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Identifying the correct low-energy effective theory for magnons and holes in an antiferromagnet has re-
mained an open problem for a long time. In analogy to the effective theory for pions and nucleons in QCD,
based on a symmetry analysis of Hubbard and t-J-type models, we construct a systematic low-energy effective
field theory for magnons and holes located inside pockets centered at lattice momenta �± �

2a , ± �

2a
�. The effective

theory is based on a nonlinear realization of the spontaneously broken spin symmetry and makes model-
independent universal predictions for the entire class of lightly doped antiferromagnetic precursors of high-
temperature superconductors. The predictions of the effective theory are exact, order by order in a systematic
low-energy expansion. We derive the one-magnon exchange potentials between two holes in an otherwise
undoped system. Remarkably, in some cases the corresponding two-hole Schrödinger equations can even be
solved analytically. The resulting bound states have d-wave characteristics. The ground state wave function of
two holes residing in different hole pockets has a dx2−y2-like symmetry, while for two holes in the same pocket
the symmetry resembles dxy.
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I. INTRODUCTION

The discovery of high-temperature superconductors1 has
motivated numerous studies of their doped antiferromagnetic
precursors. In particular, the dynamics of holes in an antifer-
romagnet have been investigated in great detail in the con-
densed matter literature.2–46 However, a systematic investi-
gation of these dynamics is complicated due to the strong
correlations between the electrons in these systems. Unfortu-
nately, away from half-filling, the standard microscopic Hub-
bard and t-J-type models cannot be solved numerically due
to a severe fermion sign problem. Analytic calculations, on
the other hand, usually suffer from uncontrolled approxima-
tions. Substantial progress has been made in the pioneering
work of Chakravarty, Halperin, and Nelson47 who described
the low-energy magnon physics by an effective field
theory—the �2+1�-d O�3�-invariant nonlinear � model.
Based on this work, starting with Shraiman and Siggia,6

Wen,11 and Shankar,13 there have been a number of
approaches21,22,27 that address the physics of both magnons
and holes using effective field theories. All these approaches
use composite vector fields to couple magnons and holes.
The spin then appears as the “charge” of an Abelian gauge
field. In this context, confinement of the spin “charge” and
resulting spin-charge separation has sometimes been in-
voked. In these approaches an effective Lagrangian is usu-
ally obtained from an underlying microscopic system �e.g.,
from the Hubbard or t-J model� by integrating out high-
energy degrees of freedom. In this manner a variety of effec-
tive theories has been constructed. Unfortunately, there
seems to be no agreement even on basic issues like the fer-
mion field content of the effective theory or on the question
how various symmetries are realized on those fields. In par-
ticular, it has never been demonstrated convincingly that any
of the effective theories proposed so far indeed correctly de-

scribes the low-energy physics of the underlying microscopic
systems quantitatively.

The experience with chiral perturbation theory for the
strong interactions shows that effective field theory is able to
provide a systematic—i.e., order by order exact—description
of the low-energy physics of nonperturbative systems as
complicated as QCD. One main goal of this paper is to pro-
vide the same for the antiferromagnetic precursors of high-
temperature superconductors. Inspired by strongly interact-
ing systems in particle physics,48,49 we have recently
approached the problem of constructing a low-energy effec-
tive field theory for magnons and holes in a systematic
manner.50 A central ingredient is the nonlinear realization of
the spontaneously broken global symmetry51,52—in this case
of the SU�2�s spin symmetry. This again leads to the same
composite vector fields that appeared in previous approaches
to the problem. In particular, spin again appears as an Abe-
lian “charge” to which a composite magnon “gauge” field
couples. However, this gauge field does not mediate confin-
ing interactions. It just mediates magnon exchange, which
represents a weak interaction at low energies. Consequently,
spin-charge separation does not arise. In analogy to baryon
chiral perturbation theory53–57—the effective theory for pions
and nucleons—we have extended the pure magnon effective
theory of Refs. 47 and 58–67 by including charge carriers. In
Ref. 50 we have investigated the simplest case of charge
carriers appearing at lattice momenta �0,0� or � �

a , �
a

� in the
Brillouin zone. However, angle resolved photoemission
spectroscopy �ARPES� experiments68–71 as well as theoreti-
cal investigations6,7,17,42,43 show that doped holes appear in-
side hole pockets centered at the lattice momenta �± �

2a , ± �
2a

�.
In this paper, we generalize the effective theory of Ref. 50 to
this case.

It should be pointed out that the effective theory to be
constructed below is based on microscopic systems such as
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the Hubbard or t-J model, but does not necessarily reflect all
aspects of the actual cuprate materials. For example, just like
the Hubbard or t-J model, the effective theory does not con-
tain impurities which are a necessary consequence of doping
in the real materials. Also long-range Coulomb forces,
anisotropies, or the effects of small couplings between dif-
ferent CuO2 layers are neglected in the effective theory. Fur-
thermore, the underlying crystal lattice is imposed as a rigid
structure by hand, such that phonons are excluded from the
outset. Although all these effects can in principle be incor-
porated in the effective theory, for the moment we exclude
them, in order not to obscure the basic physics of magnons
and holes. As a consequence, the effective theory does not
describe the actual materials in all details. Still, it should be
pointed out that the predictions of the effective theory are not
limited to just the Hubbard or t-J model, but are universally
applicable to a wide range of microscopic systems. In fact,
the low-energy physics of any antiferromagnet that possesses
the assumed symmetries and has hole pockets at �± �

2a , ± �
2a

�
is described correctly, order by order in a systematic low-
energy expansion. Material-specific properties enter the ef-
fective theory in the form of a priori undetermined low-
energy parameters, such as the spin stiffness or the spin-
wave velocity. The values of the low-energy parameters for a
concrete underlying microscopic system can be determined
by comparison with experiments or with numerical simula-
tions. For example, precise numerical simulations of low-
energy observables in the t-J model constitute a most strin-
gent test of the effective theory. Such simulations are
presently in progress.

After constructing the effective theory, we use it to calcu-
late the one-magnon exchange potentials between two holes
and we solve the corresponding Schrödinger equations. Re-
markably, in some cases the Schrödinger equations can be
solved completely analytically. The location of the hole
pockets has an important effect on the dynamics and implies
d-wave characteristics of hole pairs. Using the methods de-
scribed in this paper, analogous to applications of baryon
chiral perturbation theory to few-nucleon systems,72–81 we
have recently investigated magnon-mediated binding be-
tween two holes residing in two different hole pockets.82

Here we discuss these issues in more detail and we extend
the investigation to a pair of holes in the same pocket. In this
paper, we limit ourselves to an isolated pair of holes in an
otherwise undoped antiferromagnet. Lightly doped antiferro-
magnets will be investigated in a forthcoming paper.83

Magnon-mediated binding between pairs of holes has
been studied before, however, partly with conflicting results.
The results of our effective theory confirm and extend the
interesting work of Kuchiev and Sushkov.29 Based on the
microscopic t-J model, these authors have derived the
magnon-mediated forces between two holes residing in the
same hole pocket and have solved the resulting Schrödinger
equation. The results of Ref. 29 are similar to ours in several
respects. In particular, the distance-dependence of the
magnon-mediated forces is the same in both cases, and, as a
result, both energy spectra contain infinitely many bound
states. The effective field theory derivation of these results is
conceptually particularly clean and transparent, and provides
results that can be extended order by order in a systematic
low-energy expansion.

The paper is organized as follows. In Sec. II the symme-
tries of the microscopic Hubbard and t-J models are summa-
rized. Section III describes the nonlinear realization of the
spontaneously broken SU�2�s spin symmetry. In Sec. IV the
transformations of the effective fields for charge carriers are
related to the ones of the underlying microscopic models.
The hole fields are identified and the electron fields are
eliminated in Sec. V. Also the leading terms in the effective
Lagrangian for magnons and holes are constructed and acci-
dental emergent flavor and Galilean boost symmetries are
discussed. The resulting one-magnon exchange potentials
are derived and the corresponding Schrödinger equations
are studied in Sec. VI. Finally, Sec. VII contains our conclu-
sions.

II. SYMMETRIES OF MICROSCOPIC MODELS

The standard microscopic models for antiferromagnetism
and high-temperature superconductivity are Hubbard and
t-J-type models. The symmetries of these models are of cen-
tral importance for the construction of the low-energy effec-
tive theories for magnons and charge carriers. The Hubbard
model is defined by the Hamiltonian

H = − t�
x,i

�cx
†cx+î + c

x+î

†
cx� +

U

2 �
x

�cx
†cx − 1�2

− ��
x

�cx
†cx − 1� . �2.1�

Here x denotes the sites of a two-dimensional square lattice

and î is a vector of length a �where a is the lattice spacing�
pointing in the i direction. Furthermore, t is the nearest-
neighbor hopping parameter, while U�0 is the strength of
the screened onsite Coulomb repulsion, and � is the chemi-
cal potential for fermion number relative to half-filling. The
fermion creation and annihilation operators are given by

cx
† = �cx↑

† ,cx↓
† �, cx = �cx↑

cx↓
� . �2.2�

They obey standard anticommutation relations. The SU�2�s

symmetry is generated by the total spin

S� = �
x

S�x = �
x

cx
†��

2
cx, �2.3�

where �� are the Pauli matrices, while the U�1�Q fermion
number �relative to half-filling� is generated by the charge
operator,

Q = �
x

Qx = �
x

�cx
†cx − 1� = �

x

�cx↑
† cx↑ + cx↓

† cx↓ − 1� .

�2.4�

For �=0, the Hubbard model even possesses a non-Abelian
SU�2�Q extension of the fermion number symmetry �also
known as pseudospin symmetry�84,85 which is generated by
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Q+ = �
x

�− 1�xcx↑
† cx↓

† , Q− = �
x

�− 1�xcx↓cx↑, Q3 = 1
2Q .

�2.5�

The factor �−1�x= �−1��x1+x2�/a distinguishes between the sites
of the even and odd sublattice. The points on the even sub-
lattice have �−1�x=1 while the points on the odd sublattice
have �−1�x=−1. The SU�2�Q symmetry is a peculiarity of the
Hubbard model with only nearest-neighbor couplings. The
actual cuprate materials as well as the effective theory that
describes them do not have the SU�2�Q symmetry. Still, we
consider this somewhat artificial symmetry in some detail
because this ensures that the symmetry structure of our ef-
fective theory is indeed consistent under all circumstances.
As discussed in detail in Ref. 50, it is useful to introduce a
matrix-valued fermion operator

Cx = �cx↑ �− 1�xcx↓
†

cx↓ − �− 1�xcx↑
† � , �2.6�

which displays both the SU�2�s and the SU�2�Q symmetries
in a compact form. Under combined transformations g
�SU�2�s and ��SU�2�Q it transforms as

Q� Cx� = gCx�
T. �2.7�

Due to the antiferromagnetic order near half-filling, another
important symmetry is the displacement Di by one lattice
spacing in the i direction which acts as

DiCx = Cx+î�3. �2.8�

The appearance of �3 on the right-hand side is due to the
factor �−1�x. As discussed in Ref. 50, it is also useful to
introduce a combination Di� of the displacement symmetry
Di with the SU�2�s transformation g= i�2,

Di�Cx = �i�2�Cx+î�3. �2.9�

The Hamiltonian can then be expressed in the manifestly
SU�2�s-, SU�2�Q-, Di-, and thus also Di�-invariant form

H = −
t

2�
x,i

Tr�Cx
†Cx+î + C

x+î

†
Cx� +

U

12�
x

Tr�Cx
†CxCx

†Cx�

−
�

2 �
x

Tr�Cx
†Cx�3� . �2.10�

The chemical potential term is only U�1�Q invariant, while
the other two terms are manifestly SU�2�Q invariant.

We also need to consider the 90 degrees rotation O of the
quadratic lattice. It acts on a point x= �x1 ,x2� as Ox
= �−x2 ,x1�. Under this symmetry the fermion operator matrix
transforms as

OCx = COx. �2.11�

Under the spatial reflection R at the x1 axis, which turns x
into Rx= �x1 ,−x2�, one obtains

RCx = CRx. �2.12�

It should be noted that, due to the presence of the lattice, the
Hubbard model is not invariant under Galilean boosts.

The t-J model is defined by the Hamilton operator

H = P�− t�
x,i

�cx
†cx+î + c

x+î

†
cx� + J�

x,i
S�x · S�x+î − ��

x

Qx�P .

�2.13�

Now the operators act in a restricted Hilbert space of empty
or at most singly occupied sites, while states with doubly
occupied sites are eliminated from the Hilbert space by the
projection operator P. Hence, the t-J model can only be
doped with holes but not with electrons. The t-J model has
the same symmetries as the Hubbard model, except that the
SU�2�Q extension of the U�1�Q fermion number symmetry,
which relates electrons to holes in the Hubbard model, is
now absent.

In the t-J model, a single hole has been simulated rather
accurately in Refs. 42 and 43. Using a worm-cluster algo-
rithm similar to the algorithm used in Ref. 43, we have com-
puted the single-hole dispersion relation shown in Fig. 1. The
energy E�p�� of a hole is minimal when its lattice momentum
p� = �p1 , p2� is located in a hole pocket centered at �± �

2a , ± �
2a

�.

III. NONLINEAR REALIZATION OF THE SU„2…s

SYMMETRY

The key to the low-energy physics of lightly doped cu-
prates is the spontaneous breakdown of the SU�2�s symmetry
down to U�1�s which gives rise to two massless Nambu-
Goldstone bosons—the antiferromagnetic magnons. Analo-
gous to chiral perturbation theory for the Nambu-Goldstone
pions in QCD,49 a systematic low-energy effective theory for
magnons has been developed in Refs. 58–66. In order to
couple charge carriers to the magnons, a nonlinear realiza-
tion of the SU�2�s symmetry has been constructed in Ref. 50.
The global SU�2�s symmetry then manifests itself as a local
U�1�s symmetry in the unbroken subgroup. This is analogous
to baryon chiral perturbation theory in which the spontane-

FIG. 1. �Color online� The dispersion relation E�p�� of a single
hole in the t-J model �on a 32�32 lattice for J=2t� with hole
pockets centered at �± �

2a , ± �

2a
�.
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ously broken SU�2�L � SU�2�R chiral symmetry of QCD is
implemented on the nucleon fields as a local SU�2�L=R trans-
formation in the unbroken isospin subgroup.

Following the general framework of Callan, Coleman,
Wess, and Zumino,51,52 the staggered magnetization of an
antiferromagnet is described by a unit-vector field

e��x� = �e1�x�,e2�x�,e3�x��, e��x�2 = 1, �3.1�

in the coset space SU�2�s /U�1�s=S2. Here x= �x1 ,x2 , t� de-
notes a point in space-time. An equivalent CP�1� representa-
tion uses 2�2 Hermitian projection matrices P�x� that obey

P�x� = 1
2 �1 + e��x� · �� �, P�x�† = P�x� ,

Tr P�x� = 1, P�x�2 = P�x� . �3.2�

To leading order, the Euclidean magnon effective action
takes the form

S�P� =� d2xdt�s Tr��iP�iP +
1

c2�tP�tP� . �3.3�

The index i� 	1,2
 labels the two spatial directions, while
the index t refers to the time direction. The parameter �s is
the spin stiffness and c is the spin-wave velocity. As dis-
cussed in detail in Ref. 50, the action is invariant under the
symmetries of the corresponding microscopic models which
are realized as follows in the effective theory:

SU�2�s: P�x�� = gP�x�g†,

SU�2�Q: Q� P�x� = P�x� ,

Di:
DiP�x� = 1 − P�x� ,

Di�:
Di�P�x� = P�x�*,

�3.4�
O: OP�x� = P�Ox�, Ox = �− x2,x1,t� ,

R: RP�x� = P�Rx�, Rx = �x1,− x2,t� ,

T: TP�x� = 1 − P�Tx�, Tx = �x1,x2,− t� ,

T�: T�P�x� = �i�2��TP�x���i�2�† = P�Tx�*.

Here T denotes time reversal. The symmetry T� combines T
with the SU�2�s rotation g= i�2. While the discrete symmetry
T is spontaneously broken, T� is not. As a result, in the ef-
fective theory T� is realized in a simpler way than T itself
which is the main reason to consider it at all.

The definition of the nonlinear realization of the SU�2�s

symmetry proceeds as follows. First, one diagonalizes the
magnon field by a unitary transformation u�x��SU�2�, i.e.,

u�x�P�x�u�x�† =
1

2
�1 + �3� = �1 0

0 0
�, u11�x� � 0.

�3.5�

In order to make u�x� uniquely defined, we demand that the
element u11�x� is real and non-negative. Otherwise the diago-

nalizing matrix u�x� would be defined only up to a U�1�s

phase. The transformation u�x� describes a rotation of the
local staggered magnetization vector e��x� into the
3-direction. Since u�x� is more directly related to P�x� than
to e��x�, we have introduced the particularly convenient
CP�1� representation. Parametrizing

e��x� = �sin 	�x�cos 
�x�, sin 	�x�sin 
�x�,cos 	�x�� ,

�3.6�

one obtains

u�x� = � cos�	�x�/2� sin�	�x�/2�e−i
�x�

− sin�	�x�/2�ei
�x� cos�	�x�/2�
� .

�3.7�

Under a global SU�2�s transformation g, the diagonalizing
field u�x� transforms as

u�x�� = h�x�u�x�g†, u11�x�� � 0, �3.8�

which implicitly and uniquely defines the nonlinear symme-
try transformation

h�x� = exp�i��x��3�

= �exp�i��x�� 0

0 exp�− i��x��
� � U�1�s. �3.9�

Under the displacement symmetry Di the staggered magne-
tization changes sign, i.e., Die��x�=−e��x�, such that one ob-
tains

Diu�x� = ��x�u�x� , �3.10�

with

��x� = � 0 − exp�− i
�x��
exp�i
�x�� 0

� . �3.11�

The way in which the global SU�2�s spin symmetry dis-
guises itself as a local symmetry in the unbroken U�1�s sub-
group is characteristic for any systematic effective field
theory of Goldstone bosons. The nonlinear realization of
spontaneously broken continuous global symmetries has
been discussed in full generality in the pioneering work of
Callan, Coleman, Wess, and Zumino.51,52 Following their
general scheme, doped holes are derivatively coupled to the
magnons. In fact, the holes are “charged” under the local
U�1�s symmetry and transform with the nonlinear transfor-
mation h�x�. This structure was also realized in previous at-
tempts to construct effective theories for magnons and
holes.6,11,13,21,22,27 In order to couple holes to the magnons it
is necessary to introduce the anti-Hermitian traceless field,

v��x� = u�x���u�x�†, �3.12�

one obtains the following transformation rules:

SU�2�s: v��x�� = h�x��v��x� + ���h�x�†,

SU�2�Q: Q� v��x� = v��x� ,

Di:
Div��x� = � �x��v��x� + ���� �x�†,
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Di�:
Di�v��x� = v��x�*,

�3.13�
O: Ovi�x� = 
ijv j�Ox�, Ovt�x� = vt�Ox� ,

R: Rv1�x� = v1�Rx�, Rv2�x� = − v2�Rx�, Rvt�x� = vt�Rx� ,

T: Tv j�x� = Div j�Tx�, Tvt�x� = − Divt�Tx� ,

T�: T�v j�x� = Di�v j�Tx�, T�vt�x� = − Di�vt�Tx� .

Writing

v��x� = iv�
a �x��a, v�

±�x� = v�
1 �x� � iv�

2 �x� , �3.14�

the field v��x� decomposes into an Abelian “gauge” field
v�

3 �x� and two “charged” vector fields v�
±�x�, which under

SU�2�s transform as

v�
3 �x�� = v�

3 �x� − ����x�, v�
±�x�� = v�

±�x�exp�±2i��x�� .

�3.15�

IV. TRANSFORMATION RULES OF CHARGE CARRIER
FIELDS

In the next step, we will identify the fields which appro-
priately represent the fermionic degrees of freedom in the
low energy effective theory. Due to the nonperturbative dy-
namics, it is impossible in practice to rigorously derive the
low-energy effective theory from the underlying microscopic
physics. Still, since the construction of the effective action is
led by symmetry considerations, in this section we will at-
tempt to relate the transformation rules of the effective fields
describing the charge carriers to those of the microscopic
fermion operator matrix Cx of Eq. �2.6�. This guarantees that
the commutation relations among the various symmetries of
the underlying microscopic theory are inherited by the effec-
tive theory.

A. Sublattice fermion fields

In Ref. 50 we have introduced operators �x
A and �x

B on
the even and odd sublattices �x

A,B=u�x�Cx with �−1�x=1 for
A and �−1�x=−1 for B. In the Brillouin zone the correspond-
ing linear combinations �x

A±�x
B are located at lattice

momenta �0,0� and � �
a , �

a
�. In order to account for the

experimentally observed68–71 as well as theoretically
predicted6,7,17,42,43 hole pockets centered at �± �

2a , ± �
2a

�, we
now introduce eight sublattices A ,B , . . . ,H as illustrated in
Fig. 2. While it would be unnatural to introduce more than
two sublattices in a pure antiferromagnet, the eight sublat-
tices are a natural and even necessary concept when one
wants to describe fermions located in hole pockets centered
at �± �

2a , ± �
2a

�. We now introduce new lattice operators

�x
A,B,. . .,H = u�x�Cx, x � A,B, . . . ,H , �4.1�

which inherit their transformation properties from the opera-
tors of the Hubbard model. According to Eqs. �3.8� and �2.7�,
under the SU�2�s symmetry one obtains

�x
X� = u�x��Cx� = h�x�u�x�g†gCx = h�x��x

X,

X � 	A,B, . . . ,H
 . �4.2�

Similarly, under the SU�2�Q symmetry one obtains

Q� �x
X = Q� u�x�Q� Cx = u�x�Cx�

T = �x
X�T. �4.3�

Under the displacement symmetry the new operators trans-
form as

Di�x
X = Diu�x + î�Cx+î�3

= � �x + î�u�x + î�Cx+î�3

= � �x + î��
x+î

DiX�3, �4.4�

where � �x� is the field introduced in Eq. �3.11� and DiX is the
sublattice that one obtains by shifting sublattice X by one
lattice spacing in the i direction. Similarly, under the sym-
metry Di� one finds

Di��x
X = Di�u�x + î��i�2�Cx+î�3

= u�x + î�*�i�2�Cx+î�3

= �i�2��
x+î

DiX�3, �4.5�

while under the 90 degrees rotation O

O�x
X = Ou�x�OCx = u�Ox�COx = �Ox

OX, �4.6�

and under the reflection R,

R�x
X = Ru�x�RCx = u�Rx�CRx = �Rx

RX. �4.7�

Here OX and RX are the sublattices obtained by rotating or
reflecting the sublattice X. We arbitrarily chose the origin to
lie on sublattice A.

In the low-energy effective theory we will use a path in-
tegral description instead of the Hamiltonian description
used in the Hubbard model. In the effective theory the elec-
tron and hole fields are thus represented by independent
Grassmann numbers �±

A,B,. . .,H�x� and �±
A,B,. . .,H†�x� which are

combined to

�X�x� = ��+
X�x� �−

X†�x�
�−

X�x� − �+
X†�x�

�, X � 	A,C,F,H
 ,

FIG. 2. The layout of the eight sublattices A ,B , . . . ,H.
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�X�x� = ��+
X�x� − �−

X†�x�
�−

X�x� �+
X†�x�

�, X � 	B,D,E,G
 .

�4.8�

Note that the even sublattices A ,C ,F ,H �with �−1�x=1� are
treated differently than the odd sublattices B ,D ,E ,G �with
�−1�x=−1�. In contrast to the spin indices ↑ and ↓ in the
microscopic theory, in the effective theory the indices + and
− denote the spin relative to the direction of the local stag-
gered magnetization. Only this component of the spin is still
a good quantum number after spontaneous SU�2�s symmetry
breaking. For notational convenience, we also introduce the
fields

�X†�x� = ��+
X†�x� �−

X†�x�
�−

X�x� − �+
X�x�

�, X � 	A,C,F,H
 ,

�X†�x� = � �+
X†�x� �−

X†�x�
− �−

X�x� �+
X�x�

�, X � 	B,D,E,G
 ,

�4.9�

which consist of the same Grassmann fields �±
X�x� and �±

X†�x�
as �X�x�.

In contrast to the lattice operators, the fields �X�x� are
defined in the continuum. Hence, under the displacement
symmetries Di and Di� we no longer distinguish between the

points x and x+ î. As a result, the transformation rules of the
various symmetries take the form

SU�2�s: �X�x�� = h�x��X�x� ,

SU�2�Q: Q� �X�x� = �X�x��T,

Di:
Di�X�x� = � �x��DiX�x��3,

Di�:
Di��X�x� = �i�2��DiX�x��3,

O: O�X�x� = �OX�Ox� ,
�4.10�

R: R�X�x� = �RX�Rx� ,

T: T�X�x� = � �Tx��i�2���X†�Tx�T��3,

T�X†�x� = − �3��X�Tx�T��i�2�†� �Tx�†,

T�: T��X�x� = − ��X†�Tx�T��3,

T��X†�x� = �3��X�Tx�T� .

Note that an upper index T on the right denotes transpose,
while on the left it denotes time reversal. The form of the
time-reversal symmetry T in the effective theory with non-
linearly realized SU�2�s symmetry follows from the usual
form of time reversal in the path integral of a nonrelativistic
theory in which the spin symmetry is linearly realized. The
fermion fields in the two formulations just differ by a factor

u�x�. In components the transformation rules take the form

SU�2�s: � ±
X�x�� = exp�±i��x��� ±

X�x� ,

U�1�Q: Q� ±
X�x� = exp�i��� ±

X�x� ,

Di:
Di� ±

X�x� = � exp��i
�x����
DiX�x� ,

Di�:
Di�� ±

X�x� = ± ��
DiX�x� ,

O: O� ±
X�x� = �±

OX�Ox� ,
�4.11�

R: R� ±
X�x� = � ±

RX�Rx� ,

T: T� ±
X�x� = exp��i
�Tx��� ±

X†�Tx� ,

T� ±
X†�x� = − exp�±i
�Tx��� ±

X�Tx� ,

T�: T�� ±
X�x� = − � ±

X†�Tx� ,

T�� ±
X†�x� = � ±

X�Tx� .

It should be noted that the components + and − are not
interchanged under time reversal. While both the spin of the
fermion and the staggered magnetization change sign under
time reversal, the projection of one onto the other does not.

B. Fermion fields in momentum space pockets

Instead of working with the eight sublattice indices X
� 	A ,B , . . . ,H
, it is more convenient to introduce eight cor-
responding lattice momentum indices

k = �k1,k2�

� ��0,0�,��

a
,
�

a
�,��

a
,0�,�0,

�

a
�,�±

�

2a
, ±

�

2a
�� .

�4.12�

The eight sublattices represent a minimal set that allows us
to address the lattice momenta �± �

2a , ± �
2a

� which define the
centers of hole pockets in the cuprates. By introducing fur-
ther sublattices it would be straightforward to reach other
lattice momenta as well. We now build linear combinations
of the sublattice fermion fields in order to construct appro-
priate fields labelled by the lattice momentum k correspond-
ing to the specific points in Fig. 3

� ±
k�x� =

1

8

	� ±
A�x� + e−ik1a� ±

B�x� + e−2ik1a� ±
C�x�

+ e−3ik1a� ±
D�x� + e−ik2a�� ±

E�x� + e−ik1a� ±
F�x�

+ e−2ik1a�±
G�x� + e−3ik1a� ±

H�x��
 , �4.13�

which transform as

SU�2�s: � ±
k�x�� = exp�±i��x��� ±

k�x� ,

U�1�Q: Q� ±
k�x� = exp�i��� ±

k�x� ,
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Di:
Di� ±

k�x� = � exp�ikia�exp��i
�x��� �
k �x� ,

Di�:
Di�� ±

k�x� = ± exp�ikia�� �
k �x� ,

O: O� ±
k�x� = �±

Ok�Ox� ,

�4.14�
R: R� ±

k�x� = � ±
Rk�Rx� ,

T: T� ±
k�x� = exp��i
�Tx���±

−k†�Tx� ,

T� ±
k†�x� = − exp�±i
�Tx���±

−k�Tx� ,

T�: T�� ±
k�x� = − �±

−k†�Tx� ,

T�� ±
k†�x� = �±

−k�Tx� .

Here Ok and Rk are the momenta obtained by rotating or
reflecting the lattice momentum k. From the component
fields one can again construct matrix-valued fields

�k�x� = �� +
k�x� �−

−k�†�x�

� −
k�x� − � +

−k�†�x�
� ,

� k†�x� = �� +
k†�x� �−

k†�x�

�−
−k��x� − �+

−k��x�
� , �4.15�

with k�=k+ � �
a , �

a
�. The matrix-valued fields then transform

as

SU�2�s: �k�x�� = h�x��k�x� ,

SU�2�Q: Q� �k�x� = �k�x��T,

Di:
Di�k�x� = exp�ikia�� �x��k�x��3,

Di�:
Di��k�x� = exp�ikia��i�2��k�x��3,

O: O�k�x� = �Ok�Ox� ,
�4.16�

R: R�k�x� = �Rk�Rx� ,

T: T�k�x� = � �Tx��i�2���−k†�Tx�T��3,

T�k†�x� = − �3��−k�Tx�T��i�2�†� �Tx�†,

T�: T��k�x� = − ��−k†�Tx�T��3,

T��k†�x� = �3��−k�Tx�T� .

In Ref. 50 we have limited ourselves to two sublattices A and
B which leads to the lattice momenta �0,0� and � �

a , �
a

�. The
main purpose of the present paper is to describe holes located
in pockets centered at �± �

2a , ± �
2a

�.

V. EFFECTIVE THEORY FOR MAGNONS AND HOLES

From now on we will limit ourselves to theories with
holes as the only charge carriers. In order to identify the hole
and to eliminate the electron fields, we consider the most
general mass terms consistent with the symmetries.

A. Hole field identification and electron field elimination

It turns out that mass terms cannot mix the various lattice
momenta arbitrarily. In particular, through a mass term a
field � ±

k�x� with lattice momentum k can only mix with fields
with lattice momenta k or k�. Hence, the eight lattice mo-
menta can be divided into four pairs which are associated
with three different cases. The simplest case in which k
= �0,0� and k�= � �

a , �
a

� has been investigated in great detail in
Ref. 50, but is not realized in the cuprates. Another case in
which k= � �

a ,0� and k�= �0, �
a

� describes electron doping and
will be investigated elsewhere. In the following, we concen-
trate on hole-doped cuprates. In this case, the hole pockets
are centered at lattice momenta,

k� = � �

2a
,

�

2a
�, k�� = − k�, k� = � �

2a
,−

�

2a
�, k�� = − k�.

�5.1�

Using the transformation rules of Eq. �4.16� one can con-
struct the following invariant mass terms:

�
f=�,�

1

2
Tr�M��kf†�3�kf� + �kf�†�3�kf

�

+ m��kf†�kf
�3 + �kf�†�kf��3��

= �
f=�,�

�M�� +
kf†� +

kf� − � −
kf†� −

kf� + � +
kf�†� +

kf
− � −

kf�†� −
kf

�

+ m�� +
kf†� +

kf
+ � −

kf†� −
kf

+ � +
kf�†� +

kf� + � −
kf�†� −

kf���

= �
f=�,�

��� +
kf†,� +

kf�†�� m M
M m

�� � +
kf

� +
kf��

+ �� −
kf†,� −

kf�†�� m − M
− M m

�� � −
kf

� −
kf��� . �5.2�

FIG. 3. The eight lattice momenta �and their periodic copies�
dual to the eight sublattices A ,B , . . . ,H. In the cuprates the holes
reside in momentum space pockets centered at lattice momenta
�± �

2a , ± �

2a
� which are represented by the four crosses.
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The terms proportional to M are SU�2�Q invariant while the
terms proportional to m are only U�1�Q invariant. By diago-
nalizing the mass matrices one can identify particle and hole
fields. The eigenvalues of the mass matrices are m±M. In
the SU�2�Q-symmetric case, i.e., for m=0, there is a particle-
hole symmetry. The particles correspond to positive energy
states with eigenvalue M and the holes correspond to nega-
tive energy states with eigenvalue −M. In the presence of
SU�2�Q-breaking terms these energies are shifted and par-
ticles now correspond to states with eigenvalue m+M, while
holes correspond to states with eigenvalue m−M. The hole
fields are identified from the corresponding eigenvectors as

� +
f �x� =

1

2

�� +
kf

�x� − � +
kf��x�� ,

� −
f �x� =

1

2

�� −
kf

�x� + � −
kf��x�� . �5.3�

These fields will turn out to be the ones that finally enter the
effective theory. It should be noted that processes involving
electrons and holes simultaneously cannot be treated in a
systematic low-energy effective theory. Electrons and holes
can annihilate, which turns their rest mass into other forms of
energy. This is necessarily a high-energy process. Only in the
presence of an exact SU�2�Q symmetry, the SU�2�Q-
nonsinglet electron-hole states are protected against annihi-
lation and can be treated systematically in a low-energy ef-
fective theory. Here we concentrate on the realistic case
without SU�2�Q symmetry. Then electrons and holes must be
considered separately. In this paper we concentrate entirely
on the holes. Under the various symmetries, the hole fields
� ±

f �with f � 	� ,�
� transform as

SU�2�s: � ±
f �x�� = exp�±i��x��� ±

f �x� ,

U�1�Q: Q� ±
f �x� = exp�i��� ±

f �x� ,

Di:
Di� ±

f �x� = � exp�iki
fa�exp��i
�x��� �

f �x� ,

Di�:
Di�� ±

f �x� = ± exp�iki
fa�� �

f �x� ,

O: O�±
��x� = � � ±

��Ox�, O� ±
��x� = �±

��Ox� ,
�5.4�

R: R�±
��x� = � ±

��Rx�, R� ±
��x� = �±

��Rx� ,

T: T� ±
f �x� = � exp��i
�Tx��� ±

f†�Tx� ,

T� ±
f†�x� = ± exp�±i
�Tx��� ±

f �Tx� ,

T�: T�� ±
f �x� = ± � ±

f†�Tx� ,

T�� ±
f†�x� = � � ±

f �Tx� .

The action to be constructed below must be invariant under
these symmetries.

B. Effective action for magnons and holes

Once the relevant low-energy degrees of freedom have
been identified, and the transformation rules of the corre-
sponding fields have been understood, the construction of the
effective action is uniquely determined. The low-energy ef-
fective action of magnons and holes is constructed as a de-
rivative expansion. At low energies terms with a small num-
ber of derivatives dominate the dynamics. Since the holes are
heavy nonrelativistic fermions, one time-derivative counts
like two spatial derivatives. Here we limit ourselves to terms
with at most one temporal or two spatial derivatives. One
then constructs all terms consistent with the symmetries
listed above.

The terms in the action can be characterized by the �nec-
essarily even� number n� of fermion fields they contain, i.e.,

S�� ±
f†,� ±

f ,P� =� d2x dt�
n�

Ln�
. �5.5�

The leading terms in the effective Lagrangian without fer-
mion fields describe the pure magnon sector and take the
form

L0 = �s Tr��iP�iP +
1

c2�tP�tP� , �5.6�

with the spin stiffness �s and the spin-wave velocity c. The
leading terms with two fermion fields �containing at most
one temporal or two spatial derivatives� describe the propa-
gation of holes as well as their couplings to magnons and are
given by

L2 = �
f=�,�

s=+,−

�M� s
f†� s

f + � s
f†Dt� s

f +
1

2M�
Di� s

f†Di� s
f

+ � f
1

2M�
�D1� s

f†D2� s
f + D2� s

f†D1� s
f�

+ ��� s
f†v1

s� −s
f + � f� s

f†v2
s� −s

f � + N1� s
f†vi

svi
−s� s

f

+ � fN2�� s
f†v1

sv2
−s� s

f + � s
f†v2

sv1
−s� s

f�� . �5.7�

Here M is the rest mass and M� and M� are the kinetic
masses of a hole, � is a hole-one-magnon, and N1 and N2 are
hole-two-magnon couplings, which all take real values. The
sign � f is + for f =� and − for f =�. The covariant deriva-
tives are given by

Dt� ±
f �x� = ��t ± ivt

3�x� − ��� ±
f �x� ,

Di� ±
f �x� = ��i ± ivi

3�x��� ±
f �x� . �5.8�

The chemical potential � enters the covariant time-derivative
like an imaginary constant vector potential for the fermion
number symmetry U�1�Q. As discussed in detail in Refs. 50
and 67, the coupling to external electromagnetic fields leads
to further modifications of the covariant derivatives. Re-
markably, the term in the action proportional to � contains
just a single �uncontracted� spatial derivative. Due to the
nontrivial rotation properties of flavor, this term is still 90
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degrees rotation invariant. Due to the small number of de-
rivatives it contains, this term dominates the low-energy dy-
namics. In particular, it alone is responsible for one-magnon
exchange. Interestingly, although the effective theory of Ref.
27 has the same field content as the one presented here, the
terms in the Lagrangian are quite different. In particular, the
term proportional to � is absent in that theory and the phys-
ics is thus very different. This also means that in Ref. 27 the
symmetries are realized on the fermion fields in a different
way.

The above Lagrangian leads to a single hole dispersion
relation

Ef�p�� = M +
pi

2

2M�
+ � f

p1p2

M�
. �5.9�

For 1/M�=0 this would be the usual dispersion relation of a
free nonrelativistic particle. In that case, the hole pockets
centered at � �

2a , ± �
2a

� would have a circular shape. However,
the 90 degrees rotation symmetry of the problem allows for
1 /M��0 which implies an elliptic shape of the hole pockets
as illustrated in Fig. 4. This is indeed observed both in
ARPES experiments and in numerical simulations of t-J-type
models �see Fig. 1�. It should be noted that stability of
the minima at the center of the hole pockets requires
�M� � �M�.

The leading terms with four fermion fields are given by

L4 = �
s=+,−

�G1

2
��s

�†�s
��−s

�†�−s
� + � s

�†� s
�� −s

�†� −s
� �

+ G2�s
�†�s

�� s
�†� s

� + G3�s
�†�s

��−s
�†� −s

�

+ G4��s
�†�s

� �
s�=+,−

�� s�
�†v1

s�� −s�
� − � s�

�†v2
s�� −s�

� �

+ � s
�†� s

� �
s�=+,−

��s�
�†v1

s��−s�
� + �s�

�†v2
s��−s�

� ��� ,

�5.10�

with the real-valued 4-fermion contact interactions G1, G2,
G3, and G4. We have limited ourselves to terms containing at
most one spatial derivative. The next order contains a large
number of terms with one temporal or two spatial deriva-
tives. We have constructed these terms using the algebraic
program FORM,86 but we do not list them here because they
are not very illuminating. Also, due to the large number of
low-energy parameters they contain, they are unlikely to be
used in any practical investigation.

For completeness, we also list the contributions to the
Lagrangian with six and eight fermion fields

L6 = H��+
�†�+

��−
�†�−

�� +
�†� +

� + �+
�†�+

��−
�†�−

��−
�†� −

�

+ �+
�†�+

��+
�†�+

��−
�†�−

� + �−
�†�−

�� +
�†� +

�� −
�†� −

�� ,

L8 = I�+
�†�+

��−
�†�−

�� +
�†� +

�� −
�†� −

�. �5.11�

Here we have limited ourselves to terms without derivatives.
Terms with more fermion fields are then excluded by the
Pauli principle. Again, it is straightforward to systematically
construct the higher-order terms, but there is presently no
need for them.

C. Accidental emergent symmetries

Interestingly, the terms in the Lagrangian constructed
above have an accidental global U�1�F flavor symmetry that
acts as

U�1�F: F� ±
f �x� = exp�� fi��� ±

f �x� . �5.12�

The flavor symmetry is explicitly broken by higher-order
terms in the derivative expansion and thus emerges only at
low energies.

In addition, for c→� there is also an accidental Galilean
boost symmetry G, which acts on the fields as

G: GP�x� = P�Gx�, Gx = �x� − v�t,t� ,

G� ±
f �x� = exp�ip� f · x� − � ft�� ±

f �Gx� ,

G� ±
f†�x� = � ±

f†�Gx�exp�− ip� f · x� + � ft� , �5.13�

with p� f = �p1
f , p2

f � and � f given by

p1
f =

M�

1 − �M�/M��2�v1 − � f
M�

M�
v2� ,

p2
f =

M�

1 − �M�/M��2�v2 − � f
M�

M�
v1� ,

� f =
pi

f2

2M�
+ � f

p1
f p2

f

M�

=
M�

1 − �M�/M��2�1

2
�v1

2 + v2
2� − � f

M�

M�
v1v2� . �5.14�

Note that the relation between p� f and the velocity of the
Galilean boost v� results from the hole dispersion relation of
Eq. �5.9� using vi=dEf /dpi

f. Also the Galilean boost symme-

FIG. 4. Elliptically shaped hole pockets centered at �± �

2a , ± �

2a
�.

Two pockets centered at kf and kf� combine to form the pockets for
the flavors f =� ,�.

TWO-HOLE BOUND STATES FROM A SYSTEMATIC LOW-… PHYSICAL REVIEW B 74, 224432 �2006�

224432-9



try is explicitly broken at higher orders of the derivative
expansion.

The fundamental physics underlying the actual cuprates is
Galilean or, in fact, even Poincaré invariant. Poincaré sym-
metry is then spontaneously broken by the formation of a
crystal lattice with phonons as the corresponding Nambu-
Goldstone bosons. In the Hubbard or t-J models the lattice is
imposed by hand, and Galilean symmetry is thus broken ex-
plicitly instead of spontaneously. In particular, there are no
phonons in these models. Remarkably, an accidental Galilean
boost invariance still emerges dynamically at low energies.
This has important physical consequences. In particular,
without loss of generality, the hole pairs to be investigated
later, can be studied in their rest frame. This is unusual for
particles propagating on a lattice, because the lattice repre-
sents a preferred rest frame �a condensed matter “ether”�.
The accidental Galilean boost invariance may even break
spontaneously, which is the case in phases with spiral con-
figurations of the staggered magnetization.

VI. MAGNON-MEDIATED BINDING BETWEEN HOLES

Our treatment of the forces between two holes is analo-
gous to the effective theory for light nuclei72–75 in which
one-pion exchange dominates the long-range forces. In this
section we calculate the one-magnon exchange potentials be-
tween holes and we solve the corresponding two-hole
Schrödinger equations. The one-magnon exchange potentials
as well as the solution of the Schrödinger equation for a hole
pair of flavors � and � were already discussed in Ref. 82.
Here we present a more detailed derivation of these results
and we extend the discussion to hole pairs of the same flavor.

A. One-magnon exchange potentials between holes

We now calculate the one-magnon exchange potentials
between holes of flavors � or �. For this purpose, we expand
in the magnon fluctuations m1�x�, m2�x� around the ordered
staggered magnetization, i.e.,

e��x� = �m1�x�

�s

,
m2�x�

�s

,1� + O�m2�

⇒ v�
±�x� =

1

2
�s

���m2�x� ± im1�x�� + O�m3� ,

v�
3 �x� =

1

4�s
�m1�x���m2�x� − m2�x���m1�x�� + O�m4� .

�6.1�

Since vertices with v�
3 �x� �contained in D�� involve at least

two magnons, one-magnon exchange results from vertices
with v�

±�x� only. As a consequence, two holes can exchange a
single magnon only if they have antiparallel spins �+ and −�,
which are both flipped in the magnon-exchange process. We
denote the momenta of the incoming and outgoing holes by
p�± and p�±�, respectively. The momentum carried by the ex-
changed magnon is denoted by q� . We also introduce the total

momentum P� as well as the incoming and outgoing relative
momenta p� and p��,

P� = p�+ + p�− = p�+� + p�−� ,

p� = 1
2 �p�+ − p�−�, p�� = 1

2 �p�+� − p�−�� . �6.2�

Momentum conservation then implies

q� = p� + p��. �6.3�

It is straightforward to evaluate the Feynman diagram de-
scribing one-magnon exchange shown in Fig. 5. In momen-
tum space the resulting potentials for the various combina-
tions of flavors take the form

�p�+�p�−��Vf f̃�p�+p�−� = Vf f̃�q����p�+ + p�− − p�+� − p�−�� , �6.4�

with

V���q�� = − ��
�q1 + q2�2

q2 , V���q�� = − ��
�q1 − q2�2

q2 ,

V���q�� = V���q�� = − ��
q1

2 − q2
2

q2 , �6.5�

where �=�2 / �2��s�. In coordinate space the corresponding
potentials are given by

�r�+�r�−��Vf f̃�r�+r�−� = Vf f̃�r����r�+ − r�−����r�− − r�+�� , �6.6�

with

V���r�� = �
sin�2
�

r2 , V���r�� = − �
sin�2
�

r2 ,

V���r�� = V���r�� = �
cos�2
�

r2 . �6.7�

Here r�=r�+−r�− is the distance vector between the two holes
and 
 is the angle between r� and the x axis. It should be
noted that the one-magnon exchange potentials are instanta-
neous although magnons travel with the finite speed c. Re-
tardation effects occur only at higher orders. The one-
magnon exchange potentials also contain short-distance
�-function contributions which we have not listed above.
These contributions add to the 4-fermion contact interac-
tions. Since we will model the short-distance repulsion by a
hard core radius, the �-function contributions are not needed
in the following.

FIG. 5. Feynman diagram for one-magnon exchange between
two holes with antiparallel spins undergoing a spin-flip.
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B. Schrödinger equation for two holes of different flavor

Let us investigate the Schrödinger equation for the rela-
tive motion of two holes with flavors � and �. Thanks to the
accidental Galilean boost invariance, without loss of gener-
ality we can consider the hole pair in its rest frame. The total
kinetic energy of the two holes is then given by

T = �
f=�,�

� pi
2

2M�
+ � f

p1p2

M�
� =

pi
2

M�
. �6.8�

In particular, the parameter 1 /M� that measures the deviation
from a circular shape of the hole pockets drops out of the
problem. The resulting Schrödinger equation then takes the
form

�−
1

M�
� V���r��

V���r�� −
1

M�
����1�r��

�2�r��
� = E��1�r��

�2�r��
� . �6.9�

The components �1�r�� and �2�r�� are probability amplitudes
for the spin-flavor combinations �+�− and �−�+, respec-
tively. The potential V���r�� couples the two channels because
magnon exchange is accompanied by a spin-flip. The above
Schrödinger equation does not yet account for the short-
distance forces arising from 4-fermion contact interactions.
Their effect will be incorporated later by a boundary condi-
tion on the wave function near the origin. Making the ansatz

�1�r�� ± �2�r�� = R�r��±�
� , �6.10�

for the angular part of the wave function one obtains

−
d2�±�
�

d
2 ± M�� cos�2
��±�
� = − ��±�
� . �6.11�

The solutions of this Mathieu equation with the lowest ei-
genvalue −� is

�±�
� =
1


�
ce0�
, ± 1

2 M���, � = 1
8 �M���2 + O��4� .

�6.12�

The periodic Mathieu function ce0�
 , 1
2 M��� �Ref. 87� is il-

lustrated in Fig. 6.
The radial Schrödinger equation takes the form

− �d2R�r�
dr2 +

1

r

dR�r�
dr

� −
�

r2R�r� = M�ER�r� . �6.13�

As it stands, this equation is ill-defined because an attractive
1
r2 potential is too singular at the origin. However, we must
still incorporate the contact interaction proportional to the
4-fermion couplings G3 and G4. A consistent description of
the short-distance physics requires ultraviolet regularization
and subsequent renormalization of the Schrödinger equation
as discussed in Ref. 88. In order to maintain the transparency
of a complete analytic calculation, here we model the short-
distance repulsion between two holes by a hard core of ra-
dius r0, i.e., we require R�r0�=0. The radial Schrödinger
equation for the bound states is solved by a Bessel function

R�r� = AK��
M��En�r�, � = i
� . �6.14�

The energy �determined from K��
M� �En�r0�=0� is given by

En � − �M�r0
2�−1 exp�− 2�n/
�� �6.15�

for large n. As expected, the energy of the bound state de-
pends on the values of the low-energy constants. Although
the binding energy is exponentially small in n, for very small
r0 the ground state would have a small size and would be
strongly bound. In that case, the result of the effective theory
should not be trusted quantitatively, because short-distance
details and not the universal magnon-dominated long-
distance physics determine the structure of the bound state.
Still, even in that case, an extended effective theory can be
constructed which contains the tightly bound hole pairs as
additional explicit low-energy degrees of freedom. For larger
values of r0, as long as the binding energy is small compared
to the relevant high-energy scales such as �s, the results of
the effective theory in its present form are reliable, and re-
ceive only small calculable corrections from higher-order ef-
fects such as two-magnon exchange.

It should be noted that the wave functions with angular
part �+�
� and �−�
� have the same energy. A general linear
combination of the two states takes the form

��r�� = R�r��a�+�
� + b�−�
�
a�+�
� − b�−�
�

� . �6.16�

Applying the 90 degrees rotation O and using the transfor-
mation rules of Eq. �5.4� one obtains

O��r�� = R�r�� a�+�
 +
�

2
� − b�−�
 +

�

2
�

− a�+�
 +
�

2
� − b�−�
 +

�

2
� �

= R�r�� a�−�
� − b�+�
�
− a�−�
� − b�+�
�

� . �6.17�

Demanding that ��r�� is an eigenstate of the rotation O, i.e.,
O��r��=o��r��, thus implies

oa = − b, ob = a ⇒ o = ± i , �6.18�

with the corresponding eigenfunctions given by

FIG. 6. Angular wave function ce0�
 , 1
2 M��� �solid curve� and

angle dependence cos�2
� of the potential �dotted curve� for a pair
of holes with flavors � and � �M��=2.5�.
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�±�r�� = R�r���+�
� � i�−�
�
�+�
� ± i�−�
�

� . �6.19�

This leads to the probability distribution illustrated in Fig. 7,
which resembles dx2−y2 symmetry. However, unlike for a true
d-wave, the wave function is suppressed, but not equal to
zero, along the lattice diagonals. This is different for the first
angular-excited state, whose wave function indeed has a
node along the diagonals. Since the problem only has a 90
degrees and not a continuous rotation symmetry, the con-
tinuum classification scheme of angular momentum eigen-
states does not apply here. In fact, the two-fold degenerate
ground state belongs to the two-dimensional irreducible rep-
resentation of the group of discrete rotations and reflections.
The corresponding eigenvalues of the 90 degrees rotation O
are o= ± i.

It is also interesting to investigate the transformation
properties under the reflection symmetry R and the unbroken
shift symmetries Di�. Under the reflection R one obtains

R�±�r�� = R�r�� �+�− 
� ± i�−�− 
�
�+�− 
� � i�−�− 
�

�
= R�r�� �+�
� ± i�−�
�

�−�
� � i�+�
�
� = ���r�� . �6.20�

Similarly, under the displacement symmetries one obtains

D1��±�r�� = R�r�� �+�
� ± i�−�
�
�+�
� � i�−�
�

� = ���r�� ,

D2��±�r�� = − R�r�� �+�
� ± i�−�
�
�+�
� � i�−�
�

� = − ���r�� .

�6.21�

C. Schrödinger equation for two holes of the same flavor

Let us now consider two holes of the same flavor. In
particular, we focus on an �� pair. Hole pairs of type ��
behave in exactly the same way. For simplicity, we first con-

sider the �somewhat unrealistic� case of circular hole pock-
ets. Then we discuss the realistic �but slightly more compli-
cated� case of elliptically shaped pockets.

1. Circular hole pockets

Let us consider two holes of flavor � with opposite spins
+ and −. In the rest frame the wave function depends on the
relative distance vector r� which points from the spin − hole
to the spin + hole. It is important to note that magnon ex-
change is accompanied by a spin-flip. Hence, the vector r�
changes its direction in the magnon exchange process. For
circular hole pockets, i.e., for 1 /M�=0, the total kinetic en-
ergy is again given by T= pi

2 /M� and the resulting
Schrödinger equation takes the form

−
1

M�
���r�� + V���r����− r�� = E��r�� . �6.22�

As before, we make a separation ansatz

��r�� = R�r���
� . �6.23�

We concentrate on the ground state which is even with re-
spect to the reflection of r� to −r�, i.e.,

��
 + �� = ��
� . �6.24�

The angular part of the Schrödinger equation then reads

−
d2��
�

d
2 + M�� sin�2
���
� = − ���
� . �6.25�

Again, this is a Mathieu equation. The ground state with
eigenvalue −� takes the form

��
� =
1


�
ce0�
 −

�

4
,
1

2
M���, � =

1

8
�M���2 + O��4� .

�6.26�

The angular wave function for the ground state together with
the angular dependence of the one-magnon exchange poten-
tial are shown in Fig. 8.

As before, the radial Schrödinger equation takes the form
of Eq. �6.13�. Again, we model the short-distance repulsion
between two holes by a hard core of radius r0�, i.e., we re-
quire R�r0��=0. It should be noted that r0� does not necessarily

FIG. 7. Probability distribution for the ground state of two holes
with flavors � and �.

FIG. 8. Angular wave function ce0�
− �

4 , 1
2 M��� �solid curve�

and angle dependence sin�2
� of the potential �dotted curve� for
two holes of flavor � residing in a circular hole pocket �M��
=2.5�.
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take the same value as r0 in the �� case. This is not only
because there is an additional �-function contribution to the
one-magnon exchange potential, but also because the
4-fermion coupling G1 in the �� case is in general different
from the coupling G3 in the �� case. The energy is then
given by

En � − �M�r0�
2�−1 exp�− 2�n/
�� �6.27�

for large n. Again, there are two degenerate ground states—
one for an �� and one for a �� pair. They are eigenstates of
flavor related to each other by a 90 degrees rotation. Since
the U�1�F symmetry is accidental at low energies while the
90 degrees rotation symmetry is exact, it is again natural to
combine the two degenerate states to eigenstates of the rota-
tion symmetry O. The resulting probability distribution
which resembles dxy symmetry is illustrated in Fig. 9. As for
�� pairs, the symmetry is not truly d wave, but just given by
the two-dimensional irreducible representation of the group
of discrete rotations and reflections. Again, the correspond-
ing eigenvalues of the 90 degrees rotation O are o= ± i.

2. Elliptic hole pockets

Let us now move on to the realistic case of elliptically
shaped hole pockets. Then the total kinetic energy of two
holes of flavor � in their rest frame is given by

T =
pi

2

M�
+

2p1p2

M�
. �6.28�

This suggests to rotate the coordinate system by 45 degrees
such that the major axes of the ellipse are aligned with the
rotated coordinate axes, i.e.,

p1� =
1

2

�p1 + p2�, p2� =
1

2

�p1 − p2� . �6.29�

In the rotated reference frame, the kinetic energy takes the
form

T =
p1�

2

M1
+

p2�
2

M2
, �6.30�

with

1

M1
=

1

M�
+

1

M�
,

1

M2
=

1

M�
−

1

M�
. �6.31�

It is convenient to rescale the rotated axes such that the hole
pocket again assumes a circular shape. This is achieved by
defining

p̃1 =
M�

M1
p1�, p̃2 =
M�

M2
p2�, �6.32�

which indeed implies

T =
p̃1

2

M�
+

p̃2
2

M�
=

p̃i
2

M�
, �6.33�

just as for the circular hole pocket. Of course, the rotation
and rescaling must also be applied to the coordinates, i.e.,

x̃1 =
 M1

2M�
�x1 + x2� = r̃ cos 
̃ ,

x̃2 =
 M2

2M�
�x1 − x2� = r̃ sin 
̃ . �6.34�

The rotated and rescaled one-magnon exchange potential
then takes the form

V���r�̃� = �
sin�2
�

r2 = �
2x1x2

�x1
2 + x2

2�2

= �
x̃ 1

2M�/M1 − x̃ 2
2M�/M2

�x̃ 1
2M�/M1 + x̃ 2

2M�/M2�2

= �
cos�2
̃� + M�/M�

r̃ 2�1 + cos�2
̃�M�/M��2 , �6.35�

and the corresponding Schrödinger equation reads

−
1

M�
���r�̃� + V���r�̃���− r�̃� = E��r�̃� . �6.36�

Once again, we make the separation ansatz

��r�̃� = R�r̃���
̃� , �6.37�

such that the angular part of the Schrödinger equation now
takes the form

−
d2��
̃�

d
̃2 + M��
cos�2
̃� + M�/M�

�1 + cos�2
̃�M�/M��2��
̃� = − ���
̃� .

�6.38�

This is a differential equation in the class of Hill equations89

which we have solved numerically. Figure 10 shows the an-
gular wave function for the ground state together with the
angular dependence of the rotated and rescaled one-magnon
exchange potential. The radial Schrödinger equation takes
exactly the same form as for circular hole pockets and will

FIG. 9. Probability distribution for the ground state of two holes
with flavors �� or ��, combined to an eigenstate of the 90 degrees
rotation symmetry O, for the case of circular hole pockets.
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therefore not be discussed again. There are two degenerate
states corresponding to �� and �� pairs, which are related to
each other by a 90 degrees rotation. Combining the two de-
generate states to an eigenstate of the rotation O, one obtains
the probability distribution of Fig. 11 which again resembles
dxy symmetry. Remarkably similar results for hole pairs from
the same hole pocket were obtained in Ref. 29 directly from
the t-J model. In particular, a two-hole potential with the
same distance dependence and thus again with infinitely
many bound states has been obtained. The derivation of these
results in the framework of the effective field theory is par-
ticularly transparent and conceptually simple, and comple-
ments the earlier approaches in an interesting way. In par-
ticular, the effective field theory allows us to improve the
results, order by order in a systematic low-energy expansion.

D. Low-energy dynamics of hole pairs

As we have seen, magnons mediate attractive forces be-
tween holes of opposite spin which leads to bound states
with d-wave characteristics. Once pairs of holes have
formed, it is natural to ask how they behave at low tempera-
tures. It should be stressed that, until now, we have consid-
ered isolated hole pairs in an otherwise undoped antiferro-

magnet. What should one expect when the system is doped
with a nonzero density of holes? First of all, even for infini-
tesimal doping, the antiferromagnet may become unstable
against the formation of inhomogeneities, such as spirals in
the staggered magnetization.6 This phenomenon can also be
studied within the effective theory.83 It turns out that, for
sufficiently large spin stiffness �s, the homogeneous antifer-
romagnet is stable, while for intermediate values of �s it
becomes unstable against the formation of a spiral phase. For
even smaller values of �s, the spiral itself becomes unstable
against the formation of further, yet unidentified, inhomoge-
neities. In the following, we will assume a sufficiently large
value of �s such that the homogeneous antiferromagnet is
stable.

If the short-range repulsion is particularly strong in the
�� and �� channels, hole pairs of type �� with dx2−y2-like
symmetry are most strongly bound. On the other hand, if the
short-range repulsion is stronger in the �� channel, �� or
�� pairs form and the symmetry resembles dxy. At very low
densities and temperatures, the hole pairs form a dilute sys-
tem of bosons. In this case, the wave functions of different
pairs do not overlap substantially, and it is natural to assume
that they may undergo Bose-Einstein condensation at suffi-
ciently low temperatures. At larger densities, the wave func-
tions of different pairs begin to overlap. In that case, a mo-
mentum space description of holes is more appropriate.
Magnon exchange between holes near the Fermi surface is
then likely to produce an instability against Cooper pair for-
mation in the d-wave channel. This is expected to lead to
BCS-type superconductivity, mediated by magnons instead
of phonons. Using the effective theory, the critical tempera-
ture for magnon-mediated BCS-type superconductivity will
be calculated elsewhere, but is not expected to be very high.
In particular, superconductivity coexisting with antiferro-
magnetism at low doping is not observed in the cuprates.
This may well be due to impurities on which holes get local-
ized, thus preventing superconductivity. Magnon-mediated
superconductivity in lightly doped antiferromagnets can still
be studied systematically using the effective field theory
which does not contain impurities.

VII. CONCLUSIONS

Based on a careful symmetry analysis of the Hubbard and
t-J models, we have constructed a systematic low-energy
effective field theory for magnons and holes in lightly doped
antiferromagnets. The effective theory provides a powerful
framework in which nontrivial aspects of the strongly
coupled dynamics of the cuprates, such as the magnon-
mediated forces between holes, can be addressed using sys-
tematic methods of weak coupling perturbation theory. The
effective theory relies on a number of basic assumptions.
Besides fundamental principles of field theory, such as local-
ity, unitarity, and symmetry, it is based on the assumption
that the SU�2�s spin symmetry is spontaneously broken down
to U�1�s. This assumption is very accurately verified both in
experiments with the cuprates and by numerical calculations
in the Hubbard and t-J model at half-filling. A second basic
assumption is that fermionic quasiparticles—the holes of the

FIG. 10. Angular wave function �solid curve� and angle depen-
dence of the rotated and rescaled one-magnon exchange potential
�dotted curve� for two holes of flavor � in an elliptic hole pocket
�for M� /M�=0.5 and M��=2.5�.

FIG. 11. Probability distribution for the ground state of two
holes with flavors �� or �� in elliptic hole pockets, linearly com-
bined to an eigenstate of the 90 degrees rotation O.
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effective theory—indeed exist as stable excitations located in
specific pockets in the Brillouin zone. The location of these
pockets in momentum space has been obtained from ARPES
measurements as well as from numerical computations in
Hubbard and t-J models. It should be stressed that the appli-
cability of the effective theory depends crucially on the ques-
tion if the relevant low-energy degrees of freedom have in-
deed been identified correctly. Since it is impossible to
rigorously derive the effective theory from an underlying mi-
croscopic system, we cannot yet be completely sure that our
effective theory indeed describes their low-energy physics
correctly. In order to verify the correctness and accuracy of
the effective theory, besides the theoretical considerations
presented here, it will be important to confront it with ex-
perimental or numerical data. For undoped antiferromagnets,
such confrontation led to a spectacular quantitative success
of the pure magnon effective theory.90,91 It is expected that
the full effective theory including holes will be equally suc-
cessful. An important next step will be the comparison with
precise Monte Carlo data, e.g., for the t-J model. This will
allow us to fix the values of the low-energy parameters of the
effective theory in terms of the microscopic parameters t
and J.

The effective theory can be used to calculate a wide va-
riety of physical processes. The most basic processes in-
clude, for example, magnon-magnon and magnon-hole scat-
tering. In order to correct the leading-order tree-level
diagrams by a systematic loop expansion, in analogy to chi-
ral perturbation theory, a power-counting scheme must be
constructed. This is straightforward in the pure-magnon ef-
fective theory and should be generalized to the full effective
theory including charge carriers along the lines of Refs.
55–57. We have performed a systematic effective field theory
analysis of the magnon-mediated forces between holes in an
antiferromagnet. One-magnon exchange mediates forces ex-
clusively between holes of opposite spin. The leading terms
in the fermionic part of the effective action are Galilean
boost invariant and the two-hole system can thus be studied
in its rest frame. Remarkably, some of the resulting two-
particle Schrödinger equations can be solved completely ana-
lytically. Hole-doped cuprates have hole pockets centered at
lattice momenta k�= � �

2a , �
2a

� and k�= � �
2a ,− �

2a
�. As a conse-

quence, the holes carry a “flavor” index f =� ,� which speci-
fies the pocket to which a hole belongs. At leading order,
flavor is a conserved quantum number, and one can thus
distinguish hole pairs of the types �� or �� from those of
type ��. Magnon exchange occurs with the same strength
for both types, and leads to bound hole pairs with d-wave
symmetry. For pairs of type �� or �� the symmetry re-
sembles dxy, while for those of type �� it is dx2−y2 like.

Depending on the strength of the respective short-distance
repulsion either the pairs of type �� and �� or those of type
�� are more strongly bound. At low densities and tempera-
tures, the hole pairs may undergo Bose-Einstein condensa-
tion. Once the wave functions of different pairs overlap sub-
stantially, one may expect BCS-type magnon-mediated
d-wave superconductivity coexisting with antiferromag-
netism. Although coexistence of antiferromagnetism and su-
perconductivity is not observed in the cuprates—possibly
due to the localization of holes on impurities—the exchange
of spin fluctuations is a promising potential mechanism for
high-temperature superconductivity. In lightly doped systems
without impurities, magnon-mediated superconductivity can
be studied systematically using the effective theory. Other
applications of the effective theory aim at a quantitative un-
derstanding of the destruction of antiferromagnetism upon
doping and of the generation of spiral phases.83

It is also natural to ask if the effective theory can possibly
be applied to the high-temperature superconductors them-
selves. Since in the real materials, which contain impurities,
high-temperature superconductivity arises only after antifer-
romagnetism has been destroyed, and since the effective
theory relies on the spontaneous breakdown of the SU�2�s

symmetry, this seems doubtful. However, while the system-
atic treatment of the effective theory will break down in the
superconducting phase, the effective theory itself does not, as
long as spin fluctuations �now with a finite correlation
length� and holes in momentum space pockets � �

2a , ± �
2a

� re-
main the relevant degrees of freedom. After all, the effective
theory of magnons and holes can also be considered beyond
perturbation theory, for example, by regularizing it on a lat-
tice and simulating it numerically. A similar procedure has
been discussed for the effective theory of pions and
nucleons.92 Unfortunately, one would expect that the sign
problem will once more raise its ugly head, and may thus
prevent efficient numerical simulations not only in the mi-
croscopic models but also in the effective theory. It thus
remains to be seen if nonperturbative investigations of the
effective theory can shed light on the phenomenon of high-
temperature superconductivity itself. We prefer to first con-
centrate on lightly doped systems without impurities for
which the low-energy effective field theory makes quantita-
tive predictions. Once these idealized systems are better un-
derstood, further steps towards understanding the more com-
plicated actual materials can be taken on a more solid
theoretical basis.
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