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The indirect exchange interaction between magnetic impurities localized in a graphene plane is considered
theoretically, with the influence of intrinsic spin-orbit interaction taken into account. Such an interaction gives
rise to an energy gap at the Fermi level, which makes the usual RKKY model not applicable. The results show
that the effective indirect exchange interaction is described by a range function which decays exponentially
with the distance between magnetic moments. The interaction is also shown to depend on whether the two
localized moments belong to the same sublattice or are located in two different sublattices.
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I. INTRODUCTION

Physical properties of two-dimensional �2D� graphene
planes are a subject of current interest due to their unique
transport properties.1–4 Some of these properties originate
from peculiarities of the corresponding electronic structure,
or more specifically from the peculiar Fermi surface of a 2D
graphene plane, which consists of six points located at the
corners of the corresponding hexagonal 2D reciprocal
lattice.5,6 Only two of these points, however, are nonequiva-
lent. Apart from this, the low energy excitations at these
points can be approximated by the energy dispersion relation
linear in the wave vector. Such electron states can be de-
scribed by the Dirac equation �therefore, the corresponding
points of the Brillouin zone are also termed as the Dirac
points�. All these features of the electronic structure make
graphene very attractive from both theoretical and experi-
mental points of view. This is because graphene is an ideal
natural system for testing various theoretical models of 2D
electron transport, including for instance the quantum Hall
effect, or the effects due to the geometrical Berry phase.1,2

As concerns magnetic properties of graphene, these are
still a subject of discussion in the relevant literature. Some
experiments indicate on the existence of a spontaneous mag-
netic moment of the graphene planes.7 However, physical
origin of the spontaneous magnetization is not well under-
stood. Several distinctly different mechanisms leading to fer-
romagnetism of graphene have been proposed, including the
instability of the paramagnetic phase due to electron-electron
interaction,8 indirect RKKY exchange coupling between
magnetic moments of structural defects via mobile
electrons,9 and others.10

The indirect exchange interaction between local magnetic
moments is generally determined by electron excitations near
the Fermi energy. Assuming that the Fermi momentum in a
graphene plane is zero and the excitations are gapless, a
nonoscillatory indirect exchange interaction of the RKKY
type has been found in Ref. 9. Moreover, the corresponding

exchange integral was found to be ferromagnetic, with the
range function decaying as R−3 with the distance R between
magnetic moments. However, the intrinsic spin-orbit �SO�
interaction in graphene has been neglected in Ref. 9. Such an
interaction in graphene opens an energy gap at the Fermi
level,13 and makes the usual RKKY mechanism not relevant
due to the absence of electrons at the Fermi level. Therefore,
another mechanism of the indirect interaction between mag-
netic moments of structural defects should be developed.

In this paper we reconsider the indirect exchange interac-
tion in graphene, taking into account the role of intrinsic SO
interaction. If the SO gap is relatively small, the excitations
across the gap contribute to the indirect exchange
interaction.11,12 We show that the exchange coupling is fer-
romagnetic, and the corresponding range function decays ex-
ponentially with the distance between magnetic moments—
provided the chemical potential lies in the gap. Moreover, the
spin-spin coupling is shown to be described approximately
by the isotropic three-dimensional �3D� Heisenberg Hamil-
tonian. Apart from this, the interaction is shown to be depen-
dent on the location of magnetic impurities—the interaction
for impurities located in the same sublattice is different from
that between impurities located in different sublattices.

II. MODEL AND EXCHANGE INTERACTION

Indirect exchange interaction between magnetic moments
of structural defects �for instance impurities� is determined
by the electronics structure of the relevant system. To de-
scribe electron states in a graphene plane, we assume the
Hamiltonian of noninteracting electrons in the following
form:13

H = �v��xpzkx + �yky� + ��zpz�z, �1�

where three types of Pauli matrices, �, p, and �, have been
introduced. These matrices operate in different spaces, so
their products in Eq. �1� should be understood as the direct
matrix product. The matrix � acts in the �real� space of two
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nonequivalent sublattices. The matrix p, in turn, acts in the
�reciprocal� space of two nonequivalent Dirac points,
whereas the matrix � operates in the electron spin space.
Finally, the constants v and � in Eq. �1� are the velocity of
electrons near the Fermi level �in the limit of no intrinsic SO
interaction�, and the parameter of SO interaction, respec-
tively.

As we have already mentioned above, the Hamiltonian �1�
operates in the eight-dimensional space, and describes elec-
trons in the vicinity of two nonequivalent Dirac points lo-
cated at the corners of the Brillouin zone, k0 and −k0, with
k0= �2� /3a0 ,0� and a denoting the lattice constant. The
wave vector k in Eq. �1� is measured from the location of a
given Dirac point.

The energy spectrum of the Hamiltonian �1� consists of
fourfold degenerate dispersion curves given by

�k = ± ��2 + �2v2k2�1/2. �2�

As follows from Eq. �2�, the SO interaction opens a gap in
the electronic states around the Fermi level, which extends
from −� to �.

We assume that the interaction of 2D electrons with mag-
netic impurities located at Ri �i=1,2 , . . . � in the graphene
plane can be described by the following Hamiltonian:

Hi =
g0

n
�1 + �− 1�s�z��Si · ����r − Ri� , �3�

where Si is the spin moment of ith impurity, g0 is the param-
eter of exchange coupling between the localized spin and
band electrons, and n is the areal density of the host atoms in
the graphene plane. The parameter s=0,1 distinguishes the
two �A and B� sublattices—if a given impurity belongs to the
sublattice A �B� then s=0 �s=1�. This form of interaction
accounts for the exchange coupling that is sensitive to the
location of the magnetic impurities in the two sublattices.
However, the interaction �3� does not take into account the
intervalley transitions. We consider first this simplified mag-
netic interaction, assuming that the rate of intervalley transi-
tions is small. Later on we will briefly analyze the effect of
intervalley scattering on the indirect exchange interaction.

The Green function corresponding to the Hamiltonian �1�
has the form

G��k� =
� + �v��xpzkx + �yky� + ��zpz�z

�� + i� sgn����2 − �k
2 . �4�

The corresponding Green function in the energy-coordinate
representation can be derived from the above equation by
integrating G��k� over the momentum in the vicinity of each
valley,

G��±R� =� d2k

�2��2e±i�tk0+k�·RG��k� , �5�

where t= ±1 corresponds to the two valleys located at ±k0,
respectively.

Taking into account Eqs. �4� and �5� and following Ref.
14 one obtains

G��±R� = e±itk0·R�−
i�� + ��zpz�z�

4�2v2 H0
�1��R��2 − �2

�v
	

±
��2 − �2

4�2v2R
�Rx�xpz + Ry�y�H1

�1��R��2 − �2

�v
	
 ,

�6�

where H�
�1��z� are the Hankel functions which decay expo-

nentially in the upper half-plane of the complex argument
z.15 The Green function defined by Eq. �5� is the analytical
function in the complex plane of �, except for two cuts along
the real axis from −	 to −� and from � to +	.

In a general case, the indirect exchange interaction is me-
diated by intervalley and intravalley electron excitations. As
already mentioned above, we consider first the intravalley
contribution and then discuss the role of intervalley transi-
tions. In the loop approximation14,16 we find the interaction
energy of two magnetic impurities S1 and S2 separated by a
distance R in the form

Eint�R� = w
�
ss��R�S1
S2�, �7�

where

w
�
ss��R� = −

ig0
2

n2 Tr� d�

2�
�1 + �− 1�s�z��
G��R�

� �1 + �− 1�s��z���G��− R� . �8�

Making use of Eqs. �5� and �7� and calculating the trace, we
find

w
�
ss��R� =

ig0
2

�n2�4v4�
i�

	+i�

d���ss����
2 − �2��
� + �2�
z��z�

��H0
�1��R��2 − �2

v�
	
2

+ �
��1 − �ss����
2 − �2�

��H1
�1��R��2 − �2

�v
	
2� , �9�

where the integral is along the real axis above the cut. After
rotating the integration contour to the complex �-plane along
the imaginary axis, as explained in Ref. 14, we find from Eq.
�9�,

w
�
ss��R� = −

4g0
2

�3n2�4v4�
0

	

d��ss�K0
2�R�2 + �2

�v
	

���2 + �2��
� − �2�
z��z�

+ �
��1 − �ss���
2 + �2�K1

2�R�2 + �2

�v
	
 ,

�10�

where K��z� are the MacDonald functions related to H�
�1��z�

by15

K��z� =
i�

2
ei��/2H�

�1��zei�/2� . �11�
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When the spin-orbit interaction is taken into account, �
�0, the range function given by Eq. �10� scales with the
characteristic length R0=�v /�. The derived exchange inter-
action is generally anisotropic. The interaction between in-
plane spin components �i=x ,y� is given as

wii
ss��R� = −

4g0
2

�3n2�vR0
3 ��ss�I0�R� + �1 − �ss��I1�R�� , �12�

where

I0,1�R� = �
0

	

dx�x2 + 1�K0,1
2 �R�x2 + 1

R0
	 . �13�

On the other hand, the interaction of the out-of-plane spin
components is expressed via the formula

wzz
ss��R� = −

4g0
2

�3n2�vR0
3 ��ss�I2�R� + �1 − �ss��I1�R�� , �14�

with

I2�R� = �
0

	

dxx2K0
2�R�x2 + 1

R0
	 . �15�

The interaction described by Eqs. �12� and �14� is formally
valid under the condition R�a, with a being the lattice con-
stant.

The asymptotics of MacDonald functions at large
argument,15 K��z��� /2ze−z, leads to the exponential de-
crease of interactions, I0,1�R��R−3/2 exp�−2R /R0� and
I2�R��R−5/2 exp�−2R /R0� for R�R0. Thus, the value of R0

determines an effective range of the exchange interaction.
The magnitude of the indirect exchange interaction de-

pends on the relative position of the spins in the graphene
sublattices. As mentioned above, the exchange interaction is
described by an anisotropic Heisenberg model. However,
I0�R�� I2�R�, so the anisotropy is weak and one may ap-
proximate the exchange interaction by a 3D isotropic
Heisenberg Hamiltonian, irrespective of which sublattice the
magnetic impurities belong to.

As follows from Eq. �10�, the gapless fermions ��=0�
mediate the indirect exchange interaction that is also 3D iso-
tropic, but with the power-law range function,

w
�
ss��R� = −

4g0
2�
�

�3n2�vR3 �F0�ss� + F1�1 − �ss��� , �16�

where

F0 = �
0

	

x2K0
2�x�dx � 0.31,

F1 = �
0

	

x2K1
2�x�dx � 0.93. �17�

The interaction given by Eq. �16� is the term similar to that
derived in Ref. 9. It should be noted, however, that the gap
due to spin-orbit interaction induces an exponential decay of
the range function, even in samples with low density of non-
magnetic impurities.

The indirect exchange interaction is ferromagnetic. The
numerical results in Fig. 1 show the absolute value of the
interaction energy when the interacting moments are in the
same or different sublattices. In our estimations we used the
carbon-carbon distance a=1.42 Å, the Fermi velocity �v
=5.7 eV Å, g01 eV,8,9 and �1.2 K.13 From the unit cell
area of S=3a2�3/2 containing two carbon atoms, one can
estimate the coupling coefficient g0 /n2.62 eV Å2. In order
to illustrate the range function dependence on R /a, we took
into account the scaling coefficient a /R0=2.5�10−5.

The numerical results explicitly show the exponential de-
cay of the range function with the distance between two
magnetic impurities. Moreover, they also demonstrate that
the coupling is stronger when the magnetic moments are
localized on different sublattices.

III. MAGNETIC POLARIZATION DUE TO A
SINGLE IMPURITY

The exchange interaction between a magnetic impurity
and 2D electrons gives rise to a spin polarization of the latter
ones. The corresponding spin density distribution M�R� can
be calculated as a response of the electron system to the
perturbation due to a single magnetic impurity S0 at R=0. As
a result, one finds M�R� in the form

M�R� = − ig0Tr� d�

2�
�G��R��1 + �− 1���z�

� �� · S0�G��− R� . �18�

The assumed exchange interaction between a magnetic im-
purity and 2D electrons is local, see Eq. �3�. As a result, the
spin polarization at a given point of the lattice, mediated via
the 2D electrons, is sensitive to the location of the magnetic
impurity �in one sublattice or the other�, see Eq. �16�.

Performing calculations similar to those presented above
one finds

FIG. 1. Range functions in the presence of spin-orbit interaction.
The curve labeled with 1 represents �wii

ss��R��, whereas the curve
labeled with 2 corresponds to �wii

ss�R��.
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M
�R� =
w
�

s�s�S0�

g0
. �19�

The above result shows that spin polarization has no oscilla-
tory component. Apart from this, one can conclude from Eqs.
�10� and �19� that the z component of magnetic density M�R�
is nonzero only in the case when the magnetic impurity has a
nonvanishing spin component perpendicular to the graphene
plane.

IV. EFFECT OF INTERVALLEY TRANSITIONS

As we have already mentioned above, graphene has two
nonequivalent valleys in the Brillouin zone, which are asso-
ciated with two Dirac points. Moreover, the exchange cou-
pling between localized moment and 2D band electrons as-
sumed in Eq. �3� does not allow for intervalley transitions.
However, such transitions are allowed by symmetry of the
system and should be taken into account. To do this we con-
sider an additional term in the interaction between a local-
ized moment and band electrons. This new term may be
written in the form

Hiv =
gv

n
�

i

�1 + �− 1�s�z�px�Si · ����r − Ri� , �20�

where gv is the corresponding coupling parameter.
The above form of interaction between 2D band electrons

and localized moments gives rise to additional terms in the
indirect exchange interaction. These terms are of oscillatory
type, �cos�2k0 ·R�. However, we believe that the coupling
coefficient gv is much smaller than g0, so the main results
and conclusions described above will not be changed by in-
cluding the contribution following from the interaction �20�.

V. SUMMARY AND CONCLUSIONS

In this paper we have calculated the indirect exchange
interaction between two magnetic impurities localized in a
graphene plane. The interaction is mediated by two-
dimensional electrons and holes, and acquires the form of an
isotropic 3D Heisenberg coupling, with the coupling param-
eter being of ferromagnetic type. The exchange parameter
has an exponentially decaying long distance tail determined
by the spin-orbit interaction.

Thus, graphene doped with magnetic impurities may be-
come ferromagnetic at a certain impurity concentration and
below a certain temperature. Magnetic graphene could be
then an ideal system for experimental investigations of 2D
transport of spin-polarized electrons. Moreover, one may

also expect that magnetic graphene could be very useful in
spintronics devices, where electron spin plays a role compa-
rable to its charge.17

We have calculated the exchange interaction for T=0.
Strictly speaking, our results refer to T��. The effect of
temperature on the exchange interaction in narrow-gap semi-
conductors has been studied by Rusin,18 who showed that for
the chemical potential in the gap, the temperature corrections
do not change the main result: even for T��, the interaction
at large distances is exponentially decaying.

When calculating the exchange interaction we assumed
the chemical potential �=0. The results do not change for a
finite � as long as the chemical potential is located within the
energy gap, which corresponds to the undoped material. In
principle, the chemical potential in graphene can be varied
either by a gate voltage or by doping with impurities. As a
result, the chemical potential can be shifted into the conduc-
tion or valence bands, and the interaction between magnetic
impurities includes then the usual RKKY exchange term via
free carriers. As in conventional metals or doped semicon-
ductors, this gives an additional oscillating term with the
oscillation period determined by the Fermi momentum of
electrons �holes�. However, the mechanism of exchange in-
teraction considered in this paper is still working for �� �
��. The resulting interaction is then due to both the virtual
transitions of electrons through the gap and the excitations of
real electron-hole pairs in the vicinity of the Fermi energy.

Magnitude of SO interaction in graphene was recently a
subject of extensive discussion in the relevant literature.19–21

A similar problem was also discussed in the case of carbon
nanotubes.22–24 Some results indicate that the SO interaction
in graphene can be very small. However, the key point is that
this interaction is nonzero, which results in a finite exchange
interaction length. As we have shown in this paper, the non-
zero SO interaction leads to some anisotropy of the magnetic
interaction between magnetic ions.

The energy gap in graphene can be also induced by exci-
tonic effects,25,26 thus being not related to the spin degrees of
freedom. As a result, the exchange interaction mediated by
virtual transitions through the excitonic gap �exc acquires the
finite length �v /�exc. The magnetic interaction is then
strictly isotropic.
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