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A quantum ground state of matter is realized in a bosonic model on a three-dimensional fcc lattice with
emergent low energy excitations. The phase obtained is a stable gapless boson liquid phase, with algebraic
boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity
by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of
this phase closely resemble the graviton, although they have a soft ��k2 dispersion relation. There are three
branches of gapless excitations in this phase, one of which is gapless scalar trace mode, the other two have the
same polarization and gauge symmetries as the gravitons. The dynamics of this phase is described by a set of
Maxwell’s equations. The defects carrying gauge charges can drive the system into the superfluid order when
the defects are condensed; also the topological defects are coupled to the dual gauge field in the same manner
as the charge defects couple to the original gauge field, after the condensation of the topological defects, the
system is driven into the Mott insulator phase. In the two-dimensional case, the gapless soft graviton as well
as the algebraic liquid phase are destroyed by the vertex operators in the dual theory, and the stripe order is
most likely to take place close to the two-dimensional quantum critical point at which the vertex operators are
tuned to zero.
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I. INDRODUCTION

Ground states of quantum many-body systems can behave
qualitatively differently from classical states. Classical
ground states like ferromagnetic order and Néel order
can survive from quantum fluctuation at zero temperature.
The quantum ferromagnetic state and quantum Néel ordered
state can be described in a similar way as their classical
counterparts. Searching for nonclassical spin states can
be traced back to the early proposal of the “Resonate Valence
Bond” state of spin system on frustrated lattices,1,2 which
was shown to be of great importance to the high Tc
superconductivity in cuperates.

All the classical orders break certain symmetry, either in-
ternal symmetry or space symmetry. Quantum spin ground
states without classical orders are termed spin liquids. In
order to make sure the quantum ground state has no tendency
to order, the low energy emergent gauge symmetry is usually
applied, since as is well-known, the gauge symmetry cannot
be broken without condensation of matter fields.3 After two
decades of work, several types of nonclassical ground states
have been identified. For instance, the spin liquid with Z2
gauge symmetry has been realized in either the quantum
dimer model on triangular lattice4 or spin-1 /2 model on
Kagomé lattice.5 The existence of the Z2 spin liquids in
2+1 dimensional space is based on the fact that the quantum
Z2 gauge theory has a deconfined phase, which manifests
itself as a disordered spin state with fractionalized spin exci-
tations. In these models, the ground states have no classical
order, i.e., there is no symmetry breaking. The ground state
degeneracy depends on the topology of the space manifold.
The excitations contain the deconfined gapped Z2 gauge
charges and the Z2 vortices �which are usually called visons�.

Another type of spin liquids contain gapless collective
excitations �which are different from the gapless Magnon

excitations in spin ordered state�, and the spin-spin correla-
tion functions fall off algebraically, i.e., the state is in a
stable critical phase. These algebraic spin liquids usually in-
volve U�1� gauge field, or U�1� gauge field interacting with
gapless matter fields. The stability of algebraic spin liquids is
very tricky because algebraic spin liquids are critical, pre-
sumably there are supposed to be relevant perturbations
which can drive the system into an ordered phase. Actually
in most cases the algebraic liquid phases are fine-tuned, for
instance, the Rokhsar-Kivelson �RK� point of quantum dimer
model on square lattice.6,7 Due to the presence and prolifera-
tion of monopoles in 2+1 dimensional systems,8,9 the gap-
less photon excitations are generally gapped out, and the
matter fields are confined. In the 3+1 dimensional space, the
compact gauge theory has a deconfined photon phase. Based
on this result, several microscopic models with photon liquid
phase have been proposed.10–12 In the 2+1 dimensional sys-
tems, the monopoles are almost always proliferating. The
algebraic liquid phase is very hard to survive. The mono-
poles are only irrelevant at a certain critical point, for in-
stance, the RK point of the quantum dimer model,6 as well as
the transition between valence bond solid phase and Néel
state for a spin-1 /2 antiferromagnetic system.13,14 Recently it
has been argued that at the large N level �N is the number of
flavors of matter fields�, there is a stable algebraic liquid
phase in 2+1 dimensional space.15

Gapless bosonic excitation is one property which charac-
terizes criticality. Since here the critical phase is stable, it
implies that even without any continuous symmetry breaking
there is a gapless bosonic excitation invulnerable to pertur-
bations. This is actually a quite amazing property. As is well-
known to all, the Goldstone theorem is one way to protect
the gaplessness of bosonic systems.16 By breaking continu-
ous global symmetry, the coset of the unbroken symmetry
subgroup corresponds to the gapless modes, which are called
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Goldstone modes. Almost all the stable gapless bosonic ex-
citations are related to certain continuous symmetry break-
ing, for instance, the phonon in solids is related to the spatial
translational symmetry breaking, the magnon excitation in
magnet is related to the SU�2� spin symmetry breaking.
However, the gapless critical excitations of algebraic spin
liquid phase do not rely on any symmetry breaking. Because
of the special gauge symmetry of the gapless excitations,
which usually resembles the U�1� gauge symmetry of quan-
tum electrodynamics �QED�, it has been proposed that the
photon, which is one of the most fundamental particles in the
universe, might not be so fundamental, it could be collective
excitations of lattice spin models.11

All the stable algebraic liquid phases which have been
found so far involve U�1� gauge field theory. This U�1�
gauge symmetry does not exist in the high energy �micro-
scopic� model, it only emerges at low energy Hamiltonian,

due to the effective constraint �� ·E� =� imposed by the spin
interaction. � is the background static charge distribution.
Although the microscopic models which have been proposed
so far10–12 are different on the lattice scale, the 3+1 dimen-
sional photon liquid phases are all the same at long scale. In
the current work, a type of algebraic spin �boson� liquid
phase has been realized. Based on the standard spin-boson
mapping �Sz=n− n̄, and S†�exp�i���, the model is presented
in the bosonic version. The algebraic boson liquid state stud-
ied in this paper broadens the family of algebraic liquid
phases. The algebraic liquid phase does not involve U�1�
gauge theory. Instead, the gauge symmetry of this model is
identical to the gauge symmetry of linearized Einstein grav-
ity. There are three branches of gapless collective excitations
in this bosonic algebraic liquid phase. One of the collective
excitations is a scalar mode, the other two gapless collective
excitations have the same gauge symmetry and polarizations
as the gravitons. However, the graviton excitations in our
theory have a softened quadratic dispersion, ��k2. The
spin-spin �boson density� correlation functions fall off alge-
braically, with an exponent bigger than that of the 3+1 di-
mensional photon liquid. Like gravitational theory, the basic
variables in this theory are symmetric rank-2 tensor, which in
the gravity language are the linearized metric tensor. The
dynamics of the graviton phase is described by a set of Max-

well’s equations, with the vectors E� and B� replaced by rank
two symmetric tensors. The charges and topological defects
enter the Maxwell’s equations in a special form, and the
condensations of charges and topological defects will drive
the liquid phase into the superfluid phase and the Mott insu-
lator phase, respectively.

This paper is organized as follows. In the second section,
a brief review of the 3+1 dimensional photon spin liquid
phase is presented. The discussion of the graviton spin liquid
will follow the same logic as the photon spin liquid phase. In
the third section, the 2+1 dimensional version of the gravi-
ton model is discussed. In the 2+1 dimensional case, the
graviton theory is dual to a scalar boson model with qua-
dratic dispersion. However, the vertex operators will gener-
ally gap out the graviton excitations. In the forth section, the
3+1 dimensional graviton model is described, and it is
shown that the graviton phase �Gaussian phase� is self-dual,

and hence stable. In Sec. V, more properties of this model are
derived. The boson density correlation function is calculated,
and a set of Maxwell’s equations are introduced to describe
this Gaussian phase. In Sec. VI, we discuss the possible ex-
perimental realization of this model, as well as the future
work. If the model is written in terms of fermionic operators
instead of bosonis operators, nonfermi liquid behavior is ex-
pected. It is also possible to develop this theory to be a
candidate of quantum gravity theory.

II. REVIEW OF 3+1 DIMENSIONAL PHOTON LIQUID
PHASE

Let us first briefly review some basic properties of the
3+1 dimensional photon liquid phase as a warmup. Al-
though many different models have been proposed in the last
few years,10–12 the phases obtained have very similar prop-
erties at long scale. Therefore let us take the three-
dimensional quantum dimer model on cubic lattice as an
example. On the cubic lattice, every site is shared by six
links, and only one of those links is occupied by exactly one
dimer. On every square face, if two parallel links are occu-
pied by dimers, they can be resonated to dimers perpendicu-
lar to the original ones �Fig. 1�. Besides this resonating term,
another diagonal weight term for each flippable plaquette is
also included in the Hamiltonian

H = � − t�� � 	
= � + H.c.� + V�� � 	
� � + � = 	
= �� . �1�

The dimer model can be mapped onto a rotor model. A
rotor number can be defined on each link to describe the
presence or absence of dimers: n=1 when the link is occu-
pied by a dimer, and n=0 when the link is empty. The Hil-
bert space of this quantum system is a constrained one, with
the constraint ��ni,�=1 around each site, the summation is
over all six links shared by site i. Notice that �i , + â� and
�i+ â ,−â� denote the same link. Let us define quantity Ei,â as
Ei,â= �−1�ix+iy+izni,â and Ei,−â=−�−1�ix+iy+izni,−â, with â equal
to x̂, ŷ, and ẑ. The sign distribution on the XY plane is shown
in Fig. 2. Now, the constraint of this system can be rewritten
as �â�Ei,+â−Ei−â,â�= ±1, whose compact form is the Gauss’s
law for electric fields, �iEi= ±1. Notice that because
the quantity Ei,â is defined on links, a natural vector notation

can be applied: E� i= �Ei,x̂ ,Ei,ŷ ,Ei,ẑ�. Here the derivatives
are all defined on the lattice �aEi,b̂=Ei+â,b̂−Ei,b̂, and similar
treatments can be found in Refs. 12 and 17.

The background charge distribution ±1 on the cubic lat-
tice plays a very important role in the solid phase, i.e., the
confined phase. The form of the crystalline phase can be
determined from Berry’s phase induced by the background
charge distribution.12,14 However, as we are focusing on the

FIG. 1. The flipping term of the dimer model.
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algebraic liquid phase, the background charge is not very
important. Let us instead impose the constraint �iEi=0.
Because of this local constraint, the low energy physics will

be invariant under the gauge transformation A� →A� +�� f �A� is

the conjugate variable of E� , which is related to the phase
angle � associated with the original rotor number n through
Ai,â= �−1�ix+iy+iz�i,â�, which is exactly the gauge symmetry of
the U�1� gauge theory. Now the effective Hamiltonian of this
theory should be invariant under the gauge transformation.
The Hamiltonian �1� can be effectively written as

H = � − t̃ cos��� � A� � + 1/�2��E� 2. �2�

This Hamiltonian is the three dimensional compact QED,
which should have a deconfined photon phase.8,9 In this
phase, the cosine functions in Eq. �2� can be expanded, and
the system can be described in the following Gaussian fixed
point Lagrangian:

L = ���A� �2 − c2��� � A� �2. �3�

The constraint �� ·E� =0 introduces a Lagrange multiplier A0

to the Lagrangian A0��i ·Ei�. After integrating out E� , the
gauge invariance can be enlarged to 3+1 dimensional space
time, A	→A	+�	f , with 	=0,1 ,2 ,3. The 3+1 dimensional
Lagrangian reads

L � − F	�F	�. �4�

The effective Lagrangian for the photon phase has been
derived above, and the reason for the existence of the photon
phase is actually the remarkable self-duality of this photon
phase and the gauge symmetry, as discussed below.

First, because the constraint �iEi=0 is strictly imposed on
this system, the matter field, i.e., the defect which violates
this constraint, is absent. As is well-known, the U�1� gauge
symmetry can be spontaneously broken due to the condensa-
tion of the matter fields. However, without matter field, the
local gauge symmetry cannot be broken spontaneously.3 The
superfluid phase of the original system implies 
�	�0, writ-

ten in the low energy variables, it reads 
A� 	�0. The nonzero

expectation of vector potential A� breaks the local gauge
symmetry. Therefore the dimer superfluid order is ruled out.

The other possible instability of the photon phase is to-
wards the gapped solid phase, which can be analyzed in the

dual theory. We can introduce the dual vector h� and dual

momentum vector 
� �h� and 
� are both defined on the faces
of the cubic lattice� as

E� = �� � h� , �� � A� = 
� . �5�

One can check the commutation relation and see that h� and 
�
are a pair of conjugate variables. The Gauss’s law constraint

on this system is automatically solved by the vector h� . Now,
the field theory for the photon phase is self-dual:

L = ���A� �2 − c2��� � A� �2, �� · E� = 0,

L = ���h��2 − c2��� � h��2, �� · 
� = 0. �6�

The violation of the dimer constraint �for instance, the
hole of the doped dimer model� can be viewed as the gauge
charges. The defects couple to the gauge field vector in a
gauge invariant manner

Le = − t cos��� ��e� − A� � + ¯ . �7�

��e� is the phase angle of the defect creation operator, which
plays the role of the electric charge in the QED language.
There are usually two flavors of matter fields, since besides
the U�1� gauge symmetry, there is an extra global U�1� sym-
metry, which corresponds to the global conservation of total
holon number. When the defects condense, the gauge bosons
are gapped out by the Higgs mechanism, the system enters
the superfluid order, and the global U�1� symmetry is spon-
taneously broken and becomes the gapless Goldstone phason
mode in the superfluid phase.18,19

In principle, a vertex operator cos�2
Nh�� is supposed to

exist in the dual Hamiltonian, due to the fact that E� only
takes on integer values. N is an integer depending on Berry’s
phase of the vertex operator. When this vertex operator is
relevant, it will gap out the photon excitation and drive the
system into a crystalline phase, according to Berry’s phase.
However, the vertex operator is irrelevant in the photon
phase. Notice that, because the theory is self-dual, the dual

theory has the same gauge invariance h� →h� +�� f as the origi-
nal theory. Also, vector 
� is subject to the same constraint as

E� , �i
i=0 �Eq. �6��. However, the vertex operator cos�2
Nh��
breaks the gauge symmetry and thus the correlation function
between two vertex operators is zero at the Gaussian fixed
point, i.e., the vertex operator is irrelevant in this Gaussian
theory.

Because the theory is self-dual at the Gaussian phase, the
magnetic monopoles �the dual charges� should couple to the

dual vector potential h� in the same manner as the coupling

between electric charge and original vector potential A� �Eq.
�7��,

Lm = − t� cos�2
N�� ��m� − 2
Nh�� . �8�

N is again introduced by Berry’s phase, corresponding to the
multimonopole event. Unless the dual charges �the mono-
pole� condense and break the dual U�1� gauge symmetry, the
photon phase is always stable. The gaplessness of this phase

FIG. 2. The sign convention of mapping from rotor number onto

the vector electric field E� in the XY plane.
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is protected by both the self-duality and the gauge symmetry.
The photon phase is an algebraic liquid phase, the dimer

density-density correlation function falls off algebraically. At
the point t=V in Eq. �1�, the lattice model can be solved
exactly, and the equal-time dimer density correlation falls off
as10


�n�0� − n̄��n�r� − n̄�	 � 1/r3. �9�

III. GRAVITON MODEL IN TWO DIMENSIONAL
SPACE

Let us begin with the two-dimensional example. This
two-dimensional �2D� model is built on a square lattice
with quantities defined on both sites and centers of
plaquettes. Let us assume there is one orbital level on the
center of each plaquette, and two orbital levels on each site
�see Fig. 3�. The Hamiltonian of the system contains three
terms, H=H0+H1+H2. H1 is merely the nearest neighbor
hopping term between the sites and the centers of plaquettes

H1 = �

i, j̄	

�
a=1

2

− t�ba,i
† bj̄ + H.c.� . �10�

Here i denotes the site of the lattice, and j̄ denotes the center
of plaquette, the summation is over all the hoppings between
each site and its four nearest neighbor plaquettes. H2 is an
on-site interaction H2=�i,īU�nī− n̄�2+�aU�na,i− n̄�2, which
fixes the average filling per orbital state. n̄ is the average
particle number per orbital level, for simplicity it is taken to
be 1.

The most important term in this Hamiltonian is H0. It is a
two body interaction between particle numbers with a special
form. Each link of the square lattice is shared by two
plaquettes and two sites. We denote the link between sites i
and i+ x̂ as �i , x̂�, and denote the two plaquettes shared by

this link as ī= i+1/2x̂+1/2ŷ and ī− ŷ= i−1/2ŷ+1/2x̂. The
term in H0 which involves this link reads

V�ni+1/2x̂+1/2ŷ + ni−1/2ŷ+1/2x̂ + 2n1,i + 2n1,i+x̂ − 6n̄�2, �11�

and the interaction term in H0 involving the link �i , ŷ� is

V�ni+1/2x̂+1/2ŷ + ni−1/2x̂+1/2ŷ + 2n2,i + 2n2,i+ŷ − 6n̄�2. �12�

Notice that, for links in the x̂ direction only n1 is in this
interaction term, and for links in the ŷ direction only n2 is

involved. If V is much bigger than t, in the low energy sub-
space of the Hilbert space the summation in the brackets in
both Eqs. �11� and �12� should be zero, this becomes a con-
straint on the low energy Hilbert space if V is large.

Because the square lattice is a bipartite lattice, we can
stagger the sign for each sublattice. Let us define variables

Exx�i�=�i�n1,i−1�, Eyy�i�=�i�n2,i−1�, and Exy�ī�=�ī�nī−1�.
�’s are signs defined on sites and centers of plaquettes,

�i��ī�= ±1, with � for sublattice A �Ā� and � for sublattice

B �B̄�. The constraint approximately imposed by H0 can now
be rewritten as

2�xExx + �yExy = 0,

�xExy + 2�yEyy = 0. �13�

Again all the derivatives are defined on the lattice. The con-
vention of the staggered signs is depicted in Fig. 4.

The nearest neighbor hopping t term will generate a cer-
tain “ring exchange” term by perturbation theory, which is
allowed by constraints �11� and �12� at low energy. However,
without doing the perturbation literally, one can guess
the form of the ring exchange term from the form of the
constraint �13�. Just like the constraint �iEi=0 generates
gauge transformation Ai→Ai+�i
, the current constraint on
Eij �Eq. �13�� will generate gauge transformation for its
conjugate variable Aij

Aij → Aij + �i f j + � j f i, �14�

and the low energy ring exchange term generated from per-
turbation theory should be invariant under this gauge trans-
formation. Aij is related to the phase angles of the original
boson creation and annihilation operators by introducing
staggered sign distribution �i :Axx�i�=�i�1,i, Ayy�i�=�i�2,i,

and Axy�ī�=�ī�ī.
One may have already noticed that the gauge transforma-

tion �14� is exactly the gauge transformation for the graviton
if we view rank two tensor Aij as the linearized metric tensor
on two-dimensional space. Then the only gauge invariant
ring exchange is the curvature tensor, which is R�	��. Writ-
ten in terms of linearized metric tensor, the curvature tensor
is20

FIG. 3. The structure of the 2D lattice. On each site there are
two orbital levels, the occupation number is �n1 ,n2�. On each face
center there is one orbital level, with occupation number n.

FIG. 4. The sign convention in the definition of symmetric ten-
sor Eij. After introducing the signs on the lattice, the constraint
imposed by H0 can be written compactly as Eq. �13�.
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R�	�� = 1/2�A��,	� + A	�,�� − A	�,�� − A��,	�� . �15�

Here the notation in general relativity has been used,
A��,	�=�	��A��.

In two-dimensional space, although the curvature tensor
has four indices, there is only one nonzero independent
component, which is

Rxyxy =
1

2
�Axx,yy + Ayy,xx − 2Axy,xy� . �16�

At the eighth order perturbation of t, a ring exchange term
cos�Rxyxy� is generated. Now the low energy effective Hamil-
tonian reads

Hef f = − t̃ cos�Rxyxy� +
1

2�
�Exx

2 + Eyy
2 + aExy

2 � . �17�

The cosine term in this Hamiltonian is ring exchange, t̃
� t8 /V7. If the original boson language is taken, one of the
ring exchanges is shown in Fig. 5, one can clearly see that
the ring exchange term involves eight independent nearest
neighbor hoppings, this term only takes place at the eighth
order perturbation of t.

The first conclusion drawn from the gauge symmetry �14�
is that this system cannot be in the superfluid phase; because
nonzero expectation value of the boson creation operator im-
plies nonzero expectation of Aij. Any linear combination of
Aij will break the local gauge symmetry, which is not al-
lowed without matter field.3 Another way to view this point
is through the Hamiltonian. The hopping term H1 in Eq. �10�
has global U�1� symmetry, which corresponds to the global
conservation of total boson number. One might wonder
whether this global U�1� symmetry can be spontaneously
broken, i.e., the system becomes superfluid. However, H0
opens a very big energy gap to excitations that do not con-
serve boson number. The big charge gap precludes the pos-
sibility of superfluidity. Because of the graviton gauge sym-
metry, the polarization of the collective excitation should
automatically be the same as the gravitons. However, one
crucial difference from the photon liquid phase is that here
the curvature tensor is the second order derivative of Aij, if
there is a phase in which we can expand the cosine functions
in Eq. �17�, i.e., there is a Gaussian phase or Gaussian fixed
point, the dispersion relation of the gapless collective modes
should be ��k2. Unfortunately, just like the monopole pro-

liferation in 2+1 dimensional QED, the topological defects
in the current case also generally proliferate and will gap out
the graviton excitations.

The effect of the topological defects can be described in
the dual formalism. Dual variables 
 and h can be defined as
follows:

Exx = �y
2h, Eyy = �x

2h ,

Exy = − 2�x�yh, 2Rxyxy = 
 . �18�

h and 
 are quantities defined on lattice i. One can check that
the constraint �13� is solved automatically by the dual vari-
ables, and h and 
 are a pair of conjugate variables, i.e.,
�hi ,
 j�= i�ij. Because the definition of the dual variable h
only involves the second derivatives, the dual Lagrangian
should be invariant under the following transformation:

h → h + Ax + By + C , �19�

A, B, C are arbitrary constant integers.
The dual Lagrangian now reads

Ldual = ���h�2 − �4h��x
4 + �y

4 + 4a�x
2�y

2�h + ¯ . �20�

The ellipses include vertex operators in this dual theory. No-
tice that, although Eij are all integers, the representation of
Exy in Eq. �18� contains factor 2 on the definition of the dual
variables, thus h on some lattice sites have to be half inte-
gers, and the Berry’s phase will cause oscillation of the signs
of the vertex operators on the lattice space. The distribution
of h is shown in Fig. 6. The leading unoscillating vertex
operators are

Lvertex = − � cos�4
h� − ��cos�4
�xh� + cos�4
�yh�� .

�21�

This Lagrangian �20� looks exactly like the Lagrangian at
the Rokhsar-Kivelson point for a two-dimensional dimer
model on square lattice21,22 except for the vertex operators.
The leading kinetic term of this Lagrangian is proportional to
k4. The k2 term is ruled out by the symmetry �19�. Since the
k2 term does not exist in the dual Lagrangian �20�, as long as
� is tuned to zero and �4 is smaller than a critical value, the
vertex operator is irrelevant, and the system is a liquid phase
without any order.22 However, the vertex operator propor-
tional to � is relevant generically �and hence the � term is

FIG. 5. The ring exchange of the two-dimensional lattice.
Elementary hoppings are between each site and its nearest neighbor
face center. The gauge invariant ring exchange term can be
represented as cos�Rxyxy�, it involves eight single hoppings of
bosons.

FIG. 6. The distribution of the dual variable h. h cannot all be
integers over the whole two-dimensional plane, instead, one-quarter
of h have to be half-integers.
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dangerously irrelevant�. The relevant vertex operator
will drive the system into crystalline phase. The crystalline
pattern close to the critical point with �=0 can be predicted
from the field theory. The representations of density
operators in terms of the low energy field variable are

n1,n2 − 1 � �− 1�x sin�2
�xh� + �− 1�y sin�2
�yh� ,

n − 1 � − �− 1�x sin�2
�xh� − �− 1�y sin�2
�yh� ,

cos�Rxyxy� � �− 1�y cos�2
�xh� + �− 1�x cos�2
�yh� .

�22�

When the vertex operators in Eq. �21� are relevant, the order
parameters above will take nonzero expectation values. Thus
the � operator tends to drive the system into the �
 ,0�
+ �0,
� state for either particle density or plaquette density,
depending on the sign of �. Each case has four degenerate
ground states.

IV. GRAVITON MODEL IN THREE-DIMENSIONAL SPACE

The model in three-dimensional space is defined on the
fcc lattice, since physical quantities are defined on both sites
and the centers of each plaquette. Let us assume there are
three orbital levels on each site, and one orbital level on each
face center. The particle number on the face center is denoted
as n, and the particle numbers on sites are denoted as
�n1 ,n2 ,n3� �Fig. 7�.

The Hamiltonian for this system still contains three parts,
H=H0+H1+H2. H1 is the nearest neighbor hopping between
sites and their nearest face centers, and also between adjacent
face centers �notice that the adjacent face centers have the
same distance as the site and its nearest face center�.

H1 = �

i, j̄	

�
a=1

3

− tba,i
† bj̄ − �


ī, j̄	

tb
ī

†
bj̄ + H.c., �23�

H2 is the on-site interaction H2=�i,īU�nī− n̄�2+�aU�na,i

− n̄�2, which fixes the average filling of the fcc lattice. H0 is
the interaction term involving links in all three directions.
For example, for the link in �i , x̂�, the interaction term reads

H0 = V�ni+1/2x̂+1/2ẑ + ni+1/2x̂−1/2ẑ + ni+1/2x̂+1/2ŷ + ni+1/2x̂−1/2ŷ

+ 2n1,i + 2n1,i+x̂ − 8�2. �24�

The links in ŷ and ẑ directions are treated similarly. If the
bracket in Eq. �24� is expanded, it becomes the usual two
body repulsion term.

When H0 becomes the dominant term in the Hamiltonian,
it effectively imposes a constraint on the system. Again the
best way to view this constraint is by introducing a staggered
sign and defining new variables, similar to the electric field
in the dimer model discussed before. Let us define a rank-2
tensor Eab. The off-diagonal terms are defined on face cen-

ters as Eab�ī�=�ī�nī−1�. n is located at one of the âb̂ face
centers; the diagonal term is defined on sites as Ea�i�
=�i�na,i−1� with a=x ,y ,z. �r= ±1 and the distribution of
sign �r is shown in Fig. 4.

After introducing the sign �, the constraint effectively
imposed by Eq. �24� can be compactly written as

2�xExx + �yExy + �zExz = 0,

�xExy + 2�yEyy + �zEyz = 0,

�xExz + �yEyz + 2�zEzz = 0. �25�

A violation of this constraint can be interpreted as a charged
defect excitation and can drive the system into an ordered
boson superfluid state after condensation. We will discuss the
transition in Sec. V. In the current section we only focus on
the case when the constraint is strictly imposed.

The constraint �25� requires the low energy Hamiltonian
to be invariant under the gauge transformation Aij→Aij
+�i f j +� j f i. This is precisely the gauge symmetry of the
graviton in three-dimensional space. Thus the low energy
physics can only involve the linearized curvature tensor.
In the three-dimensional space, the curvature tensor has
six nonzero components, according to the symmetry of
the curvature tensor. Thus now the effective low energy
Hamiltonian reads

Hring = �
ij,i�j

− t̃1 cos�Rijij� − �
ijk,i�j,j�k,i�k

t̃2 cos�Rijik�

+
1

2�1
��

i=1

3

Eii
2� +

1

2�2
� �

ij,i�j

Eij
2� . �26�

The cosine terms involving the curvature tensor are ring
exchange terms generated by the nearest neighbor hopping.
Ring exchanges in Eq. �26� are generated at the eighth order
perturbation of the nearest neighbor hopping, t̃1, t̃2� t8 /V7.
All the lower order perturbations only generate terms
which do not comply with the constraint �25�. The ring ex-
change term cos�Rxyxy� is the same as its two-dimensional
counterpart, as shown in Fig. 5.

In order to derive the correct Lagrangian, one needs to
introduce a Lagrange multiplier Ai0 for the constraint �25�.
The full Lagrangian reads

L = �
i,j

���Aij − �iAj0 − � jAi0�2 + �
ij,i�j

t̃1 cos�Rijij�

+ �
ijk,i�j,j�k,i�k

t̃2 cos�Rijik� . �27�

FIG. 7. The distribution of boson numbers on fcc lattice. The
link �in bold font� is shared by four plaquettes and two sites. Every
site is occupied by three orbital levels, and on every plaquette there
is one orbital level.

CENKE XU PHYSICAL REVIEW B 74, 224433 �2006�

224433-6



The gauge symmetry can now be enlarged to quantities de-
fined in the 3+1 dimensional space-time: A	�→A	�+�	f�

+��f	 and A00=0, f0=0. In this system, the boson superfluid
order is again ruled out by the gauge symmetry. Without
crystalline order �proven later�, the system is in a liquid
phase with excitations which have the same gauge symmetry
as the graviton. In the linearized Einstein gravity, after taking
the traceless-transverse gauge, the spin-2 graviton has only
two polarizations.20 In our theory tracelessness was not im-
posed to Aij. Therefore there are three gapless collective ex-
citations in the graviton phase, one of which is the scalar
trace mode, the other two are described by traceless matrices,
if the transverse gauge is taken, the two traceless modes
exactly correspond to the two polarizations of the gravitons.

Unlike the quantum dimer model, the curvature tensor is
the second spatial derivative of Aij. If there is a Gaussian
phase in which we can expand the cosines in Eq. �27�, the
gapless graviton modes in this Gaussian phase have a soft
dispersion ��k2.

Whether the graviton excitations survive �or equivalently
whether crystal order develops� can be studied in the dual
theory. If we define the symmetric tensor Eij as Eii=2Eii,
Eij =Eij , i� j, the constraint �25� can be solved by defining
the dual tensor hij as

Eij = �iab� jcd�a�chbd. �28�

This is a double curl of the symmetric tensor hij. hij also
lives on the sites and faces of this fcc lattice.

If checking carefully, one can notice that the curvature
tensor can also be written in the double curl form

2Rxyxy = �zab�zcd�a�cAbd, 2Rxzxz = �yab�ycd�a�cAbd,

2Ryzyz = �xab�xcd�a�cAbd, 2Rxyxz = �yab�zcd�a�cAbd,

2Ryxyz = �xab�zcd�a�cAbd, 2Rzxzy = �xab�ycd�a�cAbd.

�29�

Therefore this model is self-dual, as long as we define the
dual variables hij in terms of Eij =�iab� jcd�a�chbd and its
conjugate 
ij as follows:

Rxyxy = 
zz, Ryzyz = 
xx,

Rxzxz = 
yy, 2Rxzyz = 
xy ,

2Rxyxz = 
yz, 2Rxyzy = 
xz. �30�

According to the definition, 
ij is subject to the same
constraint as Eij �Eq. �25��.

After introducing the dual variables hij and 
ij, the dual
Lagrangian reads

Ldual = �
ij

��thij − �ihj0 − � jhi0�2 − �
ij,i�j

�1R̃ijij
2

− �
ijk,i�j,j�k,i�k

�2R̃ijik
2 + ¯ , �31�

R̃ijkl is the curvature tensor of hij. hi0 is a Lagrange multi-
plier, which is introduced for the constraint on 
ij. The el-

lipses include possible vertex operators. Without the vertex
operators, this theory is at a Gaussian fixed point and hence
in an algebraic liquid phase with soft graviton excitations. If
the vertex operators are relevant, they will destabilize the
liquid phase and gap out the graviton excitation, and form
crystalline order according to Berry’s phase. The dual La-
grangian �31� is also invariant under the gauge transforma-
tion h	�→h	�+�	f�+��f	, with h00=0 and f0=0. Therefore
any kind of vertex operator �for example, cos�2N
hij�� is not
a gauge invariant operator. The correlation function between
two vertex operators at the Gaussian fixed point is zero or
correlated at very short range, and hence irrelevant at the
Gaussian fixed point. Thus the Gaussian fixed point �also the
algebraic spin liquid� is stable against weak perturbations of
the vertex operators. Thus this graviton phase is stable due to
the same reason as the photon phase, as discussed in the
second section of this paper.

V. PROPERTIES OF THE ALGEBRAIC LIQUID PHASE

The most important feature of the algebraic spin liquid
phase is the power law correlation between spin operators. In
the boson language used in this paper, it is the boson density
operators which correlate algebraically. As discussed before,
in the algebraic liquid phase, the boson density fluctuation
around the average filling n̄ can be written as �for instance�
n1,i− n̄��i�1ab�1cd�a�chbd. The calculation of the equal time
boson density correlation can be derived from the correlation
functions between hij,


�n1,i − n̄��n1,j − n̄�	 � �i� j���i�i��� j� j
h�i�h�j�	

� �i� j�
4�1

r
� � �i� j

1

r5 . �32�

r= �i− j�. Therefore the correlation functions between boson
density operators fall off algebraically, with an exponent
higher than the exponent of the photon liquid phase.

Because of the gauge symmetry, the operators have to be
gauge invariant to have nonzero correlation functions. There-
fore the correlation function between original boson creation
operators bi are zero �or shortly correlated with a correlation
length which roughly equals the inverse of the charge gap V�.
The curvature tensors have nonzero correlations, and the cor-
relators also fall off algebraically with the same exponent as
that of the density correlator.

The dynamics of the gapless liquid phase can be de-
scribed by a new set of Maxwell’s equations. Define the
rank-2 tensor Bij =�iab� jcd�a�cAbd, the dynamical equations
that describe this liquid phase can be derived directly from
the Lagrangian �27�,

�iEij = 0,

�iBij = 0,

�tEij − ��iab� jcd�a�cBbd = 0,

�tBij + ��iab� jcd�a�cEbd = 0. �33�

Charged excitations and topological defects are absent in
these equations, thus the equations correspond to the Max-
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well equations in vacuum. If the constraint �25� is softened,
charge density and charge current have to be incorporated in
Eq. �33�.

The gapless excitations at zero temperature govern the
thermodynamical physics at low temperature. For instance,
at low temperature, the phonon excitations make a contribu-
tion to the specific heat Cp�T3. The specific heat from pho-
ton excitations in the photon spin liquid also scales as T3.12

In the current work, since the graviton excitations have soft
dispersion, the low energy specific heat would be T3/2, which
is larger than the contribution from the phonon.

The violation of constraint �25� corresponds to the de-
fects, which carry gauge charges of gauge fields Aij. Because
the gauge field is a rank-2 tensor, the gauge charge should be
a vector field. The static vector charge field couples to the
gauge field in a similar way with Gauss’s law: �iEij =−� j. For
instance, if on one site, we increase n1 by one, it is equiva-
lent to excite a pair of opposite gauge charges on the two x̂
links sharing this site �Fig. 8�; if on one plaquette center, nr̄ is
increased by one, gauge charges are created for four links
sharing this plaquette �Fig. 9�. Notice that since the
constraint imposed by H0 in the original Hamiltonian �24� is
an interaction between particles around each link, now the
gauge charge field is defined on links.

The defects should couple to the gauge field in a gauge
invariant manner, in the rotor language, the coupling can be
written as

He = − �
i,j

t cos��i� j
�e� + � j�i

�e� − Aij� + ¯ , �34�

�i
�e� are the phase angles of gauge charge field creation op-

erators. This coupling is gauge invariant since if �i
�e� is added

by any arbitrary function f i, one can always eliminate this
extra phase angle by gauge transformation Aij→Aij +�i f j
+� j f i. In the Gaussian phase, the defects are gapped, and the
phase angles �i

�e� are in the disordered phase. If the defects
condense, i.e., the phase angles �i

�e� take nonzero expectation
values, the Aij will be gapped out through the Higgs mecha-
nism. However, the matter field phason modes will not be
completely gapped out, this is because of the extra global
total particle number conservation besides the gauge charge
conservation. After the condensation of all the matter fields,
the gauge charge conservation will be broken, and the gauge
field is gapped out through the Higgs mechanism. Mean-
while, the spontaneous breaking of the global particle num-
ber conservation guarantees the existence of the gapless ex-
citation in the condensate, which is exactly the Goldstone
mode. Notice that, although there are in total four flavors of
matter fields �n1, n2, n3, and n�, different flavors of matter
fields are mixed in the nearest hopping term H1 �Eq. �23��,
therefore only the total boson number is conserved. There
should be only one Goldstone mode in the condensate. A
similar situation takes place in the doped quantum dimer
model,19 where the holes carry both the gauge charge and the
global U�1� charge, hence the condensate of holes contains
one gapless Goldstone mode.

In the dual formalism, the topological defects can be in-
troduced in the vertex operators of the dual formalism. The
topological defects can be introduced in the dual vertex
operators

Hm = − �
i,j

t cos�2
N��i� j
�m� + � j�i

�m�� − 2
Nhij� , �35�

�i
�m� are the phase angles of the creation operators of the

topological defects. One can see the topological defects
couple to the dual gauge potential hij in the same manner as
the gauge charges couple to the original gauge potential Aij,
i.e., the charge and topological charge are dual to each other,
which is the same case as the duality between the electric
charge and the magnetic monopole. After the condensation
of the topological defects �i

�m�, the gapless graviton excita-
tion hij is gapped out by the Higgs mechanism. However, in
this situation, there is no extra global conservation of the
topological defects, therefore in the condensate there will not
be any gapless Goldstone mode. The system is in the gapped
Mott insulator phase, with crystalline order determined by
Berry’s phase. Since our emphasis of this paper is about the
stable liquid phase, we will not get into the detailed analysis
of the crystalline patterns.

After introducing the matter field and the topological de-
fect, the semiclassical Maxwell’s equations with charges are

�iEij = − � j
�e�,

�iBij = − � j
�m�,

�tEij − ��iab� jcd�a�cBbd = Jj
�e�i + Ji

�e�j ,

�tBij + ��iab� jcd�a�cEbd = Jj
�m�i + Ji

�m�j . �36�

FIG. 8. One of the defects carrying gauge charges. If n1 on one
site is increased by one, it is equivalent to creating a pair of
opposite gauge charges on two x̂ links sharing this site.

FIG. 9. One of the defects carrying gauge charges. If on one
plaquette center, nr̄ is increased by one, gauge charges are created
for four links sharing this plaquette.
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The current Jj
�e�i represents the current with the ith com-

ponent of matter field flowing in the ĵ direction. The equation
of conservation law of the gauge charges, as well as the
topological defects, reads

�t� j
�e� = − �iJi

�e�j − �iJj
�e�i,

�t� j
�m� = − �iJi

�m�j − �iJj
�m�i. �37�

One can clearly see that, because of the flavor mixing in
H1, the vector charge density is not individually conserved.
The derivative �iJj

�e�i plays the role of torque density of the
vector charge density. This is similar to the spin current,23

which is also a tensor current, and the conservation equation
of the spin current involves torque density24 due to the fact
that spin is not conserved in a system with spin-orbit
coupling.

VI. DISCUSSIONS, EXPERIMENTAL REALIZATIONS,
AND EXTENSIONS

In this work we constructed models which give rise to
collective excitations analogous to the gravitons. In a 2+1
dimensional system, the graviton excitations are unstable
against vertex operators in the dual formalism; in 3+1 di-
mensional space, there is a stable algebraic boson liquid
phase which contains gapless graviton excitations with soft
dispersion. The graviton liquid phase is self-dual, and the
stability of the algebraic phase is guaranteed by the large
gauge symmetry on both sides of the duality. The dynamics
of the phase is described by a set of Maxwell equations.

We proved the algebraic phase is stable, i.e., the realiza-
tion of this phase does not require any fine-tuning. However,
the original bosonic model is of a special form, its precise
realization in experimental systems requires more efforts.
Here we only consider the possibility of its realization in the
cold atom system trapped in an optical lattice. The original
boson model contains standard nearest neighbor hopping be-
tween particles, and also contains two body interactions,
both on-site and off-site. The on-site repulsion can be ob-
tained from the s-wave scattering between bosons on the
same site, and the off-site repulsion has been shown recently
to exist in chromium atom condensate due to the long range
dipole interaction.25,26

The interaction between the three orbital levels on each
site and the bosons in the plaquette centers is very aniso-
tropic �Eq. �24��, this could be due to the anisotropy of the
orbital level spatial wave functions. In the transition metal
oxides materials, the anisotropy of the t2g level electron wave
functions gives rise to the Khaliullin model27,28 which was
first introduced to explain the orbital liquid phenomenon, in
which the orbital moment is quenched by quantum
fluctuation.29 Recently it has been proposed that, although
the ground state of each site of the optical lattice is s-wave, if
the particles are pumped to the first excited threefold degen-
erate p-wave states, the particles will maintain in the excited
states for a considerable time, long enough for the particles
to equilibrate,30 therefore the p-wave particles will first form
a metastable equilibrium state before they drop to the s-wave

ground states. Each of the threefold degenerate p-level wave
functions only extends in one direction of the three-
dimensional space. Since the wave function overlap is aniso-
tropic in space, the particle on each orbital level interacts
more strongly in one certain direction, as long as the optical
trap on each site is not too deep, i.e., the wave function is not
too localized on each site. The anisotropic interaction is re-
quired in our problem. The remaining problems of the ex-
perimental realization is how to realize the fcc lattice with
laser beams, and how to pump particles on all the sites of the
fcc lattice to the excited p-wave states.

So far the models we have considered are purely bosonic
models. After the search for unconventional bosonic phases,
one might wonder if nonfermi liquid can be obtained in a
similar way for fermionic systems. There has been a great
deal of study on treating the constraint of no double occu-
pancy of the Hubbard model by introducing U�1� gauge
field, and the bosonic holons and fermionic spinons are in-
teracting with this U�1� gauge field. The interacting system
has been proposed to explain the nonfermi liquid behavior of
the normal state of high Tc cuperates �for instance, Ref. 31�.
In this kind of theory, the emergent U�1� gauge field plays
the most crucial role. For instance, due to the scattering from
the gauge fields, the scaling of the resistivity significantly
deviates from the T2 law of normal fermi liquid. The emer-
gence of this gauge field is exactly due to the local constraint
��f i,�

† f i,�+bi
†bi=1.

In our current work, if all the particles in the original
model are fermions, the constraint imposed by H0 can also
be solved by introducing rank-2 tensor gauge field Aij, and
when the gauge field is in its deconfined phase, the system
can be viewed as fermions interacting with gapless soft
graviton mode Aij. The behavior of the fermions is expected
to be nonfermi liquid.

In the whole paper, our goal has been carefully limited to
algebraic spin liquid. However, one can consider the issue of
“quantum gravity” as an extension of this work. Indeed, if in
a theory the gauge symmetry of the graviton can emerge at
low energy physics, the theory might be a candidate of a new
possibility of quantum gravity. Several other systems in con-
densed matter physics have been proposed to be related to
gravity, for instance, spin-2 particles are supposed to exist at
the edge states of a four-dimensional quantum Hall model.32

However, in these systems the gauge symmetry �which is
very crucial for gravitons� was not an emergent property. In
our work, the collective excitations automatically have the
gauge symmetry of the graviton. However, the dispersion
relation is quadratic, this is due to the fact that the gauge
invariant operator, the curvature tensor, is the second deriva-
tive of Aij. The ring exchange term generated from the near-
est neighbor hoppings is cos�R�, after the expansion, the
leading term is R2, which is proportional to k4.

We can make the graviton dispersion linear by introduc-
ing by hand a quasigauge invariant term to the low energy
Lagrangian:

Lcs = Aij�iab� jcd�a�cAbd. �38�

This term is not completely gauge invariant, instead, it is
gauge invariant up to a boundary term. This is very
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analogous to the Chern-Simons field theory of the quantum
Hall effect. However, this term cannot be generated from the
microscopic boson model with only nearest neighbor hop-
ping. It is expected that, by coupling to the matter fields, and
the matter fields form a certain special state, the k2 term �38�
can be generated from integrating over the matter fields in

the partition function, just like how the Chern-Simons field
theory is obtained in the quantum Hall state of electrons.
Recently, some other authors have proposed a bosonic model
which is similar to ours, and the k2 term �38� is claimed to
exist in the long scale physics, therefore a graviton with
linear dispersion is supposed to exist.33
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