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The transmission of correlated electrons through a domain wall in a ferromagnetic one-dimensional system
is studied theoretically in the limit of a domain wall width smaller or comparable to the electron Fermi
wavelength. The domain wall gives rise to both potential and spin-dependent scattering of the charge carriers.
Using a “poor man’s” renormalization group approach for the electron-electron interactions, we obtain the low
temperature behavior of the reflection and transmission coefficients. The results show that the low-temperature
conductance is governed by the electron correlations, which may suppress charge transport without suppressing
spin current. The results may account for a huge magnetoresistance associated with a domain wall in ballistic
nanocontacts.
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I. INTRODUCTION

Domain walls �DWs�, i.e., the boundaries separating dif-
ferent domains of homogeneous magnetizations,1 are re-
cently a subject of extensive theoretical and experimental
investigations. This renewed interest in DWs is stimulated by
their possible applications in magnetic logic elements and
other nanoelectronics and spintronics devices. Two effects
associated with DWs are of particular interest. The first one
is the way a DW affects electronic transport, i.e., the associ-
ated magnetoresistance. The crucial point here is that the
influence of a single DW on the resistance can be controlled
by an external magnetic field.2,3 The second effect concerns
the influence of electric current on the DW behavior �DW
motion, magnetic switching�,4 which allows controlling of
DWs by means of an electric field.

Recent advances in experimental techniques have made
possible the determination of the resistance of a single DW
in submicron structured samples.2,5–11 The results on the
single domain resistance are different in magnitude and
sometimes differ also in the sign. In the case where the DW
width is large on the scale set by the Fermi wavelength, �F,
of the carriers, the theory of the DW contribution to electri-
cal resistance is well established.12–17 The spin of the elec-
tron moving across the wall changes its orientation quasia-
diabatically �or even adiabatically for very thick DWs�.
However, the DWs formed at nanoconstrictions may be
atomically sharp18–21 and the spin of an electron crossing the
wall does not change quasiadiabatically. Accordingly, a com-
pletely different approach to the transport theory through
DWs is required. This is particularly true for ferromagnetic
semiconductors which are considered to be most promising
for spintronic applications.22 Indeed, recent experiments on
magnetic nanostructures and nanowires indicate that the
presence of DWs may result in a magnetoresistance �MR� as

large as several hundreds8,23 or even thousands24,25 of per-
cents, as opposed to the case of thick on scale of �F �or
adiabatic� DWs in bulk metallic ferromagnets. In the ballistic
regime, the theoretical treatments towards explaining this
effect26–31 rely on the assumption that the DW is sharp
enough to be treated as a spin-dependent scatterer for the
charge carriers. The success of these theories in explaining
the extraordinary large MR is moderate, in particular for me-
tallic ferromagnets such as Ni where some features of the
physics governing the behavior of MR are still unclear.32

Another feature of the DWs created at nanoconstrictions
is their small lateral size �cross section of the constriction�.
This small size limits the number of quantum channels active
in transport to a few ones or even to a single one. Conse-
quently, the constriction behaves as a one- or quasi-one-
dimensional system. In such a case, the role of electron-
electron interactions may be crucial33 for understanding the
behavior and basic transport characteristics of the DWs
formed at nanoconstrictions. It is well established that elec-
tronic correlations in a one-channel wire result in a non-
Fermi-liquid behavior—thus forming a Luttinger liquid.34,35

It is also known that an impurity present in the 1D Luttinger
liquid suppresses the linear conductivity, which vanishes
even for a weak impurity scattering potential.36,37 This can
be traced back to a vanishing density of states at the Fermi
level. At finite applied voltages the transport through the
wire does not vanish due to the nonlinearity of the current-
voltage characteristics.36 Since a sharp domain wall acts in a
one-channel wire as a localized spin-dependent scattering
center, one can expect a strong influence of electron correla-
tions on the MR at low temperatures.

To confirm this theoretically one could use bosonization
techniques.38,39 However, we will follow another route based
on the “poor man’s” renormalization method.40–42 In our
case, the DW scatters both the charge and spin of the carri-

PHYSICAL REVIEW B 74, 224429 �2006�

1098-0121/2006/74�22�/224429�12� ©2006 The American Physical Society224429-1

http://dx.doi.org/10.1103/PhysRevB.74.224429


ers. As shown below, our scheme allows us to obtain results
for the renormalized transmission and reflection coefficients
in terms of the uncorrelated spin-dependent ones �i.e., in
terms of the reflection and transmission coefficients of the
wall in the absence of electron-electron interactions�. The
uncorrelated quantities can be obtained from other schemes,
such as the Hartree-Fock or density-functional theory �within
local density approximation� and then used as an input in our
results to obtain renormalized transmission through the DW.
Hence, our approach—in combination with numerical �effec-
tive single particle� methods—offers a new possibility to un-
derstand the material-dependent MR associated with a DW
creation �destruction�, and possibly to resolve some contro-
versy concerning huge magnetoresistance in some ballistic
nanocontacts.

The paper is organized as follows. In Sec. II we introduce
the problem and the noninteracting scattering states for a
sharp domain wall. In Sec. III we use perturbation theory in
the electron-electron interaction to calculate corrections to
the scattering amplitudes. We obtain the renormalization
group differential equations for the scattering amplitudes. In
Sec. IV we describe the zero temperature fixed points pre-
dicted by the scaling equations and the power-law behavior
of the reflection and transmission coefficients of the DW as
T→0. In Sec. V we discuss the relevance of our findings to
realistic physical systems and summarize our results.

II. MODEL

We consider a magnetized system with electrons being
constrained to move in one dimension while being exchange-
coupled locally to the space varying magnetization, M�r�.
The wire itself defines the easy �z� axis, and a domain wall
centered at z=0 separates two regions with opposite magne-
tizations, Mz�z→ ±��= ±M0. Assuming M�r� to lie in the xz
plane, and the domain wall to be thinner than the Fermi
wavelength, we write the single-particle Hamiltonian as

Ĥ0 = −
�2

2m

d2

dz2 + �V��z� + JMz�z��̂z + ����z��̂x, �1�

where the term ����z��̂x describes spin scattering produced
by the Mx�z� component,43

� =
J

�
�

−�

�

Mx�z�dz ,

and V is a potential scattering term. Single electron wave
functions are spinors with components ���z� satisfying the
condition

−
�

2m
� �

�z
���0+� −

�

�z
���0−�� + V���0� − ��−��0� = 0.

�2�

The electron’s wave vector in each domain is related to the
energy E by

k =�2m

�2 �E ± JM0� . �3�

The electron gas in the negative semiaxis �z�0� is predomi-
nantly ↑-spin. An electron incident from the left with the
momentum k and spin ↑ �or ↓� can be transmitted to the
positive semiaxis while preserving its spin, but the energy
conservation requires the momentum to change from k to k−
�or k+� defined by

k± =�k2 ±
4m

�2 JM0. �4�

If the transmission occurs with spin reversal, the momentum
k is not changed. �See Fig. 1.�

We label the states through the incident wave, so that

	k,↑�z� = �eikz + r↑�k�e−ikz

r↑��k�e−ik−z �, z � 0 �5�

describes a scattering state with a wave incident from z=
−� with spin ↑ and momentum k
0. Reflection amplitudes
of a spin � electron with or without spin reversal are denoted
by r�� and r�, respectively. The same convention applies to
the transmission amplitudes t�� , t�. The transmitted wave cor-
responding to Eq. �5� is

	k,↑�z� = �t↑�k�eik−z

t↑��k�eikz �, z 
 0 �6�

and the scattering amplitudes are given by

t↑�k� =
2�v + v− + 2iV�v

�v + v− + 2iV�2 + 4�2 = r↑�k� + 1, �7�

t↑��k� =
4i�v

�v + v− + 2iV�2 + 4�2 = r↑��k� , �8�

where we have defined the velocities v�±�=�k�±� /m.
The scattering state corresponding to a wave incident

from the left-hand side with ↓-spin is

FIG. 1. Schematic of a domain wall and the relevant electron
spin bands. States 	p↑ and 	p−↓ have the same energy.
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	k,↓�z � 0� = � r↓��k�e−ik+z

eikz + r↓�k�e−ikz � ,

	k,↓�z 
 0� = � t↓��k�eikz

t↓�k�eik+z � , �9�

and the corresponding amplitudes are

t↓�k� =
2�v + v+ + 2iV�v

�v + v+ + 2iV�2 + 4�2 = r↓�k� + 1, �10�

t↓��k� =
4i�v

�v + v+ + 2iV�2 + 4�2 = r↓��k� . �11�

The expressions for the scattering states corresponding to
the waves incident from +� are

	−k,↑�z � 0� = �t↓�k�e−ik+z

t↓��k�e−ikz � ,

	−k,↑�z 
 0� = �e−ikz + r↓�k�eikz

r↓��k�eik+z � �12�

and

	−k,↓�z � 0� = � t↑��k�e−ikz

t↑�k�e−ik−z � ,

	−k,↓�z 
 0� = � r↑��k�eik−z

e−ikz + r↑�k�eikz � , �13�

where we consider k
0. We shall henceforth denote by
��±p , ↑ � the eigenenergy of a scattering state with momen-
tum +p �or −p� incident from the left-hand side �or right-
hand side�. The scattering amplitudes satisfy some general
relations that can be found from a generalization of the
Wronskian theorem44 to spinor wave functions. We provide
such relations in Appendix A.

In order to deal with the electron interactions, it is conve-
nient to rewrite the scattering states in second quantized

form, making use of right �âq�� and left �b̂q�� moving plane-
wave states.

The operators for the scattering states with electrons inci-
dent from the left �ĉk,�� are

ĉk,� = �
−�

� dq

2�
�� − i

q − k − i0
+

it�
*�k�

q − k−� + i0
�âq�

−
ir�

*�k�
q + k − i0

b̂q� +
it��

*�k�
q − k + i0

âq,−� −
ir��

*�k�
q + k−� − i0

b̂q,−�� ,

�14�

and the operators for scattering states with electrons incident

from the right �d̂k,�� are

d̂k,� = �
−�

� dq

2�
�� i

q + k + i0
−

it−�
* �k�

q + k� − i0
�b̂q� +

ir−�
* �k�

q − k + i0
âq�

−
it−��

* �k�
q + k − i0

b̂q,−� +
ir−��

* �k�
q − k� + i0

âq,−�� , �15�

where 0 denotes a positive infinitesimal and the k subscript
�= ±1. By inverting these equations, we obtain the plane
wave operators as linear combinations of the scattering state
operators,

âp,� = �
−�

� dk

2�i
� ĉk,�

k − p − i0
−

t−��k�ĉk+,�

k − p + i0
−

t−�� �k�ĉk,−�

k − p + i0

−
r−��k�d̂k,�

k − p + i0
−

r−�� �k�d̂k+,−�

k − p + i0
� , �16�

b̂−p,� = �
−�

� dk

2�i
� d̂k,�

k − p − i0
−

t��k�d̂k−,�

k − p + i0
−

t���k�d̂k,−�

k − p + i0

−
r��k�ĉk,�

k − p + i0
−

r���k�ĉk−,−�

k − p + i0
� . �17�

The electron interactions are introduced in the Hamil-
tonian through the term

Ĥint = g1,
,�� dk1dq

�2��2 âk1,

† b̂k2,�

† âk2+q,�b̂k1−q,


+ g2,
,�� dk1dq

�2��2 âk1,

† b̂k2,�

† b̂k2+q,�âk1−q,
. �18�

The coupling constants g1 and g2 describe back and forward
scattering processes between opposite moving electrons, re-
spectively. The greek letters denote here the spin indices, and
the summation over repeated indices is implied. Because the
Fermi momentum depends on spin, we allow for the depen-
dence of g on the spins of the interacting particles. We there-
fore distinguish between g1↑, g1↓, g1�, and g2↑, g2↓, g2�. The
forward scattering process between particles which move in
the same direction will not affect the transmission ampli-
tudes, although it will renormalize the Fermi velocity.40 This
effect is equivalent to an effective mass renormalization and
the electrons with different spin orientations may turn out to
have different effective masses, in which case our calcula-
tions remain valid, as shown in Appendix B.

III. SCALING EQUATIONS

The corrections to the transmission amplitudes will be

calculated to first order in the perturbation Ĥint. It has been
shown in Ref. 40 that the corrections diverge logarithmically
near the Fermi level. These divergences will later be dealt
with in a poor man’s renormalization procedure.

Let us consider the Matsubara propagator,
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G��� = − 	T�e
−
Ĥint����d��âp,↑���ĉp�,↑

† �0, �19�

where 	¯�0 denotes the average in the noninteracting Fermi
sea. The propagator for noninteracting electrons is then given
by

G�0��i�� =
1

i� − ��p�,↑�� i

p − p� + i0
−

it↑�p��
p − p−� − i0

� .

�20�

The transmission amplitude appears associated with the de-
nominator p− p−�− i0 which, for the variable p, gives a pole in
the upper half-plane. The meaning of this pole is that the
transmitted particle is a right mover in the z
0 half-axis.
Our strategy is to calculate the first order correction term �in
Ĥint� to G, which will have the same form as the second term
in �20�, so that the amplitude correction, �t↑�p��, can be read
off from the result. We now explain the procedure in some
detail.

We begin by considering the first order expansion for G in
the coupling g1↑. For simplicity, we shall henceforth omit the
subscript “0” in the brackets, since we will be dealing with
the noninteracting Fermi sea, unless otherwise stated. From
Wick’s theorem we get the first order correction to the propa-
gator in Eq. �20� as

G�1���� = g1↑�	âp,↑���b̂k2,↑
† �����	âk1,↑

† ����b̂k1−q,↑�����

�	âk2+q,↑����ĉp�,↑
† � + 	âp,↑���âk1,↑

† �����

�	b̂k2,↑
† ����âk2+q,↑�����	b̂k1−q,↑����ĉp�,↑

† �
 , �21�

where the internal momenta k1�2�, q and time �� are to be
integrated over and the time ordering T� is implicit. There are
also two other Wick paired terms at instant �� of the form

	â†����â����� and 	b̂†����b̂�����. We have omitted these terms
in Eq. �21� because they will not be logarithmically diver-
gent: the divergences arise from electron reflection by the
Friedel oscillations in the Fermi sea.40 Such reflection pro-

cesses appear in Eq. �21� through 	b̂†����â����� and

	â†����b̂�����.
To calculate 	âk1,↑

† b̂k1−q,↑� we make use of the expression

�17� for b̂k1−q,↑. The contour integration over k1 eliminates
the terms containing poles in the same half-plane. Fermi sea

averages, such as 	âk1,↑
† ĉk,↑� and 	âk1,↑

† d̂k,↑�, can be calculated
in the same way as in Eq. �20�. The result is

�
−�

� dk1

2�
	âk1,↑

† b̂k1−q,↑�

= �
−�

� dQ

2�i
� f�− Q↑�r↓

*�Q�
2Q − q − i0

−
f�Q↑�r↑

*�Q�
2Q − q + i0

� , �22�

where f�±Q↑ � denotes the Fermi occupation number of the
state 	±Q,↑. In order to calculate the propagator

−	T̂�ap,↑���b̂k2,↑
† � we again expand b̂k2,↑

† using Eq. �17�, and
then with help of Eq. �A7� we obtain

− �
0

1/T

d�ei��	T̂�ap,↑���b̂−p�,↑
† �

= �
−�

� dQ

2�
� 1

i� − ��− Q↑�
1

Q − p� + i0

r↓�Q�
p − Q − i0

+
1

i� − ��Q↑�
1

Q − p� − i0

r↑
*�Q�

p − Q + i0
� . �23�

The presence of two different energy poles can be under-

stood from the fact that âq� �or b̂q�� represents a plane wave
running over the entire z axis and its energy cannot be the
same on both sides of the domain wall because of the energy
dependence on spin.

Using Eqs. �22� and �23� we can calculate the first term in
Eq. �21� as

	âp,↑���b̂k2,↑
† �����	âk1,↑

† ����b̂k1−q,↑�����	âk2+q,↑����ĉp�,↑
† �

=
1

i� − ��p�↑� � dQ1dQ2

�2�i�2

1

i� − ��− Q2↑�

�
r↓�Q2�r↓

*�Q1�t↑
*�p��f�− Q1↑�

�p − Q2 − i0��2Q1 − p−� − Q2 − i0�
. �24�

The analytic continuation of the Green’s function frequency,
i�→�+ i0, gives the retarded Green’s function. the fre-
quency denominator �i�−��−Q2↑ �
−1 yields a principal
Cauchy part plus a delta function part. The latter isolates the
energy pole at ��−Q2↑ �=� and we choose �=��p�↑ �⇒Q2

= p−�. We shall only retain this delta function part. Therefore,
we set Q2= p−� in the integrand and, by comparing with �20�,
we conclude that the contribution of the first perturbative
term in Eq. �21� to the transmission amplitude is given by

FIG. 2. Feynmam diagrams for the first order contribution G�1�

to the propagator �19�. The scattering state is represented by a

double line, the â �b̂� particle is represented by a continuous
�dashed� line. The loop represents the Hartree-Fock potential of the
Fermi sea. The scattered electron exchanges momentum q with the
Fermi sea.
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�t↑�p�� = −
g1↑

hvF−
� dQ

2�

f�− Q↑�
2Q − 2p−�

r↓�p−��r↓
*�Q�t↑

*�p�� ,

�25�

where vF− now denotes the Fermi velocity corresponding to
the minority spin Fermi momentum kF−. A logarithmic diver-
gence appears as p�→kF−.

The above discussion describes the calculation method.
We now need to calculate all the first order terms in the
interactions g1
� and g2
�. The diagrammatic representation
of G�1� is shown in Fig. 2. The horizontal lines represent the
electron being scattered by the Hartree-Fock potential of the
Fermi sea �of scattering states�. Consider, for instance, the
upper left diagram: an electron, initially in state cp�,↑ close to
the Fermi level, passes through the barrier as a right mover
�â particle� and then interacts with the Fermi sea �on the

positive z semiaxis�. The electron is reflected �from â to b̂
particle� while exchanging momentum q with the Fermi sea.
Finally, it is reflected by the barrier again, becoming a
spin-up right mover with momentum p. A logarithmic diver-
gence occurs if the polarized Fermi sea can provide exactly
the momentum that is required to keep the electron always
near the Fermi level during the intermediate virtual steps.

Concerning the spin dependence of the interaction param-
eters, we distinguish between g1↑, g2↑, which describe inter-
action between spin majority particles �that is spin-↑ on the
right and spin-↓ on the left of the barrier� and g1↓, g2↓, which
describe interaction between spin minority particles �that is
spin-↓ on the right and spin-↑ on the left of the barrier�. We
use g1�, g2� to denote interaction between particles with
opposite spins. According to the physical interpretation of
the Feynman diagrams just given above, we always know on
which side of the barrier the interaction with the Fermi sea
�closed loop in the diagram� is taking place.

It can be seen that the g1� terms are proportional to
ln�kF+−kF−�, so they do not diverge. The logarithmic diver-
gence would be restored in a spin degenerate system �kF+

=kF−�. This can be understood from the diagrams in Fig. 2 as
follows: the electron with spin 
 is reflected by a polarized
Fermi sea with spin −
. The momentum provided by the
Fermi sea is 2kF−
, while the momentum required by the
electron is 2kF
. The g2� terms produce logarithmic diver-
gences that would not exist in the absence of spin-flip scat-
tering �t�=r�=0�. Introducing the Fermi level velocities vF±

for majority or minority spin particles, we write the diverg-
ing contributions to �t↑�p�� as

�t↑�p�� = �KF− dQ

4hvF−

�g2↓ − g1↓�r↓�p−��r↓
*�Q�t↑�p��

Q − p−�
+ �KF+ dQ

4hvF+

�g2↑ − g1↑�t↑�p��r↑
*�Q�r↑�p��

Q − p�

+ �KF+ dQ

4hvF+

�g2↑ − g1↑�r↑��p��r↑
*�Q�t↑��p��

Q − p�
+ �KF− dQ

4hvF−

�g2↓ − g1↓�t↓��p� − �r↓
*�Q�r↑��p��

Q − p−�

+ �KF+ dQ

2hvF+

g2�r↑�
*�Q�t↑�p��r↑��p��

Q + Q− − p� − p−�
+ �KF+ dQ

2hvF−

g2�r↑�
*�Q�t↓��p−��r↑�p��

Q + Q− − p� − p−�
+ �KF+ dQ

2hvF+

g2�r↑�
*�Q�r↑��p��t↑�p��

Q + Q− − p� − p−�

+ �KF− dQ

2hvF−

g2�r↓�
*�Q�r↓�p−��t↑��p��

Q + Q+ − p� − p−�
, �26�

where Q± is related to Q as in Eq. �4�. In order to apply the
poor man’s renormalization method, it is preferable to trans-
form the momentum integrations in Eq. �26� into energy in-
tegrals. In order to do this, we linearize the spectrum near the
Fermi level as

�vF+�Q − KF+� = �vF−�Q− − KF−� � � , �27�

�vF+�p� − KF+� = �vF−�p−� − KF−� � ��, �28�

where energy of the scattered electron is �� and the energies
������0 are measured with respect to the Fermi level. The
linearization is assumed to be valid within an energy range D
around the Fermi level. The Q integrals appearing in Eq. �26�
can now be written as

�KF− dQ

Q − p−�
= �

−D

0 d�

� − ��
,

�KF+ dQ

Q − p�
= �

−D

0 d�

� − ��
,

�KF� dQ

Q + Q± − p� − p−�
=

vF±

vF+ + vF−
�

−D

0 d�

� − ��
.

The scattering amplitudes with ↑ �↓� spin index are always
associated with the momentum p� �p−��. Therefore, we shall
henceforth omit the momentum argument p� �p−�� of the scat-
tering amplitudes. The divergent perturbative correction, �t↑,
is proportional to ln����� /D�,
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�t↑

ln
����
D

=
�g2↓ − g1↓�

4hvF−
r↓

*r↓t↑ +
�g2↑ − g1↑�

4hvF+
r↑

*r↑t↑

+
�g2↑ − g1↑�

4hvF+
r↑

*r↑�t↑� +
�g2↓ − g1↓�

4hvF−
r↓

*r↑�t↓�

+
g2�

2h�vF+ + vF−�
�r↓�

*r↑�t↑ + r↑�
*r↓t↑� + r↑�

*r↑t↓� + r↓�
*r↑�t↑� .

�29�

For the calculation of �t↑��p�� and �t↓�p−��, the propagators
we need to consider are −	T�âp,↓���ĉp,↑�

† � and −	T�âp,↓���ĉp−,↓�
† �,

respectively. The perturbation theory is analogous to that de-
scribed above. In order to obtain t↓��p−�� we consider the
propagator −	T�âp,↑���ĉp−,↓�

† �.
The logarithmically divergent perturbative terms can be

dealt with using a renormalization procedure: we reduce the
bandwidth D by removing states in a narrow strip �D near
the band edge and work again the perturbation theory in the
new bandwidth D−�D. The effect of removal of the band
edge states must be compensated by adopting a new value of
t↑ for the new bandwidth. Applying this procedure step by
step yields successive renormalizations of t↑. A differential
equation is obtained by noting that the perturbation theory
result, t↑+�t↑, remains invariant as D is reduced,

dt↑ +
��t↑
�D

dD = 0.

We introduce now a variable �=ln�D /D0� which will be in-
tegrated from 0 to ln����� /D0�, corresponding to the fact that
the bandwidth is progressively reduced from D0 to ����
�which will eventually be taken as temperature: ����=T� and
the scaling differential equations for the transmission ampli-
tudes become

dt↑
d�

=
�g2↓ − g1↓�

4hvF−
�r↓

*r↓t↑ + r↓
*r↑�t↓�� +

�g2↑ − g1↑�
4hvF+

�r↑
*r↑t↑ + r↑

*r↑�t↑��

+
g2�

2h�vF+ + vF−�
�r↓�

*r↑�t↑ + r↑�
*r↓t↑� + r↑�

*r↑t↓� + r↓�
*r↑�t↑� ,

�30�

dt↑�

d�
=

�g2↓ − g1↓�
2hvF−

r↓
*r↓�t↑ +

�g2↑ − g1↑�
2hvF+

r↑
*r↑t↑�

+
g2�

h�vF+ + vF−�
�r↓�

*r↑t↑ + r↑�
*r↓�t↑�� , �31�

dt↓
d�

=
�g2↑ − g1↑�

4hvF+
�r↑

*r↑t↓ + r↑
*r↓�t↑�� +

�g2↓ − g1↓�
4hvF−

�r↓
*r↓t↓ + r↓

*r↓�t↓��

+
g2�

2h�vF+ + vF−�
�r↑�

*r↓�t↓ + r↓�
*r↑t↓� + r↓�

*r↓t↑� + r↑�
*r↓�t↓� ,

�32�

dt↓�

d�
=

�g2↑ − g1↑�
2hvF+

r↑
*r↑�t↓ +

�g2↓ − g1↓�
2hvF−

r↓
*r↓t↓�

+
g2�

h�vF+ + vF−�
�r↑�

*r↓t↓ + r↓�
*r↑�t↓�� . �33�

In order to obtain the perturbative correction to the reflec-
tion amplitude r↑�p�� we consider the propagator

G��� = − 	T�b̂p,↑���ĉp�,↑
† �⇒

G�0��i�� =
1

i� − ��p�,↑�
ir↑�p��

p + p� + i0
. �34�

In this case, there is a process where the incoming electron
from the left is reflected back by the Hartree potential with-
out even crossing the domain wall. The corresponding term
comes from the Wick pairing term

	b̂p,↑���b̂k2,↑
† �����	âk1,↑

† ����b̂k1−q,↑�����	âk2+q,↑����ĉp�,↑
† �

and gives a contribution to �r↑�p�� equal to

g2↑ − g1↑

4hvF+
r↑�p��ln

����
D

.

The differential equation for r↑�p�� is

dr↑
d�

=
g2↑ − g1↑

4hvF+
�r↑

*r↑r↑ + r↑
*t↑�t↑��

+
g2↓ − g1↓

4hvF−
�r↓

*t↑t↓ + r↓
*r↓�r↑�� −

g2↑ − g1↑

4hvF+
r↑

+
g2�

2h�vF+ + vF−�
�r↑�

*r↓�r↑ + r↓�
*r↑�r↑ + r↑�

*t↓t↑� + r↓�
*t↑t↑�� ,

�35�

and the differential equation for r↑��p�� is

dr↑�

d�
=

g2↑ − g1↑

4hvF+
�r↑

*r↑r↑� + r↑
*t↑�t↑� +

g2↓ − g1↓

4hvF−
�r↓

*t↑t↓� + r↓
*r↓r↑��

+
g2�

2h�vF+ + vF−�
�r↑�

*r↓r↑ + r↓�
*r↑�r↑� + r↑�

*t↓�t↑� + r↓�
*t↑t↑�

−
g2�

2h�vF+ + vF−�
r↑�. �36�

IV. FIXED POINTS

The parameters of the model, which enter the scaling
equations, are

g2↑ − g1↑

4hvF+
= g↑, �37�

g2↓ − g1↓

4hvF−
= g↓, �38�
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g2�

2h�vF+ + vF−�
= g�, �39�

and the ratio vF− /vF+. The results can be presented in terms
of the transmission coefficients, defined by

T↑ =
vF−

vF+
�t↑�2, �40�

T↑� = �t↑��
2, �41�

T↓� = �t↓��
2, �42�

and the reflection coefficients

R↑ = �r↑�2, �43�

R↓ = �r↓�2, �44�

R↑� =
vF−

vF+
�r↑��

2. �45�

By definition, these coefficients refer to the respective cur-
rents divided by the incident current.

A. Insulator fixed points

We have made a numerical study of the scaling equations.
The noninteracting domain wall described in Sec. II provides
the initial scattering parameters for our numerical scaling.
Below we describe analytically the scaling behavior close to
the fixed points we have found.

For repulsive interactions �g↑ ,g↓ ,g�
0� the system
flows to insulator fixed points. For a moderate to large � /vF+
�larger than about 0.1� all the transmission amplitudes, t� and
t�� , vanish faster than any reflection amplitude as T→0. We
may then rewrite the scaling equations neglecting the small
transmission amplitudes. The scaling equation for r↑, for in-
stance, becomes

dr↑
d�

= g↑��r↑�2 − 1�r↑ + g↓r↓
*r↓�r↑� + 2g�

vF−

vF+
�r↑��

2r↑, �46�

where we used Eq. �A10�. The Wronskian relation �A6�, al-
lowing for complex reflection amplitudes, shows that

r↓
*r↓� + r↑r↓�

* = 0. �47�

The charge conservation condition is satisfied solely by the
reflections,

1 = �r↑�2 +
vF−

vF+
�r↑��

2 = �r↓�2 +
vF−

vF+
�r↑��

2, �48�

from which we easily conclude that �r↑�= �r↓� at the fixed
point. Then, Eq. �46� may be rewritten as

dr↑
d�

=
vF−

vF+
�2g� − g↑ − g↓��r↑��

2r↑

=
vF−

vF+
�2g� − g↑ − g↓��1 − �r↑�2�r↑. �49�

Consider now the scaling equation �36�. For r↑� in case of
negligible transmissions we have

dr↑�

d�
= g↑�r↑�2r↑� + g↓�r↓�2r↑� + g��r↑�

*r↓r↑ +
vF−

vF+
�r↑��

2r↑� − r↑�� .

�50�

The Wronskian relation �A6�, allowing for complex reflec-
tion amplitudes, tells us that

r↓r↑�
* +

vF−

vF+
r↑

*r↓� = 0, �51�

and we recast Eq. �50� as

dr↑�

d�
= �g↑ + g↓ − 2g���1 −

vF−

vF+
�r↑��

2�r↑�. �52�

In the derivation of �49� and �52� the only assumption made
was that the transmission amplitudes are negligibly small.
The reflection amplitudes may be, in general, complex and
are still renormalized after the transmissions became negli-
gible.

Now we see that Eqs. �49� and �52� predict that the phases
of the complex numbers r↑, r↑� are unchanged during scaling.
The two fixed points we may consider correspond to r↑ ap-
proaching 0, or �r↑� approaching 1 along a constant phase line
in the complex plane.

The situation �r↑�→0 requires 2g�−g↑−g↓
0 and, by
charge conservation we have �r↑��→�vF+ /vF−. Upon integrat-
ing �52� with � ranging from 0 to ln�T /D0�, the amplitude r↑�
will vary from its initial value r↑,0� to r↑��T�. Using the defi-
nition �45� for the reflection coefficient, we write

R↑��T� =

R↑,0�

1 − R↑,0�
� T

D0
�2�g↑+g↓−2g��

1 +
R↑,0�

1 − R↑,0�
� T

D0
�2�g↑+g↓−2g��

. �53�

If 2g�−g↑−g↓
0, then R↑��T�→1 as T→0. The domain
wall becomes insulating. It reflects all incident electrons
while reversing their spin. Therefore, such a DW may be
considered as a perfect spin-flip reflector at zero temperature.
In order to find the low T behavior of transmissions we set
r↑=r↓=0 in Eqs. �30�–�33� and obtain

�t↑� � �t↑�� � �t↓�� � T2g�. �54�

Figure 3 shows numerical solutions to the scaling equations,
where the system is flowing to this fixed point.

In the regime where g↑+g↓−2g�
0 we have R↑��T�→0,
R↑�T�→1. So, the domain wall reflects all incident electrons
while preserving their spin. From Eqs. �30�–�33� for the
transmission amplitudes we obtain

�t↑� � Tg↑+g↓,

�t↑�� � T2g↑,

�t↓�� � T2g↓. �55�
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If g↑+g↓−2g�=0 then both R↑��T� and R↑�T� tend to fi-
nite values. Such a regime is illustrated in Fig. 4. In this case,
Eqs. �30�, �31�, and �33� with constant reflection amplitudes
become a linear �in t↑, t↑�, t↓�� algebraic 3�3 system. The
eigenvalues of the matrix give three temperature exponents
and each transmission amplitude will be a linear combination
of the three powers of T. For decreasing temperature, there

may be a crossover from one exponent to the other and the
lowest exponent dominates as T→0.

For smaller values of � /vF+ �smaller than about 0.1� in
the Hamiltonian �1�, the system flows to a fixed point, where
r↑� vanishes faster than the transmissions and �r��→1. The
transmission amplitudes still scale to zero as in Eqs. �55�.
The scaling equation �36� for r↑� can be linearized in r↑� by
neglecting the second order terms in t, t�, and considering
that �r��→1,

dr↑�

d�
= �g↑ + g↓�r↑�, �56�

from which we obtain

�R↑�� � T2�g↑+g↓�. �57�

We see that the exponent for �r↑��T�� is not bigger than the
exponents in �55�. Now, in the scaling equation �35� for r↑
we cannot neglect the terms containing transmission ampli-
tudes on the right-hand side. One can easily see that the g↑
term becomes g↑��r↑�2−1�r↑, which is of the same order of
magnitude as the other terms. Consequently, the scaling be-
havior derived in Eqs. �49� and �52� does not apply here,
since it was assumed there that the transmissions were
smaller than r�� . The behavior of r� as T→0 can be found
from the charge conservation condition, R↑=1−R↑�−T↑−T↑�,
so 1−R↑�Tmin�2�g↑+g↓�,4g↑�. Such a situation is shown in Fig.
5, where t↓� is seen to initially flow very fast to zero. The
explanation is the following: for small � in Eqs. �7� and �8�,
the noninteracting domain wall has t↑
1, r↑
0, and t↓�1,
r↓�0. Also t�=r� is small. The scaling equation for t↓� be-
comes

dt↓�

d�
= �2g↑r↑ + 2g��r↓��r↓�t↑ + �2g↑r↓

2 − 2g��r↑�r↓���t↓�.

The first term on the right-hand side is positive and much
larger than the second one, so t↓� tends fast to zero and dis-
appears from the equations. The equation for t↑� is

dt↑�

d�
= �2g↓r↓ − 2g�r↑�r↓t↑ + �2g↑r↑

2 + 2g��r↑�r↓���t↑�.

The first term on the right-hand side is negative while the
second is smaller because of small initial t↑�. Then, t↑� initially
grows as can be seen in Fig. 5.

B. Transparent barrier fixed points

Zero temperature fixed points corresponding to a transpar-
ent domain wall can be achieved when the interaction con-
stants are all negative, i.e., for attractive electron interaction.
Although we do not expect such a situation to occur in real-
istic physical systems, we describe below the fixed points for
the case V=0 in the model Hamiltonian �1�. For moderate to
strong � /vF+ in the model �7� and �8�, the zero temperature
values 1� �t↑��= �t↓��
 �t↑� depend on the initial parameters.
Smaller � /vF+ enhances t↑ relative to t�� . The reflection co-
efficients vanish under scaling as powers of temperature. The
corresponding exponents can be obtained after linearizing

FIG. 3. �Color online� Logarithm of transmission and/or reflec-

tion coefficients versus ln
D0

��� . We may identify temperature T with
���. The interaction parameters are g↑=g↓=1, g�=1.3 and the non-
interacting domain wall model parameters are V=0, vF− /vF+=0.8,
vF+=1, �=0.2. The dips are due to the sign reversal of the �small�
scattering amplitudes. The long linear tails are analytically de-
scribed in the text. At low temperature the system becomes a 100%
spin-flip reflector.

FIG. 4. �Color online� Logarithm of the transmission and/or
reflection coefficients versus ln�D0 / ����. We may identify tempera-
ture T with ���. The parameters are V=0, �vF− /vF+�=0.8, g↑=g↓
=g�=1, vF+=1, �=0.2. The reflection coefficients are all finite as
T→0.
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�for small reflections� the scaling equations �35� and �36�.
The resulting 3�3 matrix contains the finite limiting values
of the transmission amplitudes and its eigenvalues give the
temperature exponents for the vanishing reflection ampli-
tudes. Figure 6 shows an example of this behavior.

If some of the interaction constants are positive and the
others negative, the situation becomes more complex. Below
we describe several possible situations.

1. The case g_, g`
0, g��0

The system flows to the fixed point r↑=r↓=−1 with all
other amplitudes vanishing. The low-T behavior of the trans-
mission can be easily found by inserting the fixed point re-
flections into Eqs. �30�–�33�,

�t↑� � Tg↑+g↓, �t↑�� � T2g↑, �t↓�� � T2g↓. �58�

The scaling equation for r↑�, neglecting second order terms in
the scattering amplitudes, takes the form

dr↑�

d�
= �g↑ + g↓ − 2g��r↑� ⇒ r↑� � Tg↑+g↓−2g�, �59�

so that we must have g↑+g↓−2g�
0 in order for r↑�→0.

2. The case g_, g`�0, g�
0

The system flows to the perfect spin-flip reflector fixed
point �r↑��=�vF+ /vF− with all other amplitudes vanishing, in
accordance with the condition g↑+g↓−2g��0 derived ear-
lier.

3. The case g_
0, g`�0

For a negative or small positive g�, the system flows to a
fixed point where �t↓��=1, r↑=−1. The wall transmits all
spin-↓ particles with a spin-flip and reflects all spin-↑ par-
ticles. From Eqs. �30�–�33� we see that the exponents for the
transmission amplitudes are

�t↑� � Tg↑, �t↑�� � T2g↑. �60�

After linearizing Eq. �36� for r↑� in small amplitudes, we have

dr↑�

d�
� �g↑ − g��r↑� ⇒ r↑� � Tg↑−g�, �61�

which requires g↑
g� for vanishing r↑�. If g↑−g� is small,
the small quantities neglected in the right-hand side of Eq.
�61� become important. Therefore, this fixed point holds for
g↑−g� above some small quantity. Linearizing Eq. �34� for
r↑ in small amplitudes, we find

dr↓
d�

� − g↓r↓
* − g↓r↓ ⇒ r↓ � T−2g↓, �62�

which tends to zero since g↓�0. For larger g� the system
flows to the spin-flip reflector fixed point ��r↑��→�vF+ /vF−�.

4. The case g_�0, g`
0

The situation is analogous to the previous one. For nega-
tive or small positive g� the system flows to a fixed point
where �t↑��=1, r↓=−1 with all the others vanishing. The wall
transmits all spin-↑ particles with a flip and reflects all spin-↓
particles. From Eqs. �30�–�33� we see that the exponents for
the transmission amplitudes are

�t↑� � Tg↓, �t↓�� � T2g↓. �63�

Linearizing Eq. �36� for r↑� in small amplitudes, we have

FIG. 5. Logarithm of transmission and/or reflection coefficients
versus ln�D0 / ����. We may identify temperature T with ���. Param-
eters are g↑=1, g↓=0.9, g�=1.3, and vF− /vF+=0.8. For the initial
noninteracting scattering amplitudes we used V=0, vF+=1, �
=0.05.

FIG. 6. �Color online� Logarithm of transmission and/or reflec-
tion coefficients versus ln�D0 / ����. Parameters are g↑=−0.7, g↓=
−1.1, g�=−1, and vF− /vF+=0.8. For the initial noninteracting scat-
tering amplitudes we used V=0, vF+=1, �=0.2. The transmission
coefficients are all finite as T→0.
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dr↑�

d�
� �g↓ − g��r↑� ⇒ r↑� � Tg↓−g�, �64�

which requires g↓
g� in order for r↑� to vanish. If g↓−g� is
small, the small quantities neglected in the right-hand side of
Eq. �64� will become important. Therefore, this fixed point
holds for g↓−g� above some small quantity. For larger g�

the system flows to the spin-flip reflector fixed point ��r↑��
→�vF+ /vF−�.

V. DISCUSSION AND SUMMARY

Lateral ferromagnetic semiconductor wires with nanocon-
strictions make it possible to achieve the limit of sharp
domain walls.25 It has been shown that the constriction itself
does not cause significant reflection of the incident waves
because it only produces a semiclassical potential.46 We
may estimate the parameter � of our model �1� by assuming

that M� �z�=M0 cos ��z�z�̂+M0 sin ��z�x�̂ with cos ��z�
=tanh�z /L�,38 where L is the width of the domain wall. We
then find

� =
JM0

�
�

−�

�

sin ��z�dz = �
JM0

�
L , �65�

implying that

�

vF+
= �

JM0

��2kF+
2 /m�

�LkF+� . �66�

The condition for the domain wall to be smaller than the
Fermi wavelength is LkF+�2�. The smaller Fermi wave-
length is that of majority spin electrons, kF+. On the other
hand, for small LkF+ the barrier becomes a poor spin-flip
scatterer. The ratio vF− /vF+ depends on the polarization de-
gree of the electron system. We consider now a one-channel
system. In a nonmagnetic system there is a single Fermi
momentum kF for up and down electrons, and the Fermi
energy is EF=�2kF

2 / �2m�. Once the system becomes magne-
tized, the two new Fermi momenta, kF±, satisfy the particle
conservation condition,

kF+ + kF− = 2kF ⇒
kF+

kF
+

kF−

kF
= 2, �67�

and the spin-up and spin-down Fermi surfaces must corre-
spond to the same energy,

�2kF+
2

m
−

�E

2
=

�2kF−
2

m
+

�E

2
, �68�

where �E /2=JM0 is the Zeeman shift of the bands. From
this we get

kF±

kF
= 1 ±

�E

4EF
, �69�

so that the ratio kF− /kF+ is

kF−

kF+
=

vF−

vF+
=

1 − ��E/4EF�
1 + ��E/4EF�

. �70�

Inserting �69� into Eq. �66� we obtain

�

vF+
= �

��E/4EF�
�1 + ��E/4EF�
2 �Lk+� . �71�

The full polarization limit is kF−=0 and kF+=2kF, meaning
that �E /4EF=1, and then Eq. �71� gives

�

vF+
� 0.79LkF+.

Typical values for a non-fully polarized system are EF
=90 meV and �E=30 meV.25 In this case we have
vF− /vF+=0.84 and Eq. �71� gives

�

vF+
� 0.22LkF+.

Therefore, if LkF+ is smaller than about 2�, the system can
flow to any of the fixed points described above, especially
the ones described in Sec. IV A.

The lateral quantization may produce several channels.
The higher channels have larger Fermi wavelength and larger
�E /4EF, so they can be in the spin-flip reflector fixed point.
If a channel of high energy is fully spin polarized, then it
corresponds to � /vF+=0.79LkF+. But the possibility of inter-
channel scattering arises. This could be due to the two fol-
lowing reasons: �i� electron-electron interactions �such
would require a modification of our theory to allow for in-
terchannel scattering�; �ii� the impurity scattering. For the
latter to be negligible we need the electron mean free path
�not the transport mean free path� to be larger than the size of
the constriction.

In summary, we have studied the effect of electron-
electron interactions on the transmission through a domain
wall in a ferromagnetic wire in the regime in which the wall
width is smaller than the Fermi wavelength. Applying a
renormalization technique to the logarithmically divergent
perturbation, we obtained the scaling equations for the scat-
tering amplitudes. The T=0 fixed points were identified cor-
responding to: �i� perfectly insulating wall �with or without
complete spin reversal�, and �ii� transparent wall. Both repul-
sive and attractive interactions were considered. We have
estimated physical parameters for a domain wall model
which may be realized in physical systems. Such estimates
suggest that realistic systems can display the behavior pre-
dicted in the vicinity of the fixed points we have found.
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APPENDIX A: GENERALIZATION OF THE WRONSKIAN
THEOREM TO SPINOR SCATTERING STATES

The Wronskian theorem44 for �spin degenerate� scattering
states in one-dimensional systems can be easily generalized
to spinor states in a spin-dependent scattering potential. Let
	1�z� and 	2�z� represent two spinor scattering states with

energies �1 and �2 in the potential V̂�z�. We assume V̂�z� to
be a 2�2 real symmetric matrix, as is the case in the Hamil-
tonian �1�, and consider a symmetric mass tensor m̂ �possibly
position and spin dependent�. Each spinor satisfies the
Schrödinger equation

d

dz

1

m̂

d	1

dz
+ ��1 − V̂�	1 = �0

0
� , �A1�

d

dz

1

m̂

d	2

dz
+ ��2 − V̂�	2 = �0

0
� . �A2�

If we multiply the first equation �on the left-hand side� by
	2

t �z�, the second equation by 	1
t �z�, and subtract the two, we

obtain

d

dz
�	1

t 1

m̂

d	2

dz
− 	2

t 1

m̂

d	1

dz
� = ��1 − �2�	1

t 	2, �A3�

where the dot denotes the matrix �spinor� product �	1
t 	2

=��	1,�	2,��. The expression in large parentheses is a scalar
function of z and would be proportional to the Wronskian of
the functions 	1 and 	2

* in the case where the mass tensor
reduces to a scalar. If the two states are degenerate ��1=�2�,
we conclude from �A3� that the expression in large parenthe-
ses is independent of the coordinate z,

W�	1,	2� � 	1
t �z�

1

m̂

d	2

dz
− 	2

t �z�
1

m̂

d	1

dz
= const. �A4�

Since the potential matrix V̂ is real, then 	1
* �or 	2

*� also
satisfies the Schrödinger equation.

The usefulness of the theorem expressed in Eq. �A4� is
that it allows us to establish general relations between the
scattering amplitudes, independently of the detailed form of
the potential barrier.

If we evaluate �A4� for a pair of degenerate scattering
states, say W�	k,↑

* ,	k−,↓�, the result must be the same for z
�0 as for z
0,

W��	k,↑
* ,	k−,↓�
z�0 = W��	k,↑

* ,	k−,↓�
z
0, �A5�

which yields

v−t↑
*�k�t↓��k−� + vt↑�

*�k�t↓�k−� + vr↑
*�k�r↓��k−� + v−r↑�

*�k�r↓�k−�

= 0. �A6�

Similarly, calculation of W�	k,↑
* ,	−k−,↑� gives the relation

v−t↑
*�k�r↓�k−� + vt↑�

*�k�r↓��k−� + vr↑
*�k�t↓�k−� + v−r↑�

*�k�t↓��k−�

= 0, �A7�

and W�	k,↑
* ,	−k−,↓� gives the relation

v−t↑
*�k�r↑��k� + vt↑�

*�k�r↑�k� + vr↑
*�k�t↑��k� + v−r↑�

*�k�t↑�k� = 0.

�A8�

A fourth relation can be obtained from W�	k−,↓
* ,	−k−,↑�,

v−t↓�
*�k−�r↓�k−� + vt↓

*�k−�r↓��k−� + vr↓�
*�k−�t↓�k−�

+ v−r↓
*�k−�t↓��k−� = 0. �A9�

From W�	k,↑ ,	k−,↓� we obtain the relation

vr↓��k−� = v−r↑��k� , �A10�

and W�	k,↑ ,	−k−,↑� gives

vt↓�k−� = v−t↑�k� . �A11�

Considering a state and its conjugate, W�	k,�
* ,	k,�� gives

the conservation of the charge current,

v = v−�t↑�2 + v�t↑��
2 + v�r↑�2 + v−�r↑��

2, �A12�

for �=↑, and

v− = v�t↓�2 + v−�t↓��
2 + v−�r↓�2 + v�r↓��

2, �A13�

for �=↓. The results �A6�–�A9�, �A12�, and �A13� also fol-
low from the unitarity of the S matrix for this scattering
problem. One can also regard �A3� as a particular case of the
Liouville-Ostrogradski formula.47

APPENDIX B: FORMULATION FOR SPIN-DEPENDENT
ELECTRON EFFECTIVE MASSES

Electron interactions such as g4 and g2, which describe
forward scattering between particles moving in the same di-
rection, may produce renormalization of the electron’s effec-
tive mass.45 The latter could depend on spin orientation be-
cause the Fermi surfaces of spin-up and spin-down electrons
are different. These effects can be taken into account from
the beginning by rewriting the Hamiltonian �1� in a more
general form,

Ĥ0 = −
�2

2

d

dz

1

m̂�z�
d

dz
+ �V��z� − JMz�z��̂z − ����z��̂x,

�B1�

where, in the kinetic energy term, we allow for a position
and spin-dependent effective mass tensor, m̂�z�. The tensor
may take the form

m̂�z� = �m↑�z� 0

0 m↓�z�
� , �B2�

with
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m↑�z� = m+��− z� + m−��z�

and

m↓�z� = m−��− z� + m+��z� ,

where ��z� denotes the Heaviside function.

The appropriate mass values must be used in Eqs. �2�–�4�.
The expressions for the scattering eigenstates and transmis-
sion amplitudes given in the main text remain unchanged if
we take into account that the velocities must be calculated
considering the renormalized masses.

*On leave from Departamento de Física, Universidade de Évora,
P-7000-671, Évora, Portugal.

1 A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of
Magnetic Microstructures �Springer, Berlin, 1998�.

2 H. X. Tang, S. Masmanidis, R. K. Kawakami, D. D. Awschalom,
and M. L. Roukes, Nature �London� 431, 52 �2004�.

3 J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C.
Ralph, Phys. Rev. Lett. 84, 3149 �2000�; A. Fert, V. Gros, J. M.
George, J. Grollier, H. Jaffrès, A. Hamzic, A. Vaurès, G. Faini,
J. Ben Youssef, and H. Le Gall, J. Magn. Magn. Mater. 272-276,
1706 �2004�.

4 A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T.
Shinjo, Phys. Rev. Lett. 92, 077205 �2004�; M. Yamanouchi, D.
Chiba, F. Matsukura, and H. Ohno, Nature �London� 428, 539
�2004�; E. Saltoh, H. Miyajima, T. Yamaoka, and G. Tatara, ibid.
432, 203 �2004�.

5 M. Viret et al., Phys. Rev. Lett. 85, 3962 �2000�.
6 U. Ruediger, J. Yu, S. Zhang, A. D. Kent, and S. S. P. Parkin,

Phys. Rev. Lett. 80, 5639 �1998�.
7 L. Klein et al., Phys. Rev. Lett. 84, 6090 �2000�.
8 U. Ebels, A. Radulescu, Y. Henry, L. Piraux, and K. Ounadjela,

Phys. Rev. Lett. 84, 983 �2000�.
9 T. Taniyama, I. Nakatani, T. Namikawa, and Y. Yamazaki, Phys.

Rev. Lett. 82, 2780 �1999�.
10 Y. B. Xu, C. A. F. Vaz, A. Hirohata, H. T. Leung, C. C. Yao, J. A.

C. Bland, E. Cambril, F. Rousseaux, and H. Launois, Phys. Rev.
B 61, R14901 �2000�.

11 R. Danneau et al., Phys. Rev. Lett. 88, 157201 �2002�.
12 L. Berger, J. Appl. Phys. 49, 2156 �1978�.
13 G. G. Cabrera and L. M. Falicov, Phys. Status Solidi B 61, 539

�1974�; 62, 217 �1974�.
14 M. Viret, D. Vignoles, D. Cole, J. M. D. Coey, W. Allen, D. S.

Daniel, and J. F. Gregg, Phys. Rev. B 53, 8464 �1996�.
15 P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 �1997�.
16 G. Tatara and H. Fukuyama, Phys. Rev. Lett. 78, 3773 �1997�.
17 R. P. van Gorkom, A. Brataas, and G. E. W. Bauer, Phys. Rev.

Lett. 83, 4401 �1999�.
18 P. Bruno, Phys. Rev. Lett. 83, 2425 �1999�.
19 O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, Phys.

Rev. Lett. 84, 5212 �2000�.
20 K. Miyake et al., J. Appl. Phys. 91, 3468 �2002�.
21 M. Kläui, C. A. F. Vaz, J. Rothman, J. A. C. Bland, W. Werns-

dorfor, G. Faini, and E. Combril, Phys. Rev. Lett. 90, 097202
�2003�.

22 S. A. Wolf et al., Science 294, 1488 �2001�.
23 N. García, M. Muñoz, and Y. W. Zhao, Phys. Rev. Lett. 82, 2923

�1999�; G. Tatara, Y. W. Zhao, M. Muñoz, and N. García, ibid.
83, 2030 �1999�.

24 H. D. Chopra and S. Z. Hua, Phys. Rev. B 66, 020403�R� �2002�;

S. Z. Hua and H. D. Chopra, ibid. 67, 060401�R� �2003�.
25 C. Rüster, T. Borzenko, C. Gould, G. Schmidt, L. W. Molenkamp,

X. Liu, T. J. Wojtowicz, J. K. Furdyna, Z. G. Yu, and M. E.
Flatté, Phys. Rev. Lett. 91, 216602 �2003�.

26 L. R. Tagirov, B. P. Vodopyanov, and K. B. Efetov, Phys. Rev. B
65, 214419 �2002�; 63, 104428 �2001�.

27 J. B. A. N. van Hoof, K. M. Schep, A. Brataas, G. E. W. Bauer,
and P. J. Kelly, Phys. Rev. B 59, 138 �1999�.

28 J. Kudrnovský, V. Drchal, C. Blaas, P. Weinberger, I. Turek, and
P. Bruno, Phys. Rev. B 62, 15084 �2000�; J. Kudrnovský, V.
Drchal, I. Turek, P. Středa, and P. Bruno, Surf. Sci. 482-485,
1107 �2001�.

29 B. Yu. Yavorsky, I. Mertig, A. Ya. Perlov, A. N. Yaresko, and V.
N. Antonov, Phys. Rev. B 66, 174422 �2002�.

30 M. Ye. Zhuravlev, E. Y. Tsymbal, S. S. Jaswal, A. V. Vedyayev,
and B. Dieni, Appl. Phys. Lett. 83, 3534 �2003�.

31 V. K. Dugaev, J. Berakdar, and J. Barnaś, Phys. Rev. B 68,
104434 �2003�; V. K. Dugaev, J. Barnaś, J. Berakdar, V. I.
Ivanov, W. Dobrowolski, and V. F. Mitin, Phys. Rev. B 71,
024430 �2005�.

32 E. Šimanek, Phys. Rev. B 63, 224412 �2001�.
33 A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization

and Strongly Correlated Systems �Cambridge University Press,
Cambridge, 1998�.

34 S. Tomonaga, Prog. Theor. Phys. 5, 544 �1950�.
35 J. M. Luttinger, J. Math. Phys. 4, 1154 �1963�.
36 C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 �1992�.
37 C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 7268 �1992�.
38 R. G. Pereira and E. Miranda, Phys. Rev. B 69, 140402�R�

�2004�.
39 T. Hikihara, A. Furusaki, and K. A. Matveev, Phys. Rev. B 72,

035301 �2005�.
40 K. A. Matveev, Dongxiao Yue, and L. I. Glazman, Phys. Rev.

Lett. 71, 3351 �1993�; Dongxiao Yue, L. I. Glazman, and K. A.
Matveev, Phys. Rev. B 49, 1966 �1994�.

41 S. W. Tsai, D. L. Maslov, and L. I. Glazman, Phys. Rev. B 65,
241102�R� �2002�.

42 P. Devillard, A. Crépieux, K. I. Imura, and T. Martin, Phys. Rev.
B 72, 041309 �2005�.

43 V. K. Dugaev, J. Berakdar, and J. Barnaś, Phys. Rev. B 68,
104434 �2003�.

44 A. Messiah, Quantum Mechanics �North-Holland, Amsterdam,
1999�, p. 98.

45 J. Solyom, Adv. Phys. 28, 201 �1979�.
46 L. I. Glazman, G. B. Lesovik, D. E. Khmelnitskii, and R. I. Shek-

hter, Pis’ma Zh. Eksp. Teor. Fiz. 48, 218 �1988� �JETP Lett. 48,
239 �1988�
.

47 P. Hartman, Ordinary Differential Equations �Birkhäuser, Boston,
1982�.

ARAÚJO et al. PHYSICAL REVIEW B 74, 224429 �2006�

224429-12


