq

,�, sq

�,�, sq
	,�, sq

�,��

�−q


,�

�−q
�,�

�−q
	,�

�−q
�,�
�

+ ��q

,� �q

�,� �q
	,� �q

�,��

s−q


,�

s−q
�,�

s−q
	,�

s−q
�,�
���

= e−1/N�q��=1
N �Sq

�U−1�−q
� +�q

�US−q
� � �10�

and calculate ��s�,q
� s��,q

�� 	= 1
Z

�2Z

���,−q
� ����,q

��
��=0. After some algebra

and a Hubbard-Stratonovich transformation, one arrives at

Z =� D�
ei4�NNe�q,�,a�̃a,q

� �1/�J��q
a+i����̃a,−q

�


�
a,q


J�q
a +

i�

�
� �

2N�N , �11�

where �̃a,q
� =�l=1

4 �l,q
� Ula and �̃a,−q

� =�l�=1
4 Ual�

−1 �l�,−q
� . The saddle-

point solution is then

�s�,q
� s��,−q

�� 	 = 
����
a=1

4 �U��aUa�
−1 + U�aUa��

−1

2��J�q
a + i��

� . �12�

As U is generally not real, we note that Uai
−1=Uia

* .

C. The static structure factor

The static structure factor can now be found as33

S�q�� � �
r,r�

�sr
�sr�

�eiq·�r−r��	 � �
�,��

�s��,qs�,−q	 , �13�

under the assumption that for classical spins all spin compo-
nents contribute equally.

As T→0+, the small �q� � structure factor of the nearest
neighbor Heisenberg model has all of its weight on the qua-
sispheres given by Eq. �6�. However, the geometry of the
lattice leads to an unequal distribution of this weight as a
function of angle, and �see Fig. 4� a disperse angle depen-
dence. The maximal intensity of the structure factor on this
spheroid is found along �110� and vanishes due to symme-
tries of the lattice near �111� and �100�. However, there is
actually very little weight within the entire first reciprocal
lattice zone of this non Bravais lattice, as for the corner
shared tetrahedral lattice. The spherelike shape �not shown�
centered about � 2�

a0
,0 ,0� has a distinctly different weight dis-

tribution, tuning from minimal weight near � 4�
3a0

,0 ,0� to
maximal near � 8�

3a0
,0 ,0� with the absolute magnitude of the

weight 1000-fold larger yet qualitatively similar temperature
dependence. Translation by a reciprocal lattice vector of the
cubic unit cell finds another spheroid, with varying weight
and distributions. One is reminded of the disperse neutron
scattering patterns seen on the corner-shared tetrahedral
lattice.20,34 There, “bow-tie” structures appear as a result of
interference between the two length scales given by the unit
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cell and the structure within the unit cell. On the trillium
lattice one again has two length scales which leads to inter-
esting interference patterns, but at low temperatures, ener-
getic concerns restrict the neutron scattering weight to lie
only at wave vectors given by Eq. �6�. The convolution of
this energetic structure with the underlying interference pat-
tern produces the varying weights of the structure factor on
the spherelike shapes around different reciprocal lattice vec-
tors.

As in the kagomé and corner-shared tetrahedral lattices,
our model �with relaxed constraint� has a macroscopic
ground state degeneracy. To calculate the structure factor, as
shown in Eqs. �12� and �13�, we do a simple sum over all
classical spin configuration states weighted according to their
energies. As the energy gap along the surface of the sphere-
like shape is zero, at sufficiently low but finite tempertures,
the system will predominantly sample the different ground
state spin configurations. In Fig. 4 we plot the maximal value
of S�q� as T→0+ for each wave vector direction within the
first Brillouin zone to illustrate the idea of degenerate sphe-
roids.

For the trillium lattice, the second and higher bands are
reasonably well separated from the lowest energy state. At
sufficiently low temperatures compared to J, the lowest band
dominates the accessible spin structures. One expects a
strong favoring of a particular wave vector magnitude for
each direction in momentum space. This is seen as a function
of temperature along �110� in Fig. 5.

It is instructive to investigate the properties of the extreme
limit as T→0+ when only the ground-state spin configura-
tions should contribute appreciable weight to the correlation
functions. In this limit, analytic calculations can be done,20

as the structure factor becomes proportional to

S�q�� � ��
i=1

4

Ui1U1i
−1 + �

i�j=1

4

Ui1U1j
−1� . �14�

We see that the first term returns 1 as long as the spin eigen-
functions are normalized. The rest are expressible in terms of

the relative spins on each site in momentum space. For ex-
ample, a q=0 ferromagnetic state would have simply Ui1

=U1i
−1= 1

2 , leading to a factor of 4 in total. One can show in
this limit that Eq. �14� vanishes everywhere along �111� by
symmetry, although local �111� states about the reciprocal
lattice point � 2�

3a0
, 2�

3a0
,0� do not vanish. The detailed nature of

the structure factor pattern on the degenerate spheroid cen-
tered at � 2�

3a0
, 2�

3a0
,0� does not correspond to that seen in MnSi.

D. “Spin” structures: The soft spin constraint

It is useful to have a physical picture of how the classical
spins are arranged along the lattice in the degenerate minimal
energy ground state. From studies on the corner-shared tet-
rahedral lattice, we are used to the constraint that all spins on
each tetrahedron must add to a spin-0 state to be included in
the degenerate ground state manifold. The analogous condi-
tion for the trillium lattice �as presented in Sec. II C� is for
the spins on each triangle to add to zero. If we have a truly
degenerate ground state then at any finite temperature the
classical spins will explore all these states.

The eigenvectors of Eq. �4� hold information about the
relative angles between spins. At any point in momentum
space, if the eigenvector is nondegenerate then only one rela-
tive angle between spins is contained in this formalism.
Therefore, if a spin structure satisfying the hard spin con-
straint can be formed in the ground state, its spins will nec-
essarily be coplanar. However, if such a spin structure cannot
be formed in the ground state, then the degeneracy will be
seen as an artifact of the soft constraint approximation.

To obtain a particular spin configuration of the ground
state, we need to perform a restricted Fourier transform si

�

= 1
N�q�e

iq� ·r�i
�
sq�

�. The relative position vectors are given by r�i
�

=r�i

+ � 1

2 , 1
2 −2u ,1−2u�, r�i

	=r�i

+ �1−2u , 1

2 , 1
2 −2u�, and r�i

�=r�i



+ � 1
2 −2u ,1−2u , 1

2
�. For simplicity, we consider “spin” struc-

tures corresponding to the first Brillouin zone in just three
high symmetry directions, those with q̂ along �111�, �110�,
and �100�.

1. (111)

To draw the corresponding “spin” structure with q̂ along
�111� at q0= �

3a0
, we take the Hermitian conjugate of the

right ground state eigenvector of Eq. �5� �which corresponds

to S−q−q−q� to obtain Sq� = �0, 1
�3

, ei2�/3

�3
, ei4�/3

�3
�
�q→−q0

→�

where q0
→= � �

3a0
, �

3a0
, �

3a0
�, which yields �si


 ,si
� ,si

	 ,si
��

= 1
�3

ei��/3,�/3,�/3�·r�i

+i2��1−2u�/3�0,1 ,ei2�/3 ,ei4�/3�. The “spin”

angle gains an additional factor of ei�/3 by the translation of
one lattice constant along any of the �x̂ , ŷ , ẑ� directions of the
cubic unit cell. By inspection, we see that spin contributions
on the �, �, and 	 sites are of equal magnitude, but are
rotated by 120° relative to one another. A pictorial represen-
tation of this state is shown in Fig. 6�a�.

In this structure every triangle is found to have total spin
0, as expected from Eq. �1�. However, the 
 site �labeled 1, 3,
5 in Fig. 6�a�� has spin 0. Triangles involving this site have
their other two spins arranged in an antiparallel fashion. As
discussed in Sec. IV D, unlike on the corner-shared tetrahe-

FIG. 5. �Color online� Along the qq0 direction, the temperature
dependence of the longitudinal structure factor. �Note that unlike in
MnSi, the area under the curves seems to be approximately con-
served for us.� �Inset� The structure factor is calculated along the
longitudinal direction parallel to qq0 as shown.
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dral lattice, on the trillium lattice one cannot add perpendicu-
lar spin components with a different q� to restore the hard
spin constraint while remaining in the ground state.

2. (110)

Within the mean field approximation, the largest
neutron scattering structure factor in the first Brillouin zone
was found to lie along �110�. The minimal energy spin

structure is found at q0= 2
a0

cos−1� �5
2�2

�, where we find

Sq� = 1
�10

�1,2ei2uq+i� ,2ei�8u+1/2�q−i� ,ei�4u−1/2�q�
�q→−q0
→� with

q�0=� 2
a0

cos−1��5
8 � , 2

a0
cos−1��5

8 � ,0�. We can express
the “spins” in real space as �si


 ,si
� ,si

	 ,si
��

= 1
�10

ei2 cos−1��5/8��rix

 +riy


 ��1,−2,−2ei4 cos−1��5/8� ,ei2 cos−1��5/8��. A
phase change of ei2 cos−1��5/8� �or a spin rotation of 75.5°� is
gained by each site following a translation by one lattice
constant in the x̂ or ŷ direction of the cubic unit cell. No
change in the spin structure accompanies a translation by
one lattice constant in the ẑ-direction. This spin structure is
plotted in Fig. 7�a�.

In this structure, the total spin on each triangle is 0, again
satisfying Eq. �6�. However, “spins” on the 
 and � sites are
seen to have only half the magnitude of those on the � and 	
sites �refer to Fig. 1 for a definition of the �
 ,� ,	 ,�� sites�.

3. (100)

Along the �100� direction we find the energy
minimum to occur at q0= 2

a0
cos−1� 1

2
�= 2�

3a0
, where

Sq� = � 1
2 , −1

2 , −iei�2u−1/4�q

2 , iei�2u−1/4�q

2
�
�q→−q0

→�. Here q0
→= � 2�

3a0
,0 ,0�,

implying that the real-space spin structure is �si

 ,si

� ,si
	 ,si

��
= 1

2ei�2�/3�rix


�1,e−i�2�/3� ,1 ,ei�2�/3��. A phase change of ei�2�/3�

�or 120°� is gained by each site following a translation by
one lattice constant along the x̂ direction of the cubic unit
cell. Translations by one lattice constant along the ŷ and ẑ
directions leave the spin structure unchanged. This spin
structure is shown in Fig. 7�b�. This is a spin structure with
120° rotated spins of unit magnitude on every triangle.

IV. MAPPING TO A RIGID ROTOR MODEL

A. The hard spin contraint

On frustrated lattices, subtle effects arise from constraints
on the spins. On both the kagomé and corner-shared tetrahe-
dral lattices the gournd state is known to be degenerate
within both the �N→�� mean field approximation and �N
=3� classical Monte Carlo. It is important to ask whether the
ground state obtained by the mean field approximation on the

FIG. 6. �Color online� Looking down the �111� axis, “spin” configurations with the relaxed constraint of Sec. III A. Numbers denote the
layer number �or height� within the structure. �a� The lowest energy q0= �

3a0
state along �111� is shown here. Dashed and dotted lines label

triangles out of the plane. On these triangles the ground state has two antiparallel spins. �b� A “spin” configuration at higher energy along
�111� at the same wave vector, which coincidentally would be in the ground state manifold for either second or third nearest neighbor
models. Note that one no longer has antiparallel spins on the small triangles of �a� out of the plane, but that on the dotted lines in �b�
�corresponding to third nearest neighbor bonds� one does have antiparallel spins out of the plane.

FIG. 7. �Color online� Looking down the
�111� axis of the trillium lattice, two degenerate
“spin” configurations of the relaxed constraint.
Numbers denote the layer number �or height�
within the structure. Dashed and dotted lines la-
bel triangles out of the plane. �a� The qq0 state.
�b� The q00 state. Note that the latter both forms
a 120° state on each triangle and satisfies the hard
spin constraint.
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trillium lattice can be reproduced by a method which satisfies
the hard spin constraint. Within the mean field approxima-
tion, the spin structures corresponding to the dispersion
curves of Fig. 3 satisfy the soft spin constraint. We have seen
from Sec. III D, that “spin” structures pertaining to a single
ordering wave vector q� within the mean field, feature copla-
nar spins, and that the magnitude of these spins is generically
found to vary from site to site within the unit cell. However,
the � 2�

3a0
,0 ,0� spin structure of Fig. 7�b� was found to satisfy

the hard spin constraint. We see from the mean field that this
structure �and its equivalents ��− 2�

3a0
,0 ,0�, �0, 2�

3a0
,0�, �0,

− 2�
3a0

,0�, �0,0 , 2�
3a0

�, �0,0 ,− 2�
3a0

���, is the only coplanar mem-
ber of the ground state of the classical Heisenberg model
satisfying a hard spin constaint. To fully investigate the low
energy properties of the Heisenberg model while strictly en-
forcing the hard spin constraint at each site, it is useful to
consider the spins to be rigid rotors. This allows us to nu-
merically both: �a� investigate finite size lattices with peri-
odic boundary conditions to determine whether the �100�
ground state is truly unique or if noncoplanar spin structures
�multiple wave vector� are able to satisfy the hard spin con-
straint while remaining in the ground state, and �b� investi-
gate the low-lying energetic saddle-points for various wave
vector directions.

B. Method

One way to strictly enforce the constraint of unit spins at
each site is to represent the spins in terms of rigid rotors with
fixed magnitude and two angles, � and �, where s�i
= �sin��i�cos��i� , sin��i�sin��i� , cos��i��. We minimize Eq.
�4� on finite size clusters in real space. With N spins in a
finite size lattice, the link matrix corresponding to the nearest
neighbor couplings of the Heisenberg model is an N�N ma-
trix. Such matrices can be simply written from the connec-
tions of Table I. While this leads to large and rather unwieldy
matrices, one can use periodic boundary conditions to reduce
the large matrices to a smaller one-dimensional form, as
shown in Fig. 8. Varying the number of unit cells L in a
manner consistent with the periodic boundary conditions al-
lows one access to a finite but non-negligible number of low
energy points in momentum space. Accessible states have
components of the form qi=

2�n
Lia0

. For each wave vector direc-
tion q̂ we minimize the energy with respect to the magnitude
of q� . We have chosen seven unique directions for comparison
with the mean field results.

C. A unique „

2�
3a0

,0 ,0… ground state

Within the rotor model we have found that the ground
state of the antiferromagnetic Heisenberg model on the tril-
lium lattice is ordered along �100�45 with wave vector q0

= 2�
3a0

and features 120° rotated spins on every triangle. The
energy of this state is found to be −3J as expected from Eq.
�1�. The rotor model has the advantage that it gives us direct
access to the spin structure, which is found to have the same
form as shown in Fig. 7�b�. We note that this is the spin
structure of the only member of the mean field ground state
which satisfies the hard spin constraint.

1. Energetic saddle-points: A spherelike surface

Any spin configuration within the rotor model automati-
cally satisfies the hard spin constraint, so it is interesting to
ask which features of the mean field approximation survive.
From the mean field, we found that restricting the angles to
lie within a solid angle bounded by �100�, �110�, and �111�,
allowed access to all distinct energetics associated with the
ground state. It is thus natural to tile this area and ask �i�
whether for each wave vector direction the energetic saddle-
point occurs at approximately the same wavevector as given
in Eq. �6�; �ii� about the relative magnitudes of the low lying
excitation energies along the longitudinal �parallel to q�� and
transverse �perpendicular to q�� directions; and �iii� whether
there exists a simple analytic relationship between the mean
field and lowest energy real spin structures.

Table III presents the results extracted in this fashion for
seven directions. �i� We see that the ground state of −3J is
realized along �100� and that the extracted values of �q� �rotor

�1�

closely follow those of the mean field, forming a spherelike
surface of saddle points. �We find that along �100� the spins
are always coplanar so the mean field values are correct.� �ii�
Remembering that the point � �

a0
,0 ,0� has the energy −2�2J,

we see that spin excitations along �100� are quite soft and of

FIG. 8. �a� To find the energy of a spin structure which is peri-
odic along a particular direction, we design a finite size system
satisfying periodic boundary conditions. For a finite size spin lattice
with �Lx ,Ly ,Lz� unit cells in the �x̂ , ŷ , ẑ� directions, where Lia0 is

the length of the system in the î direction, the spin structure repeats
after �Lx /n ,Ly /m ,Lz / l� unit cells where �n ,m , l� are integers greater
than or equal to 1. Wave vectors with this periodic boundary con-
dition satisfy q= � 2�n

Lxa0
, 2�m

Lya0
, 2�l

Lza0
�. We then minimize the energy of

randomly oriented spins on this lattice which chooses one �or more�
value for each of n, m, and l. As an example, the cubic lattice drawn
above repeats after �L ,2L ,1� unit cells and allows wave vectors of
the form q= � 2�n

La0
, 2�m

2La0
,0�. �b� To only consider spin structures

which repeat the same number of times in each �non trivial� lattice
direction �n=m= l�, we can write a one dimensional lattice with all
unique unit cell positions and connections. For example, for our
cubic lattice which repeats after �L ,2L ,1� unit cells, we can ask that
the spin structure after a translation by one unit cell along the x̂
direction is the same as the spin structure after a translation by two
unit cells in the ŷ direction. Wave vectors, q, with this additional
periodic boundary condition satisfy n=m as defined above, and cor-
respond to a particular wave vector direction �in the example given
here this is �q , q

2 ,0��. Minimization of such spin structures allows us
to calculate the dispersion of the model with a hard spin constraint
for several directions of ordering wave vectors.

GEOMETRIC FRUSTRATION INHERENT TO THE… PHYSICAL REVIEW B 74, 224441 �2006�

224441-9



a similar order of magnitude to those seen around the spher-
elike surface of saddle points. �iii� In Sec. IV D we will
present an analytic derivation of the minimal energy state
along the qqq symmetry axis of the crystal which corre-
sponds to adding a q=0 state to the mean field result.

2. (100) saddle-points: A cross check

To check that the observation of order along �100� within
the rotor model is not an artifact of the mapping procedure
shown in Fig. 8�b�, we have also considered finite size lat-
tices as shown in Fig. 8�a�. The minimization of such lattices
allows a spin structure to explore various multiple wavevec-
tor states that might be missed by the restricted geometry of
Fig. 8�b�. In Table IV we compare the energetics from mini-
mizations of the three dimensional spin structures of various
shapes and sizes. An analytic expression for the dispersion
along �100� which satisfies the hard spin constraint is given
in Table V. This has been used to calculate the third column
of Table IV at the wave vector magnitude denoted qmin. For
all studied cases, the lowest energy spin structure of the rotor
model is consistent with the lowest energy �100� state per-
mitted by the boundary conditions. This shows that not only
is the � 2�

3a0
,0 ,0� ground state unique, but the longitudinal spin

excitations along �100� are quite soft and dominate the low
energy dispersion.

D. Analytics: Mean field to rotors

Since real spins live in three-dimensional space, specify-
ing one angle in principle only tells us information about the
relative orientation of two components of the spin. We see
from Fig. 6�a� that, with a soft spin constraint, the mean field
ground state with �111� order had 120° rotated spins on tri-
angles in the plane with normal vector �111� and no spin at

the 
 sites. All other triangles featured two opposite spins. It
is instructive to add spin components normal to this plane to
recover equal spins at each site. That is, to obtain a spin
structure with unit magnitude spins at each site, we perform
a vector summation of the mean field spin structure of Fig.
6�a� and spin components orthogonal to this plane. Clearly
one must add a full spin to the 
 site, while contributions to
the �� ,	 ,�� sites must be added such that the spin compo-
nents at each site square to one. On the �� ,	 ,�� sites, we
assign an amplitude sin��� to spins of the mean field struc-
ture and an amplitude cos��� to the spin component perpen-
dicular to the plane. We refer to this perpendicular compo-
nent of the spins as a q=0 component because, despite
structure within the four-site cubic unit cell, it is unchanged
from one unit cell to another. This is shown pictorially in the
inset to Fig. 9 on the four different magnetic triangles of the
trillium lattice. Then we can write the total energy per unit
spin as a function of the angle � as

� =
− 9 sin2��� + 2�6 cos2��� + 6 cos����

4
�15�

and to find a true minimum of this function, we simply solve
for the derivative

d�

d�
= −

21 sin���cos��� + 6 sin���
2

= 0 �16�

which yields �=cos−1� −2
7

�. Substitution of � in Eq. �15�
yields an energy of −2.6786J. This is the same as the lowest

TABLE III. We see that the actual energetic minima along sev-
eral wave vector directions continue to lie close to their mean field
values, delineating a spheroid of saddle points connected to the true
minimum at 2�

3a0
00. For simplicity we have set a0=1.

dir Emin �q� �rotor
�1� q� rotor

�2� �q� �MF

qqq −2.6786J
�

�3
�1.814 �0,0,0�

�

�3

qq0 −2.6666J 1.7198 ? 1.864

q00 −3J
2�

3
�2.09 none

2�

3

q
q

2

q

2
−2.7632J 1.776 none 1.862

q
q

2

q

4
−2.874J 1.894 �4� ,2� ,�� 1.902

q
q

2
0 −2.9302J 1.916 �2� ,� ,0� 1.926

qq
q

2
−2.8525J 1.767 �2� ,2� ,�� 1.835

TABLE IV. Periodic clusters of up to 400 rigid three dimen-
sional rotors of various shapes and sizes have been numerically
minimized �see Fig. 8�a�� for the antiferromagnetic Heisenberg
model. For representative clusters, we show: Lx�Ly �Lz, the num-
ber of four-site unit cells considered along each axis �x̂ , ŷ , ẑ� of the
cubic lattice; Emin

rotor, the minimized rotor model energy; the lowest
energy �100� state consistent with the boundary conditions; and
qmin, the magnitude of the wave vector of this �100� state. In all
cases the minimized energy corresponds to the lowest energy state
which orders along �100� consistent with the boundary conditions.
Note that, in the last case, the boundary conditions allow the states
with q= �0, ±2�

10a0
, ±3�

5a0
� which satisfy Eq. �6� and were found to be-

long to the ground state in the mean field approximation, but the
spin structure minimizes to one with q= �0,0 , 3�

5a0
�. This shows that,

with a hard spin constraint, low-lying excited states along �100�
remain lower in energy than the saddle-points of the no longer
degenerate spheroids.

Lattice dimensions Emin
rotor Min��q00

�1� ,�0q0
�1� ,�q00

�1� � qmin

2�2�2 −2.8284271 −2�2
�

a0

1�4�4 −2.9449468 −2.9449473
�

2a0

4�5�5 −2.9691749 −2.969174998
4�

5a0

1�10�10 −2.9915323 −2.9915325
3�

5a0
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energy solution found by the rotor model along �111�, and is
the true minimal energy state with this wave vector direction.

Within the mean field approximation, the lowest energy
solution of Eq. �4� can be shown to be Emf�qqq�
=−2J�cos2� q

2
�+�3 cos2� q

2
�sin2� q

2
��. The spin structure re-

mains as presented in Sec. III D, with the exception of the
relative angle change of the spin from one unit cell to the
next; for generic values of q the triangles which include the

 site no longer feature parallel spins. As we have analytic
expressions for our eigenvalues, it is interesting to write the
general expression in the �111� direction following the same
steps,

� = 3
1 − 

1

2�cos
q

2
�cos
q

2
+

2�

3
� − 1��

2

�
�cos
q

2
�cos
q

2
+

2�

3
�

+ 3

1

�2 cos
q

2
�cos
q

2
+

2�

3
� − 1��

2

+
3

2�cos
q

2
�cos
q

2
+

2�

3
� − 1� , �17�

which is plotted in Fig. 9 and agrees very well with the rotor
model.

Note that in principle this must be done also within the
mean field solution of Reimers’ paper,21 in such a way as to
satisfy the hard spin constraint on the pyrochlore lattice. That
is, an analogous mean field solution is found along �qqq� at
q= �

3a0
in the pyrochlore case, but the high degeneracy of the

lattice allows the addition of a q=0 �i.e., the same in each
unit cell� components to satisfy the hard spin constraint.
Relative to mean field calculations, Monte Carlo calculations
�which satisfy a hard spin constraint� on the pyrochlore lat-
tice would be expected to differ by a small factor. That this
has not previously been appreciated is likely due to the high
degeneracy of the pyrochlore lattice—it is not nearly as im-
portant an effect there as it is here.

V. CONCLUDING REMARKS

Motivated by recent neutron scattering and spin suscepti-
bility measurements of MnSi, we have considered the role of
antiferromagnetic interactions and their possible relevance to
a partially ordered state in this system. To address this issue,
we have studied a Heisenberg model on the trillium lattice, a
new three dimensional corner-shared triangle lattice formed
by the Mn atoms of MnSi. The trillium lattice is also a sub-
lattice of other systems including the CO �B21�, NH3 �D1�,
NiSSb �F01, Ullmanite�, and FeSi �B20� structures.

The Heisenberg model is an oversimplified model for an
itinerant system such as MnSi. However, this model has been
used to reproduce the measured spin correlations in other
itinerant systems including �Y0.97Sc0.03�Mn2, LiV2O4, and
�-Mn, where it has been considered the first step in an un-
derstanding of the magnetic correlations present. We found
that a certain degree of geometric frustration does exist on
the trillium lattice with a naïve estimation of the number of
degrees of freedom available to the ground state less than the
kagomé and pyrochlore lattices, but on a par with the
�-Mn lattice and greater than the hexagonal lattice.

TABLE V. Analytic eigenvalues and eigenvectors of Eq. �4�
along �100�. These eigenvalues satisfy the hard spin constraint at
every site and the lowest energy spin structures corresponding to
the eigenvectors directly correspond to those found in the rotor
model. The longitudinal spin excitations from the ground state
along this direction are at least as soft as excitations transverse to
� 2�

3a0
,0 ,0� as explained in Table IV.

a Eigenvalue ��q00
�a� � Eigenvector ��q00

�a� �

1 −2J�cos�q

2 �+2 sin�q

4 �� 1

2
�1,−1, ie−i�2u− 1

4
�q ,−ie−i�2u− 1

4
�q�

2 2J�cos�q

2 �−2 cos�q

4 �� 1

2
�1,1 ,−e−i�2u− 1

4
�q ,−e−i�2u− 1

4
�q�

3 −2J�cos�q

2 �−2 sin�q

4 �� 1

2
�1,−1,−ie−i�2u− 1

4
�q , ie−i�2u− 1

4
�q�

4 2J�cos�q

2 �+2 cos�q

4 �� 1

2
�1,1 ,e−i�2u− 1

4
�q ,e−i�2u− 1

4
�q�

FIG. 9. �Inset� An illustration of the spin components of the
noncoplanar spin structure at � �

3a0
, �

3a0
, �

3a0
� on the four unique tri-

angles of the trillium lattice. Analytic results have been derived by
the addition of a perpendicular q=0 spin component �see main text�
to the mean field results of Fig. 6�a�, to enforce the hard spin con-
straint. In the main figure we present a comparison of the rotor
model results �points� with analytic results of Eq. �17� obtained by
minimization of � as explained in the text. The N�N link matrix
written above each point shows the number of spin sites of each one
dimensional lattice under consideration. The corresponding wave
vector along �111� can be extracted as qrotor

�1� = 2�n
�N/4�a0

, where n is an

integer.
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We have treated the classical antiferromagnetic Heisen-
berg model on the trillium lattice within the mean field ap-
proximation and by mapping the model to a lattice of rigid
rotors. Within mean field theory on the trillium lattice, this
model was found to have a degenerate ground state with
wave vectors found to lie around a spherelike surface given
by Eq. �6�. At small but finite temperatures, the neutron scat-
tering structure factor would then be expected to feature
weight predominantly confined to lie on this surface. Along
this spherelike surface, a disperse weight modulation would
arise solely from geometrical factors and be roughly inde-
pendent of temperature as found of the “bow-ties” of the
corner-shared tetrahedral lattice. Measurements normal to
these spherelike shells would show resolution limited sharp
peaks as the temperature decreased as shown in Fig. 5. These
features bear a strong qualitative resemblance to neutron
scattering measurements near the critical pressure of the itin-
erant helimagnet, MnSi, although notable differences are
present. Chief among these are the radius of the observed
spherelike shape, which is smaller by a factor of 10, and the
detailed nature of the pattern seen. More precisely, the
measurements8 appear to have been made with respect to the
lattice Bragg peaks at � 2�

a0
, 2�

a0
,0�. About this point there is no

reason to expect an inversion symmetry of the structure fac-
tor and the C3 symmetry of the lattice which is responsible
for the vanishing of weight along �111� shown in Fig. 4
would not be present.

By mapping the classical antiferromagnetic Heisenberg
model to a rigid rotor description with a spin of unit magni-
tude at each site of the trillium lattice, we have found an
ordered ground state at wave vector45 � 2�

3a0
,0 ,0� featuring

120° rotated spins on each triangle. The rotor model is a real
space construction which imposes periodic boundary condi-
tions on finite size clusters of three dimensional vectors rep-
resenting the spin at each site of the lattice. For several small
cluster sizes �see Table IV�, we have found the minimal en-
ergy state to be consistent with order along �100� as analyti-
cally described in Table V, indicating that low-lying longitu-
dinal fluctuations from the ground state are quite soft. We
have designed an extension of the rotor model in such a way
as to allow only one particular wave vector direction at a
time. That is, rather than studying an M �N� P lattice,
where �M ,N , P� are integers counting the number of cubic
unit cells in each direction, we have used symmetry to map
the lattice to a one dimensional lattice of unit cells. For ex-
ample, to investigate spiral order along �111�, unit cells at
��1,0,0�,�0,1,0�,�0,0,1�� are all identical and can be replaced
in the mapping by a single unit cell. Despite the strength of
�100� order, this allows us access to low-lying energetic
saddle-points. In Table III we have shown that the wavevec-
tor associated to these saddle points continues to lie close to
solutions of Eq. �6�. An analytic derivation of the wavevector
and spin structure at the saddle point along �111� has been
developed in Sec. III D which illustrates the relationship be-
tween mean field and rotor model results.

The discrepancy between the results obtained via the
mean field approximation and those obtained by the mapping
to the rotor model arises from the use of soft and hard spin
constraints in the respective approximations. The soft spin

constraint allows the magnitude of the spin to vary within the
unit cell as illustrated by the “spin” structures of Sec. III D.
For itinerant magnetic systems, it is not unusual for the mag-
netization density to vary spatially within an effective mag-
netic model. The hard spin constraint of the rotor model sets
the magnitude of the spin at each site to be 1.

It is interesting to note that problems associated with the
soft spin constraint of the mean field approximation arise in
earlier treatments of frustrated lattices, yet do not seem to
have been commented on. This is due, in part, to the exten-
sive ground state degeneracy of these systems. For example,
on the corner-shared tetrahedral lattice �a sublattice of the
pyrochlore structure�, the mean field approximation yields21

a doubly degenerate flat band with a three band degeneracy
at q=0. Even though the coplanar mean field ground state
spin structure along �111� does not satisfy a unit spin mag-
nitude �si

2=1� at one of the four sites on each tetrahedron, it
is possible to add spin components �with q=0� to every site
to recover this constraint. In this way, one finds a spin struc-
ture which belongs to the ground state and has components
of its spins which rotate along �111�. Calculations of the
neutron scattering structure factor20 within the mean field
approximation make the implicit assumption that the entire
spin rotates. That along certain wave vector directions only a
component of the spin is rotating must imply that the de-
tailed nature of the relative neutron scattering weight is not
fully captured within the mean field approximation, despite
the remarkable qualitative agreement seen with Monte Carlo
results. Discrepancies between the soft and hard spin con-
straints are simply more clearly evident on the trillium lat-
tice, as satisfying the hard spin constraint lifts the degen-
eracy of the ground state.

The advantage of the mean field approximation is that it
allows one to access all wave vectors and easily generalizes
to finite temperatures. Indeed, at temperatures T�0.4J one
sees, from the rotor model �see Table III�, that all wave vec-
tor orientations should become accessible to the system. One
might hope at such temperatures to recapture many of the
qualitative features of the mean field description. A finite
temperature comparison between the mean field approxima-
tion and Monte Carlo results will be presented in the near
future.19 Future work18 will treat the extended Heisenberg
model which is expected to exhibit a rich phase diagram,
possibly relevant to currently available magnetic monosili-
cides.

It is worthwhile to mention the possibility of frustrated
ferromagnetically coupled spin systems forming on this lat-
tice. Indeed, on the pyrochlore lattice there are arguably
more candidates for spin-ice physics than for degenerate an-
tiferromagnetic ground states. As we will show in future
work,31 if Ising spins are restricted to lie along the local
�111� axes of the crystal �this is the direction of the closest
nonmagnetic atoms in some of the Ullmanites and may arise
due to crystal/ligand field splittings�, then antiferromagneti-
cally coupled spins will be expected to order while ferromag-
netically coupled spins will be extensively degenerate pos-
sessing a generalized version of the two-spins out, two spins
in rule of the corner-shared tetrahedral lattice.
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