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a low-energy field theory starting from an SU�4� quantum multicritical point. Our approach reveals that the
system has a relatively simple phase structure in spite of its complicated interactions. On top of the U�1�
symmetry which is known from previous studies to mix up antiferromagnetic order parameter with that of the
p-type nematic, we find an emergent U�1� symmetry which mixes order parameters dual to the above. On the
basis of the field-theoretical and variational analysis, we give a qualitative picture for the global structure of the
phase diagram. Interesting connection to other models �e.g., the bosonic t-J model� is also discussed.
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I. INTRODUCTION

In the past two decades, quantum magnetism has been
serving not only as effective theories describing insulating
phases of strongly correlated electron systems but also as
theoretical laboratories to look for and test new concepts.
The discovery of high-temperature superconductors sparked
the search for unconventional or exotic phases which are
quite different from the ordinary ferromagnetic or antiferro-
magnetic phases. Despite the effort of many researchers in
searching for novelty, it is by now well known that, in two or
higher dimensions, antiferromagnetic phases are found pro-
vided that spin frustration is not very strong.1 In order to
suppress antiferromagnetism and stabilize exotic phases,2

various mechanisms have been proposed. One realistic ex-
ample of such mechanisms would be multispin-exchange in-
teractions. Such interactions are expected to be crucial for
explaining unusual magnetic behavior in 3He absorbed on
graphite.3 Moreover, it was reported that a certain amount of
four-spin ring exchange would be necessary to account for
neutron-scattering experiments for the parent compound of
high-temperature superconductor4 La2CuO4 and for a spin-
ladder compound5,6 La6Ca8Cu24O41. Extensive numerical
simulations carried out7,8 for the two-dimensional Heisen-
berg antiferromagnets with four-spin ring exchange found
various phases with unconventional orders: a spin-nematic
phase8 and a spin-liquid phase with topological ordering.7

On the other hand, various approaches have been pro-
posed in electron systems to unify several �and sometimes
quite different� competing orders9–12 and succeeded in clari-
fying the nature of the quantum phase transitions among
them.13,14 Usually, in those approaches, extended symmetries
are adopted so that mutually competing order parameters
may be transformed to each other. A typical example would
be the SO�5� theory9,10 for the competition between d-wave
superconductivity and antiferromagnetism, where the order
parameters of d-wave superconductivity and those of antifer-
romagnetism are combined to form a unified order-parameter

quintet. For a one-dimensional geometry �two-leg ladders�, it
is known that even larger symmetries SO�8� �Refs. 15 and
16� and SO�6� �Refs. 17–19� can emerge at low energies and
be useful for the description of the electronic phases at half
filling and away from half filling, respectively. In particular,
the existence of an extended symmetry might provide a route
to classify one-dimensional gapped phases.20

Unfortunately, no systematic approach based on extended
symmetries is known for unconventional phases found in
spin ladders and it is desirable to construct such theories. As
the first step along this line, we investigate here two-leg spin
ladders with four-spin interactions, since they possess high
enough symmetry to unify various competing orders. With-
out the four-spin interactions, the two-leg spin ladder has a
finite spin gap in magnetic excitations and short-ranged mag-
netic correlations.21 Basic physics of the two-leg ladder can
be understood by considering a ground state consisting of
almost localized dimer singlets on antiferromagnetic rung
bonds �see Fig. 1� and low-energy excitations over it. For
this reason, the spin-gap phase in the usual two-leg spin lad-

FIG. 1. �a� Two-leg spin ladder. The unit of constructing the
model Hamiltonian �see Sec. II� is a pair of spin-1 /2’s enclosed in
a broken line �called rung in the text�. Any site can be labeled by
the chain index �1,2� and the rung index r. �b� and �c�: Two typical
states appearing in two-leg ladders. The usual rung-singlet phase �b�
and the staggered-dimer phase �c� to be discussed in the text. Ar-
rows denote spin-singlet pairs.
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der sometimes is dubbed as rung-singlet-or rung-dimer
phase. If we change the rung coupling to ferromagnetic, the
rung bonds will be dominantly occupied not by singlets but
by triplets. Then, the system is effectively equivalent to the
spin-1 systems and the knowledges in those systems may
apply.22–24 When the four-spin interactions �say, ring-
exchange� are switched on, the size of the spin gap will be
reduced and finally at a certain critical strength it even
vanishes.25–28 Large-scale numerical simulations29,30 sug-
gested that the model has a rather rich phase diagram. In
particular, a spin liquid phase with scalar chirality ordering
was found.29 Such a phase breaks both time-reversal and
parity symmetries and has been discussed previously in the
context of anyon superconductivity.31,32 A hallmark of the
unconventional phases in the phase diagram of the two-leg
spin ladder with ring-exchange interaction is that neither sin-
glets nor triplets dominate over the others. Hence the con-
ventional approaches starting from the limit of strong rung
couplings �whether ferromagnetic or antiferromagnetic� is
not very convenient to explore the nature of novel phases
stabilized by four-spin interactions. The main goal of this
paper is to fully describe the nature of the unconventional
phases and quantum phase transitions among them by an
approach based on an extended symmetry.

The organization of the present paper reads as follows. In
Sec. II, we construct the ladder Hamiltonian by requiring
rotational invariance and equivalence of two constituent
chains. Our goal is to unify several unconventional phases
stabilized by four-spin interactions. To this end, we shall use
an enlarged symmetry SU�4� which contains the ordinary
�spin� SU�2�. We shall also pay particular attention to an
interesting symmetry �spin-chirality transformation� which
is a special case of the above SU�4� and commutes with the
spin rotation. This symmetry, which has been introduced30,33

in the context of the ring-exchange two-leg spin ladder, ex-
changes the Néel order parameter with the vector chirality
�the order parameter of a p-type nematic34�. It will play a
crucial role in our analysis and give an important clue to
understand the global structure of the phase diagram.

A low-energy field-theory analysis will be developed in
Sec. III. Although various field-theory approaches are known
for two-leg ladder systems,21,35–37 most of them start from
the limit of two decoupled chains and will not be suited to
investigating the phase structure when four-spin interactions
are by no means small. Instead of starting from two weakly
coupled S=1/2 chains, we shall take the SU�4�-invariant
point, which is a special case of the lattice Hamiltonian, as
the starting point. The rotational- and the spin-chirality sym-
metry are beautifully incorporated into our low-energy effec-
tive action.

In Sec. IV, the phase structure and unexpected high sym-
metry among unconventional phases will be discussed with
the help of one-loop renormalization group �RG� calculation.
In particular, we shall find four dominant phases where
SU�4� �SO�6�, more precisely� symmetry is approximately
restored in the low-energy limit. The quantum phase transi-
tions among these dominant phases will be investigated in
Secs. V and VI. The crucial role played by the spin-chirality
symmetry in transitions among spin-singlet phases will be
revealed. In this respect, a bosonization scheme based on

U�1��SU�3� symmetry will be introduced to extract rel-
evant low-energy degrees of freedom which govern the
phase transition. By using an effective theory for the low-
energy fluctuations of a vector doublet composed of compet-
ing order parameters, we shall clarify how time-reversal
symmetry is broken in one of these unconventional phases.

Readers who are not interested in the detail of the field-
theoretical analysis may skip Secs. III, IV, and VI. Our main
results have been already published in part as a short
communication.38

In order to supplement the field-theoretical analysis, we
shall carry out a variational- and a strong-coupling analysis
in Sec. VII. As has been described above, the usual strong-
coupling expansion starting from the limit of isolated rungs
is not very convenient. Instead, we shall start from the limit
of isolated plaquettes to successfully describe the competi-
tion among several quantum phases. On the basis of results
obtained from these analyses, we map out the global phase
diagram and discuss a connection to a spin-1 bosonic t-J
model. This relationship might be useful for the possible
experimental realization of the exotic gapped phases stabi-
lized by four-spin exchange interactions. Indeed, in standard
two-leg ladder compounds discovered so far, four-spin ex-
change interactions �10–20 % of leg-rung interactions� are
not strong enough to stabilize the spin liquid phase with
scalar chirality ordering in these systems. However, with the
connection to the spin-1 bosonic t-J model presented in Sec.
VII, one can expect that this phase �together with other un-
conventional ones� might be feasible in ultracold bosonic
atomic gases in optical lattices.39 Finally, Sec. VIII presents
our concluding remarks and technical details will be pre-
sented in the appendixes.

II. MODEL AND ITS SYMMETRIES

A. Building blocks of a Hamiltonian

As has been discussed in the Introduction, enlarged sym-
metries are very powerful in unifying various competing or-
ders. Therefore it is necessary first to identify the enlarged
symmetry in our problem. Since we are considering spin-1 /2
two-leg ladders, the maximal symmetry would be SU�4�. The
appearance of SU�4� in our problem is easily understood by
noting that four states ��↑↑�, �↑↓�, �↓↑�, �↓↓�� on a single rung
�say, the rth rung in Fig. 1�a�� span the four-dimensional
defining representation �4� of SU�4�.40,41 Let us denote S
=1/2 spins on the first �upper� and the second �lower� chains
by S1,r and S2,r, respectively. Then, one of the standard
choices of the 15 generators Xi on the rth rung is

Xi�r� = S1,r
i , Xi+3�r� = S2,r

i �i = 1,2,3� ,

Xi�r� = 2S1,r
a S2,r

b � Gab�r� �i = 7, . . . ,15;a,b, = 1,2,3� .

�1�

The explicit matrix expressions of these generators are given
in Appendix A.

Now we are at the point of constructing the Hamiltonian
by requiring the invariance under �i� SU�2�, �ii� Z2 �1↔2:
interchange of the two chains; see Fig. 1�, and �iii� reflection
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with respect to horizontal links �link parity�. Since we are
considering S=1/2, we can safely restrict ourselves to
second-order polynomials in S1

a and S2
b. We can divide them

into �a� a scalar, �b� �SO�3�� vectors, and �c� rank-2 symmet-
ric tensors. Of course, the scalar is given by S1,r ·S2,r and the
followings are all vectors:

S1,r + S2,r . . . Z2 even,

S1,r − S2,r . . . Z2 odd,

S1,r � S2,r . . . Z2 odd. �2�

Although the last one seems an antisymmetric tensor, it be-
haves like a �pseudo�vector in the spin space and serves as
the order parameter of the p-type spin nematic.34 On top of
them, we have a symmetric tensor whose components are
given essentially by Gab:42

Qab�r� � S1,r
a S2,r

b + S1,r
b S2,r

a =
1

2
�Gab�r� + Gba�r�� , �3�

which reduces to a set of order parameters of the n-type spin
nematic34 when the dimer bonds are occupied by triplets.
The point here is that all these operators are essentially the
SU�4� generators �see Appendix A 2 for more details�.

Now we proceed to constructing a Hamiltonian. If we
consider only interactions involving two neighboring rungs
�i.e., four spins�, the SU�2� and Z2 invariance strongly re-
strict the possible interactions and we are left with the fol-
lowing seven ones:

H1 = �
r

�S1,r + S2,r� · �S1,r+1 + S2,r+1� , �4a�

H2 = �
r

�S1,r − S2,r� · �S1,r+1 − S2,r+1� , �4b�

H3 = 2�
r

�
a,b=1

3

Qab�r�Qab�r + 1�

= 4�
r

��S1,r · S1,r+1��S2,r · S2,r+1�

+ �S1,r · S2,r+1��S2,r · S1,r+1�� , �4c�

H4 = �
r

4�S1,r � S2,r� · �S1,r+1 � S2,r+1�

= 4�
r

��S1,r · S1,r+1��S2,r · S2,r+1�

− �S1,r · S2,r+1��S2,r · S1,r+1�� , �4d�

H5 = 2�
r

��S1,r − S2,r� · �S1,r+1 � S2,r+1�

+ �S1,r � S2,r� · �S1,r+1 − S2,r+1�� , �4e�

H6 =
1

2�
r

�S1,r · S2,r + S1,r+1 · S2,r+1� , �4f�

H7 = �
r

�S1,r · S2,r��S1,r+1 · S2,r+1� , �4g�

where the summation �r is taken over all rungs of the ladder.
Aside from the four-spin terms H3, H4, and H7, we have a
three-spin term H5 which explicitly breaks time-reversal
symmetry. If S=1/2 comes from the electron spin �more
generally, magnetic moment of charged particles�, the three-
spin term H5 may result from the electron hopping on each
plaquette.

It would be useful to rewrite H1 and H3 in terms of spin-1
operator Tr defined on the rth rungs:

H1 = �
r

Tr · Tr+1,

H3 = �
r
	Tr · Tr+1 + 2�Tr · Tr+1�2 − 4H6 −

3

2

 . �5�

In the above equations, the projection operators onto the trip-
let subspace Ptriplet�r��S1,r ·S2,r+3/4 are implied, i.e.,

Tr � Ptriplet�r��S1,r + S2,r�Ptriplet�r� .

These two blocks describe the interaction between effective
spin-1 objects, that is, they dictate the magnetic part of the
Hamiltonian. All the above seven interactions are used to
construct the following general Hamiltonian:

H = AH1 + BH2 + CH3 + DH4 + EH5 + FH6 + GH7.

�6�

Of course, another set of interactions could have been
used. For example, basis H1±H2 and H3±H4 could have
been chosen instead of H1, H2, H3, and H4. In fact, the latter
choice is convenient when discussing the systems with
SU�2��SU�2� symmetry �e.g., the spin-orbital
model41,43,44�, while our choice here is useful when dealing
with the spin-chirality transformation which will be intro-
duced in the next subsection.

B. Spin-chirality transformation

1. Construction

As mentioned in the previous sections, the largest symme-
try of the problem is SU�4�, whose defining representation is
spanned by the four states �singlet and triplet� on a single
rung. As a subgroup of SU�4�, there is an interesting U�1�
symmetry33 called the spin-chirality transformation.

Let us consider two spins �S1,r and S2,r� on the rth rung
and look for a local unitary transformation Ur��� which com-
mutes with the SU�2� rotation generated by S1,r+S2,r. The
commutation relations

	S1,r + S2,r,�
i=1

15

xiXr
i
 = 0 �7�

satisfied by the generator of Ur��� uniquely �up to a constant
phase� determine the following form:

COMPETING ORDERS AND HIDDEN DUALITY… PHYSICAL REVIEW B 74, 224426 �2006�

224426-3



Ur��� = exp�i�Ptriplet�r�� � exp	i��3

4
+ S1,r · S2,r�


=
1

4
�1 + 3ei�� + �ei� − 1�S1,r · S2,r. �8�

In the above expression, we have adopted a slightly different
definition from the original one in Ref. 33 for reasons which
will become clear later. By construction, it is obvious that
Ur��� is the only U�1� transformation which commutes with
the spin-rotation symmetry. The U�1� transformation Ur���
has remarkable properties. By fully utilizing the properties of
S=1/2, we can show that the following equations hold:

Ur����S1,r + S2,r�Ur
†���

= S1,r + S2,r �total-spin conservation� , �9a�

Ur����S1,r − S2,r�Ur
†���

= �S1,r − S2,r�cos � − 2�S1,r � S2,r�sin � , �9b�

Ur����S1,r � S2,r�Ur
†���

=
1

2
�S1,r − S2,r�sin � + �S1,r � S2,r�cos � .

The first line �9a� is a trivial consequence of the requirement
�7�. The local U�1� transformation Ur��� can be readily gen-
eralized to the whole lattice:

U��� � 
r=rungs

Ur��� �10�

and all the above properties are preserved for U��� as well. In
what follows, we shall call U��� spin-chirality transforma-
tion, since, as can be seen in the above equations �9b�, it
mixes up the antiferromagnetic order parameters S1−S2 and
the vector chirality �or the order parameter of the p-type spin
nematic34� S1�S2.

For our purpose, it is helpful to view U��� as an SU�4�
transformation rather than as a nonlinear transformation for
two spin operators S1 and S2. The latter two lines �9b� sug-
gest that two antisymmetric �in 1↔2� quantities S1−S2 and
2�S1�S2� behave as an O�2� doublet under the spin-chirality
transformation U���:

� S̃1 − S̃2

2S̃1 � S̃2

� = �cos � − sin �

sin � cos �
�� S1 − S2

2S1 � S2
� . �11�

The remaining nine generators �S1
a+S2

a and Gab� are invariant
under U���.

2. Duality

Now we are at the position to discuss the effect of spin-
chirality transformation on our building blocks. After some
algebra, we obtain the following rules:

H1 � H1, �12a�

H2 �
1

2
�H2 + H4� +

1

2
cos 2��H2 − H4� −

1

2
sin 2�H5,

�12b�

H3 � H3, �12c�

H4 �
1

2
�H2 + H4� −

1

2
cos 2��H2 − H4� +

1

2
sin 2�H5,

�12d�

H5 � sin 2��H2 − H4� + cos 2�H5, �12e�

H6 � H6, �12f�

H7 � H7. �12g�

Now the reason why we have decomposed the Hamiltonian
into H1 , . . . ,H7 can be easily understood from the above
equations. The spin-chirality transformation for �= �

2 is par-
ticularly simple:

H2 ↔ H4, H5 � − H5 �all the others are invariant� .

�13�

Hereafter, this special case

D � U�� = �/2� �14�

will be called duality transformation,30,33 although it is rather
different from the standard “duality” which maps local ob-
jects onto nonlocal ones and vice versa. It readily follows
from Eqs. �12a�–�12g� and �13� that a model with B=D and
E=0 is invariant �or self-dual� not only for �=� /2 but also
for arbitrary values of �.33 In what follows, we will see that
this enhanced U�1� symmetry at B=D will play a crucial
role.

C. Special cases

Before discussing the duality property of them, we men-
tion interesting special cases of Hamiltonian �6�.

Ordinary two-leg ladder. Much is known21,35,36 about the
ordinary two-leg ladder defined by the following Hamil-
tonian:

H = J�
r

�S1,r · S1,r+1 + S2,r · S2,r+1� + J��
r

S1,r · S2,r

=
1

2
J�H1 + H2� + J�H6. �15�

The basic picture of the ground state is provided by putting
dimer singlets on rung �i.e., J�� bonds and low-lying excita-
tions may be understood as propagating dimer triplets.45

Spin-orbital model. The Hamiltonian of the spin-orbital
model is defined by41,43,44
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HSO = J�
r

�S1,r · S1,r+1 + S2,r · S2,r+1� + K�
r

�S1,r · S1,r+1�

��S2,r · S2,r+1� �16�

and is obtained by choosing

A = B =
1

2
J, C = D =

K

8
, E = F = G = 0.

It was shown by weak-coupling analysis25 and later by ex-
plicitly constructing the exact ground state46 that the model
displays a staggered dimer �SD� ordering in a certain region
�0�K�4J� of the parameter space.

If we further impose the restriction

A = B = C = D�=
1

2
J� ,

the model reduces to the so-called SU(4)-spin-orbital
model.40,41,47 In this particular case, the Hamiltonian can be
written as

HSU�4�

= J �
r�rung

	�1

2
+ 2S1,r · S1,r+1��1

2
+ 2S2,r · S2,r+1� −

1

4



= J �
r�rung

�P�S1,r,S1,r+1�P�S2,r,S2,r+1� −
1

4
�

= J�
a=1

15

Xr
aXr+1

a , �17�

where P�S ,T� denotes a permutation operator for two S
=1/2 modules �corresponding to S and T�. This is an SU�4�
generalization of the S=1/2 Heisenberg model since
P�S1,r ,S1,r+1�P�S2,r ,S2,r+1� is nothing but the SU�4�-
permutation operator if we regard the four states on a rung as
4. The model HSU�4� is integrable47 and will be used as a
starting point of the following analysis.

As shown in Ref. 48, a term GH6 can be added to HSU�4�
without spoiling integrability. According to the Bethe-ansatz
results,48 we have two critical values of G; when G�Gc,1
=� / �2�3�+ln 3/2, all rungs are occupied by triplets and the
system is described by two gapless bosons while for G
�Gc,2=4 the system is in the so-called rung-singlet phase
and all excitations are gapped.

Self-dual models. An important class of models is defined
by the following choice of parameters:

B = D, E = 0, A, C, F, G = arbitrary.

This defines a family of models which are invariant under
the full spin-chirality rotation U���. Hereafter, we call this
family of models self-dual models and the manifold charac-
terized by the above set of parameters self-dual manifold.
Obviously, the self-dual models have SU�2�spin

�U�1�spin-chiral symmetry.
SU�3��U�1�-models. On a special submanifold,

A = C =
1

2
J1, B = D =

1

2
J2, E = 0, F, G = arbitrary,

of the self-dual manifold �obtained by setting A=C in the
self-dual models�, the spin SU�2� gets enlarged to SU�3� �see
Appendix A 2�. The conditions A=C and B=D are crucial
for the SU�3� invariance. In fact, these SU�3� and U�1� are
broken simultaneously �SU�3��SU�2�, U�1��Z2� when we
move away from the self-dual manifold �B=D�.

Composite-spin model. The so-called composite-spin
model is defined by49,50

Hcomposite = �
r

��S1,r + S2,r� · �S1,r+1 + S2,r+1�

− ���S1,r + S2,r� · �S1,r+1 + S2,r+1��2� , �18�

which can be rewritten as

Hcomposite = �1 +
1

2
��H1 −

1

2
�H3 − 2�H6.

This preserves the total spin S1,r+S2,r on each rung and the
problem reduces essentially to that of a collection of finite
chain segments.

Note that this is a special case �B=D=0� of the self-dual
models. If we choose �=−1, we get A=C=1/2 and as a
consequence we have SU�3� symmetry. This is in agreement
with the well-known fact that the �=−1 bilinear-biquadratic
chain is SU�3� invariant �the SU�3� Uimin-Lai-Sutherland
model47,51�.

Spin-ladder with four-body cyclic exchange. The four-
body cyclic exchange on elementary plaquettes made up of
two rungs r and r+1 can be recast as

Hcyc � �
r

�P4�r,r + 1� + P4
−1�r,r + 1��

= H1 + H4 + 2H6 + 4H7 + const, �19�

where P4�r ,r+1� and P4
−1�r ,r+1�, respectively, make a cy-

clic permutation and its inverse on a plaquette formed by
rungs r and r+1. Using this, the Hamiltonian for a two-leg
ladder with four-spin exchange is given as5,52

Hladder+4-spin = J�
r

�S1,r · S1,r+1 + S2,r · S2,r+1�

+ K4Hcyc + JR�
r

S1,r · S2,r

= �1

2
J + K4�H1 +

1

2
JH2 + K4H4 + �JR

+ 2K4�H6 + 4K4H7. �20�

Note that the model with K4=J /2 is self-dual �B=D� and we
can find not only the exact rung-singlet ground state but also
the exact one-magnon state26 �in notations used in Ref. 26,
Jring�2K4� for certain choices of parameters. The phase
diagram for JR=1 has been mapped out in Refs. 26, 27, 29,
and 30.

We summarize the relation between parameters and the
symmetries of Hamiltonian �6� in Fig. 2. First of all, in most
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cases perturbation around the SU�4� point explicitly breaks
the SU�4� symmetry. The fate of the system after the break-
ing of SU�4� is different according to whether or not the
system is invariant under the spin-chirality rotation U���; if
the system is invariant �i.e., B=D�, then we can have a high
symmetry like SU�3��U�1� �when A=C� or SU�2��U�1�
�when A�C�. These cases will be treated in Sec. V. Other-
wise, the system generically assumes the lowest possible
symmetry SU�2��Z2.

D. Useful analogies

1. Pseudospin-1/2 model

Although the Hamiltonian �6� looks complicated, there is
a useful analogy to a more familiar model-S=1/2 XXZ
model. To understand this, we note that the quantity

Sr
z = S1,r · S2,r +

1

4
�21�

formally plays a role of Sz in the S=1/2 XXZ problem. In-
deed, it is not difficult to show

�Sz,�S1 − S2�a� = 2i�S1 � S2�a,

�Sz,2�S1 � S2�a� = − i�S1 − S2�a �22�

and

�Sz,�S1 + S2�a� = 0,

�Sz,Qab� = 0. �23�

The first two equations imply that S1−S2 and 2�S1�S2� ro-
tate like Sx and Sy, respectively, as is expected from Eq. �11�.
Of course, �S1−S2�a±2i�S1�S2�a �a=x ,y ,z� give rise to
singlet-triplet transitions and play a role of raising or lower-
ing operators of the pseudospins.

Therefore two building blocks

H2 = �
r

�
a=x,y,z

�S1,r − S2,r�a�S1,r+1 − S2,r+1�a,

H4 = �
r

�
a=x,y,z

4�S1,r � S2,r�a�S1,r+1 � S2,r+1�a

behave like �Sr
xSr+1

x and �Sr
ySr+1

y with respect to U�1�
�SO�2�� generated by �Sr

z except that they have additional
degeneracy coming from the SU�2� invariance.53 Of course,
as far as the pseudospin degrees of freedom are concerned,
the roles of −h�Sz and �Sr

zSr+1
z are H6 and the rung-rung

four-body term H7, respectively. Although the Hamiltonian
B�H2+H4�+FH6+GH7 may formally look like a collection
of three S=1/2 XXZ chains �a=x ,y ,z� in a finite magnetic
field, it is not true because S1

a−S2
a and S1

b−S2
b �a�b� do not

commute with each other. �In fact, they obey the SU�4� com-
mutation relations; see Appendix A.� Nevertheless, an anal-
ogy to S=1/2 XXZ chain is still useful because the model
Hamiltonian decomposes into �spin-chirality� pseudospin S
=1/2 XXZ part and a �real� spin part. That is, the effective
XXZ part �H2+H4+FH6+GH7� has nonzero off-diagonal
elements only for singlet-triplet transitions �pseudospin flip-
ping�, while the magnetic part �H1 and H3� gives rise only to
triplet-triplet transitions. Therefore we may expect that, if for
some reasons the spin sector gets gapped and the magnetic
dynamics is frozen, the low-energy part of the full dynamics
will be described by the above effective �pseudospin� XXZ
model.

2. Spin-1 Bose system

Another formulation of our system facilitates us capturing
the physical meaning of the spin-chirality transformation
U���. As a first step, we note that the asymmetric part �S1

−S2 and S1�S2� of the Hamiltonian BH2+DH4 can be writ-
ten as a hopping term of spin-1 bosons:

BH2 + DH4

= �B + D��
r,a

�br,a
† br+1,a + br+1,a

† br,a�

+ �B − D��
r,a

�br,a
† br+1,a

† + br+1,abr,a� �a = x,y,z� ,

�24�

where the operator br,a
† creates a spin-1 �triplet� boson with

spin index a on the site r. Since, in the spin language, the rth
rung is occupied either by a singlet or by a triplet, the bosons
ba should be thought of as hard-core particles. Namely, the
following local constraints on the boson occupation numbers
should be imposed:

nr
B � �

a=x,y,z
br,a

† br,a = S1,r · S2,r + 3/4 = Sr
z + 1/2 = 0,1.

�25�

Note that these particles obey nonstandard commutation re-
lations:

FIG. 2. �Color online� Changes in the symmetry as the param-
eters are varied. Our starting point denoted by “SU�4�” corresponds
to the choice A=B=C=D, E=F=G=0. “Duality” D maps a model
with B�D onto another with B�D and vice versa. Note that the
full symmetry for generic cases �including the spin-orbital case� is
SU�2�spin�Z2.
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�br,a,br�,b
† � = ��ab�1 − nr

B� − br,a
† br,b��r,r�.

One of the greatest merits of this mapping is that the above
bosons are directly related to the order parameters S1−S2
�antiferromagnetic� and S1�S2 �p-type nematic� as

ba,r
† =

1

2
�S1,r − S2,r�a + i�S1,r � S2,r�a �a = x,y,z� . �26�

The spin-chirality transformation �10� is simply expressed as
a gauge transformation of these bosons:

ba,r
† � ei�ba,r

† . �27�

As has been mentioned above, H6 and H7 have simple
interpretation in terms of an effective spin Sr

z:

FH6 = F�
r

nr
B + const, �28�

GH7 = G�
r
�Sr

z −
1

4
��Sr+1

z −
1

4
�

= G�
r

nr
Bnr+1

B −
3

2
GH6 + const. �29�

Last, the symmetric part of the Hamiltonian AH1+CH3 can
be recasted as �see Eq. �5��

AH1 + CH3

= �
r

��A + C�Tr · Tr+1 + 2C�Tr · Tr+1�2 − 4CH6� + const.

�30�

In this equation, the spin-1 operators �Tr�a=−i�abcbb,r
† bc,r act

only on occupied sites. That is, triplet projection operators
Ptriplet�r� on both sides of Tr are implied. From these, we can
conclude that our ladder Hamiltonian is equivalent to an S
=1 bosonic t-J-like model on a chain;54 the deviation from
the self-dual models B−D�0 introduces pair creation or an-
nihilation processes. A special case of it �C=−A�0�, where
only the biquadratic interaction exists and the system has an
enlarged SU�3� symmetry, was investigated by Albertini.55

As has been mentioned in Sec. I, this connection might be
quite useful in realizing the unconventional phases in the
system of ultracold atomic gases.39

III. CONTINUUM LIMIT

A. Field-theory description of SU(4) point

In this section, we develop a low-energy approach to our
problem starting from the SU�4�-symmetric point. Thanks to
the exact Bethe-ansatz solution,47 we know that the SU�4�
point �A=B=C=D�0, E=F=G=0� is gapless and the �con-
formally invariant� field theory describing this massless fixed
point was obtained by several authors.56–58 It is given by the
level-1 SU�4� Wess-Zumino-Witten �WZW� conformal field
theory with central charge c=3 �for a review of WZW and
related models; see, for instance, Ref. 35�. For our purpose, it
is more convenient to use an equivalent free-field description

in terms of six real �Majorana� fermions.57 The derivation is
sketched briefly in Appendix C and the effective action cor-
responding to the fixed point is given by57

HSO�6� = −
iv
2 �

a=1

3

�	R
a �x	R

a − 	L
a�x	L

a + 
R
a �x
R

a − 
L
a�x
L

a� .

�31�

The above action describes six free massless Majorana fer-
mions �	L,R

a ,
L,R
a � �a=1,2 ,3� which are equivalent to six

copies of critical two-dimensional �2D� Ising models. In gen-
eral, SO�6�-invariant marginally irrelevant interactions
should be added to HSO�6� in order to describe the low-
energy physics of the SU�4� model �see Appendix C�. In

what follows, shorthand notations 	�R,L= �	R,L
1 ,	R,L

2 ,	R,L
3 �,

etc., will be used.
Using the quantum equivalence between the level-1

SU�4� WZW model and HSO�6� �or, the level-1 SO�6� WZW
model�, we can express all the 15 generators of SU�4� in
terms of the above six Majorana fermions. In general, we
may expect that local operators have the following expan-
sions:

Or,lattice � O + ei�r/2NO + e−i�r/2NO
* + �− 1�rnO. �32�

For the SU�4� generators, they read

Xr
A � XR

A + XL
A + ei�r/2NA + e−i�r/2NA,* + �− 1�rnA. �33�

One can write down XR,L
A in terms of six Majorana fermions

by using the 6�6 representation of the SU�4� generators
�see Appendix A and Eq. �1� for the definition of XA�:

S1,L/R = −
i

2
	�L/R � 	�L/R, S2,L/R = −

i

2

�L/R � 
�L/R,

Gab,L/R = − i	L/R
a 
L/R

b �a,b = 1,2,3� . �34a�

The staggered part �nA� is given similarly as

S1 = iB	�R � 	�L, S2 = iB
�R � 
�L,

Gab = iB�	R
a 
L

b − 
R
b 	L

a� , �34b�

where B is a regularization-dependent constant. Therefore
both the uniform and the staggered correlations of XA are
written as products of two free fermion propagators and be-
have like x−2. The second part, whose correlation decays as
x−3/2, is more complicated and given by a product of six
order or disorder operators of the underlying Ising models.57

B. Symmetry operations

Aside from the internal SO�6�L�SO�6�R symmetry, vari-
ous symmetry operations keep the fixed-point Hamiltonian
�31� invariant. Among them, the following will play impor-
tant roles:

�i� Time reversal �T�:
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	R,L
a →

T
− 	L,R

a , 
R,L
a →

T

L,R

a . �35�

A remark is in order here about T. As is well known, the
time-reversal operation is antiunitary and the complex con-
jugation must be taken after the transformation �35� is ap-
plied.

�ii� Translation by one-site �T1-site�:

	R
a →

T1-site

− 	R
a , 	L

a →
T1-site

	L
a ,


R
a →

T1-site

− 
R
a , 
L

a →
T1-site


L
a . �36�

In the field-theory language, T1-site is nothing but chiral
symmetry generated by �5.

�iii� Interchange of upper and lower chains �P12�Z2�:

	R,L
a →

P12

− 
R,L
a , 
R,L

a →
P12

	R,L
a . �37�

�iv� Site parity �PS�:

	R,L
a �x�→

PS

	L,R
a �− x�, 
R,L

a �x�→
PS


L,R
a �− x� . �38�

�v� Link parity �PL�:

	R
a �x�→

PL

	L
a�− x�, 	L

a�x�→
PL

− 	R
a �− x� ,


R
a �x�→

PL


L
a�− x�, 
L

a�x�→
PL

− 
R
a �− x� . �39�

�vi� Ising �or Kramers-Wannier� duality �s1�:

	R,L
a →

s1

	R,L
a ,


R
a →

s1

− 
R
a , 
L

a→
s1


L
a . �40�

C. Spin-chirality transformation in the continuum limit

In this section, we look for the duality transformation for
the Majorana fermions. To derive an expression of the “du-
ality” transformation valid in the low-energy limit, it is con-
venient to use a generalized version �10�:

U��� = 
r�rung

exp	i��3

4
+ S1,r · S2,r�
 .

In terms of spin operators, U��� is realized in a nonlinear
manner as we have seen in Eqs. �9a� and �9b�. Interestingly,
it is realized in the continuum limit as

U��� = RR���RL��� �41�

by using the following spin-independent SO�2� transforma-
tion RL,R��L,R� for �	a ,
a�:38

	̃L,R
a = 	L,R

a cos
�L,R

2
− 
L,R

a sin
�L,R

2
,


̃L,R
a = 	L,R

a sin
�L,R

2
+ 
L,R

a cos
�L,R

2
. �42�

Strictly speaking, different notations should be used to de-
note the original U��� defined by Eq. �10� and its continuum
version �41� and �42�. However, the meaning is obvious from
the context and we shall use the same notation for the two
transformations.

In fact, the fixed-point Hamiltonian �31� is invariant under
an even larger chiral �i.e., left-right independent� version
SO�2�R�SO�2�L of the above SO�2� and this fact gives us a
hint to find another set of order parameters. For readers who
want to know more about the derivation of Eqs. �41� and
�42�, we give it in the Appendix D.

The following special cases are worth mentioning:
�i� �= �

2 : U�� /2��D reduces to the original spin-
chirality duality transformation,30 where the two fermions
mix with equal weights. From Eqs. �12a�–�12g�, it is clear
that models with E=0 �no T-odd term H5� form a closed
subset of the full Hamiltonian.

�ii� �=�: This corresponds to the exchange of S1 and S2
�discrete Z2-symmetry P12�. In the case of Majorana fermi-
ons, it accompanies a sign change:

	̃L/R
a = − 
L/R

a , 
̃L/R
a = 	L/R

a .

�iii� �=2�: Although this is nothing but an identity op-
eration in the original spin-1 /2 language, Majorana fermi-
ons change their signs,

	̃L/R
a = − 	L/R

a , 
̃L/R
a = − 
L/R

a .

This is already anticipated from what we have for �=�. That
is, the Z2 exchange between S1 and S2 is not realized as a
simple Z2 symmetry in terms of Majorana fermions.59 Note
that this sign inversion does not affect the physical operators
since they are always written as fermion bilinears.

D. Order parameters as duality doublets

In Sec. II, we have pointed out that two quantities

S1 − S2 and 2�S1 � S2�

form a doublet under the spin-chirality rotation U���. How-
ever, as our system is one-dimensional, the expectation val-
ues of these vector order parameters are identically zero:
�S1−S2�= �2�S1�S2��=0. Instead, we adopt the following
two rotationally invariant order parameters:

OSD
lattice = S1,r · S1,r+1 − S2,r · S2,r+1, �43a�

OSC
lattice = �S1,r + S2,r� · �S1,r+1 � S2,r+1�

+ �S1,r � S2,r� · �S1,r+1 + S2,r+1� . �43b�

In numerical studies,29 it was shown that phases which are
characterized by nonvanishing OSD

lattice or OSC
lattice do exist in

the phase diagram of the two-leg spin ladder with a ring-
exchange interaction. The appearance of the latter describes
an exotic phase since a nonzero value of OSC implies a non-
magnetic order with T breaking.
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From Eqs. �11� and �43b�, and

OSD
lattice =

1

2
�S1 + S2�r · �S1 − S2�r+1 + �r ↔ r + 1� ,

it follows that these two order parameters transform as an
SO�2� doublet:

�OSD
lattice

OSC
lattice� � �cos � − sin �

sin � cos �
��OSD

lattice

OSC
lattice� . �44�

That is, as far as the spin-chirality SO�2� is concerned, OSD
and OSC behave like �S1−S2� and 2�S1�S2�, respectively. In
particular, by the duality D, two order parameters OSD

lattice and
OSC

lattice are interchanged.30

Now let us find the continuum expressions for the above
order parameters. As has been mentioned in Sec. III A, any
local operator on a lattice has an expansion of the following
form:

Olattice � O�x� + ei�x/2N�x� + e−i�x/2N*�x� + �− 1�xO��x� .

�45�

By taking operator-product expansions �OPEs�, we obtain
the expressions of the staggered parts �O�� of OSD

lattice and
OSC

lattice:

OSD
� = i�	�R · 	�L − 
�R · 
�L� and OSC

� = i�	�R · 
�L + 
�R · 	�L� .

�46�

By using Eq. �41�, it is straightforward to verify

�OSD
�

OSC
� � � �cos � − sin �

sin � cos �
��OSD

�

OSC
� � .

As has been mentioned before, the relations B=D and E
=0 define self-dual models, which are invariant under the
continuous rotation U����SO�2�. From the fact that the
above two order parameters transform as an SO�2� doublet, it
readily follows that

�OSD
lattice� = �OSC

lattice� = 0 �47�

for generic models on the self-dual manifold.60

E. Second set of order parameters

It would be interesting to look for the possibility of other
order parameters. Let us restrict ourselves to those which are
�i� spin singlet �that is, spin indices are contracted�, �ii�
Lorentz-invariant �i.e., Lorentz spin=0�, and �iii� have a
scaling dimension unity. Apparently, we have four such op-

erators 	�R·	�L, 
�R·
�L, 	�R·
�L, and 
�R·	�L made up of Majo-
rana bilinears. We may recombine them into two scalars and
two vectors under U���:

scalar: �	�R · 	�L + 
�R · 
�L

	�R · 
�L − 
�R · 	�L,
� �48�

vector: �	�R · 	�L − 
�R · 
�L + i�	�R · 
�L + 
�R · 	�L� ¯ ei�

	�R · 	�L − 
�R · 
�L − i�	�R · 
�L + 
�R · 	�L� ¯ e−i�.
�

�49�

While the latter two have already appeared, the former are
new. Therefore it is suggested that we should add two more
order parameters, which are scalars under the spin-chirality
rotation U���, to complete our analysis. Below, we shall use
the following set of four order parameters:38

OSD
� = i�	�R · 	�L − 
�R · 
�L� ,

OSC
� = i�	�R · 
�L + 
�R · 	�L� ,

OQ
� = i�	�R · 	�L + 
�R · 
�L� ,

ORQ
� = i�	�R · 
�L − 
�R · 	�L� . �50�

As we already know, the spin-chirality SO�2� transforms
the first pair �OSD,OSC� as a doublet, while keeping the sec-
ond �OQ,ORQ� invariant:

U���: �OSD
�

OSC
� � � �cos � − sin �

sin � cos �
��OSD

�

OSC
� � ,

� OQ
�

ORQ
� � � � OQ

�

ORQ
� � . �51�

A similar property holds for the second pair as well. To
see this, let us introduce the following product:38

Ũ��̃� � s1U��̃�s1 = RR��̃�RL�− �̃� , �52�

which is chiral �i.e., left-right asymmetric� and probably non-
local in terms of the original lattice spins. Then, it is straight-
forward to show

Ũ��̃�: �OSD
�

OSC
� � � �OSD

�

OSC
� � ,

� OQ
�

ORQ
� � � �cos �̃ − sin �̃

sin �̃ cos �̃
�� OQ

�

ORQ
� � . �53�

As in the case of U���, we will use the notation D̃� Ũ��̃
=� /2� to denote the second duality. The existence of the
above two dualities �one is nonchiral and the other is chiral�
will be useful in understanding the low-energy physics and
the global phase structure. The transformation properties of
these order parameters under the symmetry operations in
Sec. III B are summarized in Table I.

However, this is not the end of the story. For the phases
denoted by Q and RQ, it will turn out that the q=� �i.e.,
period-2� components are not sufficient for the full charac-
terization of the phases. This point will be discussed in Sec.
IV D in conjunction with the ground-state degeneracy.
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F. Interactions in the continuum limit

Now that we have identified the order parameters, we
proceed to constructing interactions in the low-energy effec-
tive action. Basically, we have three different contributions
to the interactions. The first one comes from the uniform
�q=0� terms in the continuum expressions of the spin opera-
tors �see Eq. �33�� while the other two from the contraction
of the ±2kF terms or of two 4kF terms �kF=� /4�.

By using the Majorana expressions �34a� and �34b� for
the spin operators, we can rewrite the nonoscillatory part of
the seven interactions �4a�–�4g�:

V1
0 = �	�R · 	�L�2 + �
�R · 
�L�2 + �	�R · 
�L�2 + �
�R · 	�L�2, �54a�

V2
0 = �	�R · 	�L�2 + �
�R · 
�L�2 − �	�R · 
�L�2 − �
�R · 	�L�2, �54b�

V3
0 = 2��	�R · 	�L��
�R · 
�L� − �	�R · 
�L��
�R · 	�L�� , �54c�

V4
0 = 2��	�R · 	�L��
�R · 
�L� + �	�R · 
�L��
�R · 	�L�� , �54d�

V5
0 = 2�	�R · 	�L − 
�R · 
�L��	�R · 
�L + 
�R · 	�L� , �54e�

V6
0 = −

i

2
�	�R · 
�R + 	�L · 
�L� , �54f�

V7
0 = −

1

2
�	�R · 
�R��	�L · 
�L� . �54g�

The superscripts “0” denote terms coming from the uniform
�q=0� components of the �local� generators. Actually, prod-
ucts of two nA components contribute the same �but with a
permuted order� terms to the interactions V1 , . . . ,V7, which
can be absorbed by the redefinition of the bare couplings. For
this reason, we will suppress the superscripts “0” and con-
sider the interaction

V = �
i=1

7

giVi �55�

in what follows. These expressions are consistent with the
transformation properties �12a�–�12g� under U��� and the
discrete symmetries of the lattice model �see Eqs. �35�–�39��.
Therefore we may conclude that with an appropriate choice
of bare couplings the above seven interactions will describe

�weak� perturbations from the SU�4�-invariant model.
It is also very suggestive to rewrite the main part of the

interaction as �g6=g7=0�:

V = g1V1 + g2V2 + g3V3 + g4V4 + g5V5

=
1

2
�g1 + g2 + g3 + g4��	�R · 	�L + 
�R · 
�L�2

+
1

2
�g1 − g2 + g3 − g4��	�R · 
�L − 
�R · 	�L�2

+
1

2
�g1 + g2 − g3 − g4��	�R · 	�L − 
�R · 
�L�2

+
1

2
�g1 − g2 − g3 + g4��	�R · 
�L + 
�R · 	�L�2 + g5H5,

�56a�

which can be rewritten into a more convenient form in terms
of the order parameters:

V = −
1

2
�g1 + g2 + g3 + g4��OQ

��2

−
1

2
�g1 − g2 + g3 − g4��ORQ

� �2

−
1

2
�g1 + g2 − g3 − g4��OSD

� �2

−
1

2
�g1 − g2 − g3 + g4��OSC

� �2 − g5OSD
� OSC

� . �56b�

From this, we may expect that one of the four competing
quantum phases is selected according to the values of the
seven couplings g1 , . . . ,g7 in the low-energy limit. In order
to investigate the low-energy behavior of the seven cou-
plings, we shall carry out a RG analysis in the next section.

IV. RG ANALYSIS AND FOUR COMPETING ORDERS

A. � functions

As has been shown in the last section, we have seven
interactions around the SU�4� �or SO�6�� fixed point. Since
we are interested in the spontaneous breaking of time-
reversal symmetry, we will suppress the H5 interaction:61

g5=0. The sixth interaction H6 is a kind of magnetic field or

TABLE I. Four order parameters and discrete symmetries. Note that under s1, D, and D̃ the four order
parameters transform onto each other.

Order param.

Symmetry Duality

T T1-site P12 PS PL s1 D D̃

OSD
� +1 −1 −1 −1 +1 OQ

� OSC
� inv.

OSC
� −1 −1 −1 −1 +1 ORQ

� OSD
� inv.

OQ
� +1 −1 +1 −1 +1 OSD

� inv. ORQ
�

ORQ
� +1 −1 +1 +1 −1 OSC

� inv. OQ
�
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chemical potential �see Sec. II D� and may be incorporated
after physics for g6=0 is understood. For these reasons, we
first consider the model with E=F=0:

H = HSO�6� + V . �57�

At the one-loop level, the calculation of the RG � func-
tion reduces to that of OPE defined below:62

Hi�z, z̄�H j�w,w̄� �
Cij

k

�z − w�2
Hk�w,w̄� �i, j = 1,2,3,4,7� .

�58�

The nonzero OPE coefficients listed in Appendix E enable us
to write down the RG � function:38

ġ1 = g1
2 + g2

2 + 5g3
2 + g4

2,

ġ2 = 2g1g2 + 6g3g4 + g4g7,

ġ3 = 6g1g3 + 2g2g4,

ġ4 = 2g1g4 + 6g2g3 + g2g7,

ġ7 = − 16�g1g3 − g2g4� , �59�

where dots denote the derivative with respect to the RG time:
ġ=dgi / �d ln L�.

It is interesting to observe that this set of RG equations
�RGEs� determines a gradient flow in a five-dimensional
space of coupling constants. In fact, if we make a change of
variables:

h1 = g1, h2 = g2, h3 = �2g3 +
1

�128
g7,

h4 = g4, h5 =� 5

128
g7, �60�

the RGE can be derived as

ḣi = −
�V

�hi

from a single RG potential:

V�h1,h2,h3,h4,h5�

= −
1

3
h1

3 − h1h2
2 −

5

2
h1h3

2 − h1h4
2 −

1

2
h1h5

2

+ �5h1h3h5 − 3�2h2h3h4 − �10h2h4h5. �61�

A similar property was pointed out in quasi-one-dimensional
electron systems63 to explain the simple structure of the
phase diagrams.

B. Symmetries of � functions

1. Sign-change and permutation symmetries

The above set �59� of � functions is invariant under dis-
crete symmetries �sign change and permutations�. To be con-

crete, the RGE is invariant under the s1 transformation �see
Eq. �40��:

�g1,g2,g3,g4,0,0,g7� ——→
s1

�g1,g2,− g3,− g4,0,0,− g7� .

�62�

Of course, the spin-chirality duality D maps a set of cou-
plings as

�g1,g2,g3,g4,0,0,g7�→
D

�g1,g4,g3,g2,0,0,g7� �63�

and keeps the self-dual manifold g2=g4 invariant. Combin-
ing this with s1, we obtain for the second duality:

�g1,g2,g3,g4,0,0,g7�→
D̃

�g1,− g4,g3,− g2,0,0,g7� . �64�

For the second duality D̃, the self-dual manifold is charac-
terized by

g2 = − g4. �65�

2. Self-dual manifolds

The existence of the two duality transformations D and D̃
manifests itself in the invariance of the � functions under the
interchange: g2↔ ±g4 �note that the time-reversal breaking
term g5 is already suppressed�. That is, the RG flow is sym-
metric with respect to the four-dimensional self-dual mani-
folds defined by g2= ±g4. Since it follows from the � func-
tion �59� that

�ġ2 � ġ4� = �2g1 � 6g3 � g7��g2 � g4� ,

systems which are self-dual initially will remain so even af-
ter renormalization. In fact, the original lattice model with
g2=g4 has a continuous symmetry U���—the spin-chirality
rotation by an arbitrary angle �—and the Mermin-Wagner-
Coleman theorem guarantees the condition g2=g4 is pre-
served for all orders of perturbation. On this self-dual mani-
fold, the � function simplifies to

ġ1 = g1
2 + 2g2

2 + 5g3
2,

ġ2 = g2�2g1 + 6g3 + g7� ,

ġ3 = 6g1g3 + 2g2
2,

ġ7 = − 16�g1g3 − g2
2� . �66�

This reduced set of � functions has a further invariant mani-
fold characterized by SU�3� symmetry:

g1 = g3,

where we have only three coupled equations:

ġ1 = 6g1
2 + 2g2

2,

ġ2 = 8g1g2 + g2g7,

ġ7 = − 16�g1
2 − g2

2� . �67�
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3. Other invariant manifolds

Furthermore, by adding and subtracting equations in Eq.
�59�, we obtain several invariant manifolds:

Spin-orbital (SO) manifold.

g1 = g2, g3 = g4, g7 = 0. �68�

This means that as far as we consider the SO model �see Eq.
�16��, the rung-rung four-body interaction will never be gen-
erated radiatively on the manifold. In fact, the underlying
SU�2��SU�2� �SO�3�	�SO�3�
� symmetry guarantees that
it persists even in all orders of perturbation expansion. On
this manifold, only two couplings g1 and g3 suffice for de-
scribing the low-energy physics and the RG � functions sub-
stantially simplify to the following two coupled equations:

ġ1 = 2g1
2 + 6g3

2, ġ3 = 8g1g3. �69�

When g3�0 and g3�g1 �which may be interpreted as the
SO model with J�K /4. For a detailed discussion of the SO
model, see Ref. 57.�, the system is attracted in the infrared
limit by an asymptotic trajectory:

g1
*�=g2

*� = − g3
*�=− g4

*�

�see a region shown by darker gray in Fig. 3� and breaks the
translational symmetry spontaneously.57 The exact ground
state46 at K=4J /3 and the analysis for small K�J� �Ref. 25�
are consistent with the above result. The region g1�0, g3
� �g1� �a portion of Fig. 3 marked by lighter gray� is the
basin of the gapless SU�4�1 fixed point.

Dual spin-orbital (dSO) manifold.

g1 = g4, g2 = g3, g7 = 0. �70�

This is the dual �D� partner of the above invariant manifold
obtained by applying D to the SO model and its existence is

guaranteed by a hidden �dual� SU�2��SU�2� symmetry of
the model. Now two couplings g1 and g2 describe the system
and, again, � functions reduce to the set of equations �69�
with g3 being replaced with g2. For g2�0 and g2�g1, the
system flows toward another asymptotic trajectory:

g1
*�=g4

*� = − g2
*�=− g3

*� ,

and, in this case, breaks time-reversal symmetry T �see the
next subsection for the detail�. The basin of SU�4�1 fixed
point of the SO manifold is now mapped onto g1�0, g2
� �g1�. In terms of lattice models, this corresponds to the
model Hamiltonian

HdSO =
1

2
JH1 +

1

8
KH2 +

1

8
KH3 +

1

2
JH4

with J�K. Similarly, we have two more invariant manifolds,

g1 = − g2, g3 = − g4, g7 = 0,

g1 = − g4, g2 = − g3, g7 = 0, �71�

on which the full RGE reduces to two coupled equations.
Four RG-invariant lines �rays� defined by the intersections
among these invariant manifolds �hyperplanes� will turn out
to correspond to four dominant competing phases.

Away from these invariant manifolds, the rung-rung four-
body interaction g7 will be generated in the course of renor-
malization even though it is absent initially.

C. Asymptotic form of RG flow

The set of RG � functions �59� is complicated and com-
plete analysis of it is not so easy. We numerically integrated
the equations and found that the RG flow exhibited a striking
feature in the low-energy limit. To see this more closely, we
apply an ansatz proposed by Lin, Balents, and Fisher15 in the
study of a half filled two-leg Hubbard ladder.

Since only marginal interactions appear in the � func-
tions, a natural ansatz valid for the infrared asymptotics may
be15

gi�t� =
Gi

t0 − t
�i = 1,2,3,4,7� , �72�

where the constant t0 marks the crossover point where the
weak-coupling perturbation breaks down. Plugging these
into the RG equations and requiring consistency, we have a
set of nonlinear equations which determines the IR asymp-
totics. We found various solutions and among them the fol-
lowings are relevant for our analysis:

Self-dual.

�G1,G2,G3,G4,G7� = �1

6
,0,−

1

6
,0,

4

9
� �I� , �73a�

�G1,G2,G3,G4,G7� = �1

6
,0,

1

6
,0,−

4

9
� �II� . �73b�

The meaning of these rays will become clear if we plug Eqs.
�73a� and �73b� into Eq. �56b�:

FIG. 3. �Color online� RG flow for the SO and dSO models. The
origin �shown as SU�4� FP� corresponds to the level-1 SU�4� WZW
model and a line g1=g3 to self-dual models �SU�4� symmetric, in
this case�. A dashed line roughly corresponds to a path across the
SU�4� Sutherland model �extended massless→SU�4�→staggered
dimer �SD�� discussed in literature �e.g., Ref. 57�. An asymptotic
trajectory in the lower-right portion �highlighted by a thick arrow�
is responsible for the spontaneous breakdown of translational �for
SO model� and time-reversal �for dSO model� symmetries.
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�I�: −
1

6
gI

*��OSD
� �2 + �OSC

� �2� +
4

9
gI

*H7, �74a�

�II�: −
1

6
gII

* ��OQ
��2 + �ORQ

� �2� −
4

9
gII

*H7. �74b�

Therefore the above two rays �I� and �II� may be thought of
as corresponding to SD-SC- and Q-RQ transitions, respec-
tively.

From the argument in Sec. II, it is obvious that the latter
case �II� has SU�3� symmetry, while the SU�3� symmetry of
the former is hidden and appears only after the particle-hole
transformation for the left movers is applied �see Sec. V A�.
Also it is worth noting that they are related to each other by
the Ising duality s1.

SO(6)-symmetric rays.

�G1,G2,G3,G4,G7� = �1

8
,
1

8
,−

1

8
,−

1

8
,0� �SD� , �75a�

�G1,G2,G3,G4,G7� = �1

8
,−

1

8
,−

1

8
,
1

8
,0� �SC� , �75b�

�G1,G2,G3,G4,G7� = �1

8
,
1

8
,
1

8
,
1

8
,0� �Q� , �75c�

�G1,G2,G3,G4,G7� = �1

8
,−

1

8
,
1

8
,−

1

8
,0� �RQ� . �75d�

Note that the latter two are invariant both under spin chirality
SO�2� and under SU�3�, while the former two are not. It is
important to note that the low-energy effective Hamiltonians
for these rays assume the following simple forms:

HA = HSO�6� − gA
*�OA

��2 �A = Q, RQ, SD,and SC� .

�76�

Semiclassical argument based on Eq. �56b� tells us that these
symmetric rays correspond to the four competing phases
where one of the order parameters has a nonzero expectation
value: �OA

���0. In particular, from Table I, it follows that a
spin-disordered ground state with broken T is realized along
the ray “SC.” Furthermore, we can show that all these rays
correspond to IR-massive flows along which translational
symmetry is broken and the SO�6� symmetry is restored as-
ymptotically �see next section�.

Transitions among dominant phases.

G1 = G2 =
1

2
, G3 = G4 = 0, G7 = 0 �Q ↔ SD� , �77a�

G1 = − G2 =
1

2
, G3 = G4 = 0, G7 = 0 �RQ ↔ SC� , �77b�

G1 = G4 =
1

2
, G2 = G3 = 0, G7 = 0 �Q ↔ SC� , �77c�

G1 = − G4 =
1

2
, G2 = G3 = 0, G7 = 0 �RQ ↔ SD� . �77d�

None of these restores the original SO�6� symmetry. Actu-
ally, these rays correspond to transitions among the above
four dominant phases.

Case of four competing orders.

G1 = 1, G2 = G3 = G4 = G7 = 0. �78�

This ray describes nontrivial quantum criticality resulting
from the competition among four different orders, which will
be discussed in Sec. VI.

The point here is that in the low-energy limit our system
is asymptotically characterized only by a single �diverging�
coupling constant15,63 �1/ �t0− t�.

D. Four dominant phases

1. SO(6) restoration

To illustrate how SO�6� symmetry, which is explicitly
broken in the bare action �57�, is restored along the four rays
�i.e., SD, SC, Q, and RQ�, we take the two rays Q and SD.
From the continuum expressions �56a� and �56b�, it is obvi-
ous that the model along the ray Q is explicitly SO�6� invari-
ant:

HQ = HSO�6� − g*�OQ
��2 = HSO�6� + g*�	�R · 	�L + 
�R · 
�L�2.

�79�

This is nothing but the Hamiltonian of the SO�6� Gross-
Neveu model.64 This model is integrable. Its spectrum is
known65,66 to consist of the fundamental fermion with mass
M together with a kink of mass m=M /�2. The Z2 symmetry
OQ

� ↔−OQ
� is broken spontaneously and, as a result, we have

a finite expectation value �OQ
���0.

The application of the Ising duality s1 �Eq. �40�� to this
Hamiltonian HQ takes us to another ray SD and the associ-
ated Hamiltonian HSD since HSO�6��HSO�6� and OQ

� �OSD
� .

A similar argument applies to the other pair �HRQ and HSC�
as well.

Moreover, the spin-chirality duality D �D̃� maps HSD

�HQ� onto HSC �HRQ�. These facts imply that all these four
low-energy Hamiltonians HQ, HRQ, HSD, and HSC can be
transformed back to the SO�6�-invariant one �79� by apply-
ing symmetry operations of O�6�L�O�6�R. This is the rea-
son why we named the asymptotic rays �75a�–�75d� “SO�6�
symmetric.” The relationship among these four phases is
summarized in Fig. 4.

2. Ground-state degeneracy

Now we know that four competing �gapped� phases exist
around the SU�4� point and that they are mapped onto each

other by the two discrete transformations D and D̃. From
this, we may conclude that all these phases have the same
ground-state degeneracy �from the exact solution46 for the
SD phase, it might seem natural that we should have the
degeneracy 2 for the others as well�. But there is a pitfall
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here; the discrete transformation D̃ that relates SD to Q is not

a local one and there is no reason to believe that D̃ maps a
phase onto another one with the same ground-state degen-
eracy. A typical example of this kind of nonlocal transforma-
tion is the so-called Kennedy-Tasaki transformation,67 which
maps a unique �infinite-volume� ground state onto fourfold
degenerate ones.

To find the correct answer, we first note that Dirac fermi-
ons used to construct our SU�4� Hamiltonian �see Appendix
C� are expressed as exponentials of boson operators and that
the semiclassical bosonic ground states should be considered
modulo the following gauge-equivalence:

�a,�,L/R � �a,�,L/R + ��Na,�,L/R �Na,�,L/R � Z� , �80�

which keeps the bosonic expressions of the fermions �B2�
unchanged.

We carefully counted the number of inequivalent ground
states for all four cases Q, SD, SC, and RQ. Although the
calculation was slightly more complicated than that in Ref.
15, the procedure was essentially the same �see Appendix F
for details� and the results are summarized as �see also
Table II�

�i� Q phase: Four ground states; 2kF part of �Xr
AXr+1

A � is
non vanishing �a kind of quadrumerized phase� and period-4
ground states appear;

�ii� SD phase: Two ground states; 2kF part is vanishing
�staggered phase� and the ground states have a period 2;

�iii� SC phase: Two ground states; 2kF part is vanishing;
�iv� RQ phase: Four ground states; 2kF part is nonvanish-

ing �period-4 density wave of the pseudospin �S1,r ·S2,r��.
For some reasons, the period-4 �q=� /2� contribution in

the order-parameter correlations vanishes for the SD and SC
phases, as is expected from the exact ground state46 for
which we have �OrOr+1�= �−1�r3/4 �when the amplitude of
the order parameter is maximal�. On the other hand, we have
the 2kF components in the Q and RQ phases. This implies
that the 4kF component is not sufficient to fully characterize
the latter two phases.

So far, the nature of the ground states appearing in the Q
or the RQ phase is not so clear. This is mainly because the
transformation s1 relating OSD

� to OQ
� is nonlocal and we do

not know the microscopic �or lattice� expressions for OQ,RQ
� .

By symmetry arguments, we can restrict the possible forms
of lattice operators corresponding to OQ

�. We have five build-
ing blocks for the lattice order parameters all of which have
�at least for the leading contributions� the same 4kF �or q
=�� term OQ

� in the continuum. Exactly on the SU�4�-
invariant line, these five will condense with the same ampli-
tude to describe a phase with SU�4� quadrumerization �note
that we have four-fold degeneracy�. Unfortunately, our con-
tinuum approach cannot tell anything about which of the five
will become dominant when we move away from the SU�4�
manifold.

Similarly, since the 4kF part of S1,r ·S2,r is written as ORQ
� ,

the RQ phase may be thought of as a density-wave phase of
the pseudospin Sz. By using the analogy in Sec. II D 2, this is
nothing but the bosonic charge-density wave state with pe-
riod 4.

V. PHYSICS OF SELF-DUAL MODELS AND PHASE
TRANSITIONS

Now that we have identified four dominant phases in our
SO�6� problem, the next question to ask would be the quan-
tum phase transitions among them. In this section, we dis-
cuss the nature of the phase transition between SD and SC
phases as well as the Q-RQ transition. As described in Sec.
IV C, the transition should belong to the self-dual manifolds
�g2= ±g4� and we first present a fully quantum description of
the low-energy physics along these manifolds.

A. SU„3ÃU„1…… bosonization

According to the analysis presented in Sec. IV C, the one-
loop RG flow on the self-dual manifold, which is invariant

under the spin-chirality rotation U��� or Ũ���, is attracted to
one of the following two special rays: �I�: g1=−g3=gI

* /6,
g2=g4=0, g7=4gI

* /9, and �II�: g1=g3=gII
* /6, g2=g4=0, g7

=−4gII
* /9 with gI,II

* �0. Along these rays, the low-energy
field theory reads as follows:

FIG. 4. �Color online� Relationship among the four dominant
phases. Ratio of the couplings g1, g2, g3, and g4 along each sym-
metric ray is shown.

TABLE II. Four dominant phases and the ground-state degen-
eracy. In all four phases, translation symmetry is broken.

Phase

GS degeneracy and symmetry

Degen. T P12 PS PL

SD 2 +1 −1 −1 +1

SC 2 −1 −1 −1 +1

Q 4 +1 +1 −1 +1

RQ 4 +1 +1 +1 −1
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HIR
�I� = HSO�6� +

gI
*

6
��	�R · 	�L − 
�R · 
�L�2 + �	�R · 
�L + 
�R · 	�L�2�

−
2gI

*

9
�	�R · 
�R��	�L · 
�L� , �81a�

HIR
�II� = HSO�6� +

gII
*

6
��	�R · 	�L + 
�R · 
�L�2 + �	�R · 
�L − 
�R · 	�L�2�

+
2gII

*

9
�	�R · 
�R��	�L · 
�L� . �81b�

It is interesting to observe that the two low-energy field theo-
ries HIR

�I� and HIR
�II� interchange themselves under the Ising

duality symmetry s1 �Eq. �40��.
As has been shown in Sec. IV C, the low-energy effective

Hamiltonians �81a� and �81b� describe the competition be-
tween two different orders �see Eqs. �73a� and �73b��: the
staggered dimerized OSD

� and the staggered scalar chirality
OSC

� orders for the model HIR
�I� �Eq. �81a��, and the two qua-

drumerized phases OQ
� and ORQ

� for the model HIR
�II� �Eq.

�81b��. The main question concerns the nature of the quan-
tum phase transitions that result from the competition be-
tween these orders �OSD

� ↔OSC
� for case I and OQ

� ↔ORQ
� for

case II�. In this section, we present a full quantum descrip-
tion to this issue.

The key observation, which will be crucial in the follow-
ing analysis, is that the low-energy theories �81a� and �81b�
display a hidden symmetry which is not SU�2��U�1� but, in
fact, a larger U�3� symmetry. In the following, we are going
to discuss only the case of the first model �81a�, i.e., the
nature of the phase transition between the staggered dimer-
ized and the scalar chirality phases. The physical properties
of the second model �81b� can then be derived readily by
applying the Ising duality symmetry s1 �40�.

In the following analysis, it would be convenient to com-
bine three pairs of Majorana fields 	L/R

a and 
L/R
a to form

three Dirac fermions �a,L/R:

�a,R =
	R

a + i
R
a

�2
, �a,L =

	L
a − i
L

a

�2
, �82�

with a=1,2 ,3. The reason for this left-right asymmetric defi-
nition is that SU�3� symmetry is clear in this notation. The
symmetric notation will be useful in describing the second
ray �II� �Eq. �73b� or the model �81b��.68

From Eq. �82�, it is straightforward to express the order
parameters �50� in terms of these Dirac fermions:

OQ
� = i�

a=1

3

��a,R�a,L + �a,R
† �a,L

† � ,

ORQ
� = �

a=1

3

�− �a,R�a,L + �a,R
† �a,L

† � ,

OSD
� = i�

a=1

3

��a,R�a,L
† + �a,R

† �a,L� ,

OSC
� = �

a=1

3

��a,R�a,L
† − �a,R

† �a,L� . �83�

In this notation, two order parameters OQ
� and ORQ

� , which
are invariant under U���, transform like “Cooper pairs,”
while OSD

� and OSC
� look like the density operators. If we had

adopted the left-right symmetric definition instead of Eq.
�82�, OSD

� and OSC
� would have behaved like the Cooper

pairs. This analogy can also be revealed by mentioning the
expression of the spin-chirality rotation U��� �Eq. �41�� and
the Ising duality symmetry s1 �Eq. �40�� on these Dirac fer-
mions:

�a,R ——→
U���

e+i��/2��a,R, �a,L ——→
U���

e−i��/2��a,L, �84a�

�a,R ——→
Ũ��̃�

e−i��̃/2��a,R, �a,L ——→
Ũ��̃�

e−i��̃/2��a,L, �84b�

�a,R ——→
s1

�a,R
† , �a,L ——→

s1

�a,L. �84c�

The appearance of the left-right asymmetric expressions for
U��� is just an artifact of our definition �82�; if the symmetric
definition had been used, Eqs. �84a� and �84b� would have
been interchanged. One thus observes that the spin-chirality
rotation acts as a pseudocharge U�1� symmetry on these fer-
mions.

The next step is to express the low-energy field theory
corresponding to model �81a� in such a way that U�3� sym-
metry of our problem is manifest. To this end, it is useful to
introduce the chiral SU�3�1 currents built from the three
Dirac fermions:

JR/L
A = �

a,b
�a,R/L

† Tab
A �b,R/L, �85�

where the 3�3 matrices TA, A=1, . . . ,8 are the generators of
SU�3� in the fundamental representation 3, which are nor-
malized so that Tr�TATB�=�AB /2. Using the identity

�
A

Tab
A Tcd

A =
1

2
��ad�bc −

1

3
�ab�cd� �86�

and the definition �82�, one obtains the following identity:

�
A

JR
AJL

A =
1

8
��	R · 	L − 
R · 
L�2 + �	R · 
L + 
R · 	L�2�

−
1

6
�	R · 
R��	L · 
L� . �87�

We thus deduce that the low-energy field theory �81a� asso-
ciated to the ray �I� exhibits an exact U�3� symmetry:

HIR
�I� = − iv�

a=1

3

��a,R
† �x�a,R − �a,L

† �x�a,L� +
4g*

3 �
A

JR
AJL

A.

�88�

Noting the well-known fact35 that the three massless Dirac
fermions �the first term� can be bosonized in terms of a
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single scalar field and the above SU�3�1 currents, we can
further recast the above Hamiltonian as

HIR
�I� =

v
2

���x��2 + ��x��2� +
�v
2 �

A=1

8

�JR
AJR

A + JL
AJL

A�

+
4g*

3 �
A=1

8

JR
AJL

A, �89�

where � and � are the U�1� free bosonic field and its dual,
respectively. There is a “spin-charge separation” between
the “charge” sector described by the Tomonaga-Luttinger
�TL� model �first term in Eq. �89�� and the SU�3� non-
Abelian “spin” sector described by the second and third
term—the SU�3� Gross-Neveu �GN� model. The appearance
of SU�3� is not so surprising; as has been mentioned in Sec.
II, we can embed SU�3� symmetry into the triplet �spin-1�
sector of the original ladder models. Therefore we may con-
clude that the SU�3� sector describes the dynamics of the
�real� spin degrees of freedom. The physical meaning of the
remaining “charge” sector will be clarified below by using a
slightly different bosonization scheme.

As is known from the exact solution,69 for g*�0 a spec-
tral gap �spin gap� is formed in the spin �SU�3�� sector and
the low-energy physics is dictated by massive SU�3� spinons
and antispinons which transform like the fundamental repre-

sentations 3 and 3̄, respectively. The low-energy field theory
�89� displays, nevertheless, a c=1 quantum criticality due to
the decoupled charge degrees of freedom which are de-
scribed by a massless free boson field �TL model� at the
free-fermion point. Therefore the quantum phase transition
between the staggered dimerized phase and the scalar chiral-
ity phase generically continuous and belongs to the c=1 uni-
versality class.

To clarify the role of the charge U�1� ��� and the spin
SU�3� sector, we apply the Abelian bosonization to the
Hamiltonian �88�. As in Appendix B, three bosonic fields are
introduced to bosonize the three Dirac fermions as follows:

�a,R =
�̃a

�2�a0

exp�i�4��a,R� ,

�a,L =
�̃a

�2�a0

exp�− i�4��a,L� . �90�

Since we have adopted the left-right asymmetric definition in
the above equations to bosonize our three Dirac fermions,
the spin-chirality rotation simply reads �see Eq. �84a��

�a,L/R � �a,L/R +
�

4��
�a = 1,2,3� . �91�

The next step is to switch to a new basis where the U�1�
and the SU�3� degrees of freedom are separated from each
other:

� =
1
�3

��1 + �2 + �3� ,

�s =
1
�2

��1 − �2� ,

�f =
1
�6

��1 + �2 − 2�3� . �92�

The two bosonic fields �s and �f are compactified fields with
special radii Rs,f so as to capture the underlying SU�3� sym-
metry of the problem:

�s,f � �s,f + 2�Rs,f , �93�

with Rs=1/�2� and Rf=�3/2�. The spin-chirality transfor-
mation U��� affects only the charge sector:

� � � +� 3

4�
�, � � � , �94a�

while the dual spin chirality Ũ��̃� changes only the dual field
�:

� � �, � � � +� 3

4�
�̃ . �94b�

Now the physical meaning of the charge fields � and � is
clear; the field � �respectively �� describes the angular �or,
phase� fluctuation of the doublet �OSD

� ,OSC
� � �respectively

�OQ
� ,ORQ

� ��. In the bosonization approach, two fields � and
� are conjugate �or, dual� to each other. Therefore two dou-
blets �OSD

� ,OSC
� � and �OQ

� ,ORQ
� � are mutually dual objects

which are analogous to the Cooper pairs and the density-
wave operators in strongly correlated electron systems.

Using this Abelian bosonization, it is then possible to
write down the SU�3� current-current interaction in Eq. �88�
in terms of the bosonic fields:

�
A

JR
AJL

A =
1

2�
��x�s,R�x�s,L + �x�f,R�x�f,L�

−
1

2�2a0
2 cos��2��s�cos��6��f�

−
1

4�2a0
2 cos��8��s�

=
1

2�
��x�s,R�x�s,L + �x�f,R�x�f,L�

−
1

8
��OSD

� �2 + �OSC
� �2� . �95�

A straightforward semiclassical analysis of the potential
part of Eq. �95� together with the identification �93� show
that the ground state in the SU�3� spin sector is threefold
degenerate with expectation values
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��s� = 0, ��f� = 0,

��s� =��

2
, ��f� =��

6
,

��s� = 0, ��f� = 2��

6
. �96�

Now the role of the current-current interaction �JR
AJL

A is
clear. For the semiclassical vacuum configurations ��s� and
��f�, the modulus of the order-parameter doublet �OSD

� ,OSC
� �

is given by

��OSD
� �2 + �OSC

� �2� =
6

�2a0
2 .

That is, fluctuations of the doublet in the radial direction is
suppressed by the marginally relevant interaction �AJR

AJL
A.

The only remaining massless fluctuations in the azimuthal
direction are described by the TL �or Gaussian� model �the
first term in Eq. �89��.

It is then interesting to express the order parameters of
Eq. �83� in terms of these bosonic fields:

OQ
� = −

1

�a0
�2 cos��2��s�cos��4�/3� + �2�/3�f�

+ cos��4�/3� − �8�/3�f�� , �97a�

OSD
� =

1

�a0
�2 cos��2��s�cos��4�/3� + �2�/3�f�

+ cos��4�/3� − �8�/3�f�� , �97b�

OSC
� =

1

�a0
�2 cos��2��s�sin��4�/3� + �2�/3�f�

+ sin��4�/3� − �8�/3�f�� , �97c�

ORQ
� = −

1

�a0
�2 cos��2��s�sin��4�/3� + �2�/3�f�

+ sin��4�/3� − �8�/3�f�� . �97d�

It is straightforward to observe that for the type-I self-dual
model, i.e., for the model described by the field theory �81a�,
one has �OD

��= �OSD
� �= �OSC

� �= �ORD
� �=0 due to the quantum

criticality of the charge degrees field in Eq. �89�. From Eqs.
�97a�–�97d�, we also deduce that the first doublet OSD

� and
OSC

� has correlation functions decaying as x−2/3, i.e., has
quasi-long-range coherence, whereas the second one OQ

� and
ORQ

� is exponentially decaying due to strong quantum fluc-
tuations. The situation is completely reversed for the second
�type-II� self-dual model.

B. Small deviation from self-dual models

Now let us discuss the effect of small deviation from the
self-dual model �81a�. The deviation may be incorporated by

adding the following symmetry-breaking perturbation to the
Hamiltonian �89�:

HSB = ��H2 − H4� = ���	�R · 	�L − 
�R · 
�L�2

− �	�R · 
�L + 
�R · 	�L�2� . �98�

We can also express this symmetry-breaking perturbation in
terms of the three Dirac fermions using Eq. �82�:

HSB = 2��
a,b

��a,R�a,L
† �b,R�b,L

† + �a,R
† �a,L�b,R

† �b,L� .

�99�

The effect of this term can be elucidated by means of the
Abelian bosonization �90� of the Dirac fermions. Moving to
the basis �92�, we obtain the bosonized form of the
symmetry-breaking term �98�:

HSB =
− 2�

�2a0
2 �cos��2��s�cos�2�4�/3� − �2�/3�f�

+ cos�2�4�/3� + �8�/3�f�� . �100�

The stability of the critical line described by the model �89�
with respect to the small perturbation �100� with ���1 can
be investigated by a naive semiclassical analysis: for ���1,
the bosonic fields �s,f are still frozen to one of the ground-
state configurations ���s� , ��f�� and the non-abelian spin de-
grees of freedom are still gapfull.

The only difference from the previous case is that here we
have couplings between � and �s,f and they may shift the
�semiclassical� values ���s� , ��f�� from those obtained for B
=D �Eq. �96��. However, as far as the value of � is small
enough, we may expect that �s,f still are pinned at the same
values. Assuming that �s,f are locked to, for instance, the first
set in Eq. �96�, we deduce that the U�1� charge degrees of
freedom acquire now an extra term:

Hc �
v
2

���x��2 + ��x��2� −
4�

�2a0
2 cos�2�4�/3�� .

�101�

The low-energy field theory for the charge degrees of free-
dom takes thus the form of a quantum sine-Gordon model.
The interaction has scaling dimension �=4/3�2 so that the
perturbation is relevant and the charge degrees of freedom
acquire a gap. For ��0 i.e., g2�g4 ���0, i.e., g2�g4�, the
U�1� bosonic field is locked on ���=0 or ���=�3� /2 ����
=�3� /4 or ���=3�3� /4�. Using the identifications
�97a�–�97d�, we then deduce �OSD

� ��0, and �OQ
��= �OSC

� �
= �ORQ

� �=0 for ��0, i.e., for g2�g4, so that one enters the
staggered dimerized phase SD. In contrast, when ��0, i.e.,
g2�g4, we have �OSC

� ��0, and �OQ
��= �OSD

� �= �ORQ
� �=0 and

the scalar chirality �SC� phase is stabilized by the small
symmetry-breaking term. A similar result can be obtained by
considering the second ground state ��s�=�� /2, ��f�
=�� /6. In Fig. 5, we illustrate how the fluctuation of the
order parameter doublet is frozen as the symmetry is
lowered.
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Finally, we remark that a similar approach can be appli-
cable also to the competition between the quadrumerized
phase �Q� and the RQ phase described by the low-energy
field theory �81b�. Repeating the same steps as before, we
see that the theory obtained by making the replacement
�↔� in Eq. �101� dictates the competition.

C. On the possibility of umklapp

In the previous subsection, we have seen that on the self-
dual manifold the enlarged U�1� symmetry forbids the cosine
interactions with explicit � dependence from appearing in
the low-energy Hamiltonian. However, we are on a lattice
and any interactions compatible with both the U�1� symme-
try and the discrete lattice symmetries are allowed in prin-
ciple. Now let us discuss briefly about the possibility of a
gap generation by such umklapp interactions.

To this end, it is necessary to know how the discrete one-
site translation is realized in terms of our bosons. Apparently,
the one-site translation concerns only the charge boson �
and its dual �. In order for the expression of the translation
�see Eq. �36��

�	�L,
�L,	�R,
�R� � �	�L,
�L,− 	�R,− 
�R�

written in terms of the Majorana sextet to be translated cor-
rectly to a bosonic expression, we should take

� � � +�3�

4
, � � � −�3�

4
. �102�

From Eqs. �97a�–�97d�, it is easy to check that it indeed
changes the sign of four order parameters OA

� �note our order
parameters are staggered ones�. Using this, we can obtain a
selection rule for the umklapp.

In what follows, we shall look for terms which �i� does
not contain a � field and are �ii� translationally invariant. To
this end, we note that the charge bosons � and � enter into
the expressions of �chiral� Dirac fermions �a,L/R like

�a,R � ei����a−�a� � ei��/3��−��+¯,

�a,L � e−i����a+�a� � e−i��/3��+��+¯,

where the ellipses denote the contributions from �s ��s� and
�f ��f�. In particular, Cooper pairs are U�1� invariant and
will take the following form:

�a,R�b,L � e−i�4�/3�+¯.

Since an operator

��a,R�b,L�N � e−i�4�/3N�+¯

acquires a phase N� after the one-site translation, the integer
N should be even. This gives us the first constraint.

However, this is not the whole story. In general, interac-
tions constructed this way will contain not only �s and �f but
also their duals �s,f which are not pinned by the interaction
�JR

AJL
A; if these interactions include the dual fields they will

be suppressed by strong quantum fluctuations �as was
pointed out by Schulz50 in the context of spin chains�. For
this reason, we have to look for combinations with �i� N
=even and �ii� no explicit �s ��f� dependence �these interac-
tions will be generated by perturbations even if they do not
exist in the bare Hamiltonian�. By a direct enumeration, we
checked that no such interactions appear up to N=4. For N
=6, we have several combinations, e.g.,

��1,R�1,L���2,R�2,L���2,R�1,L�

��2,R�3,L���3,R�2,L���3,R�3,L� �103�

�note that due to the Fermi statistics these expressions should
be understood as short-distance expansions�. In general,
terms containing both �a,R�b,L and �c,R

† �d,L
† are also al-

lowed. However, up to N=6 we did not find such combina-
tions satisfying our requirements. �In principle, we can con-
sider interactions made up of N /2 pieces of �a,R�b,L and the
same number of �a,R

† �b,L
† . But they do not contain a � field

and are not umklapp.�
Therefore possible umklapp interactions with the lowest

dimensions will be of the following form:

cos�6�4�

3
� + const� . �104�

Around the SU�4� point, it has scaling dimensions larger than
2 and is thus irrelevant; strong renormalization of the Lut-
tinger K is needed for the umklapp �104� to stabilize a
gapped phase on the self-dual manifold.

VI. OTHER QUANTUM CRITICALITIES

Now let us discuss the properties of the low-energy effec-
tive Hamiltonian on the asymptotic rays �77a�–�77d� and
�78� which correspond to the transitions among the four
dominant phases. Combination of the Abelian- and non-
Abelian bosonization enables us to obtain nonperturbative
solutions to the problem. Although it looks more complicated
to treat the last one �78�, technically it is slightly simpler and
we will begin with the case of four competing orders �78�.

A. Case of four competing orders

On the ray �78�, the effective action reads as follows:

FIG. 5. �Color online� Schematic picture illustrating how the
doublet of order parameters is fixed: �a� At the SU�4� point, the
doublet fluctuate both in the radial and angular directions. �b� For
the self-dual models, the modulus of it is fixed by the interactions in
the SU�3� sector, whereas fluctuations in the azimuthal direction are
still gapless. �c� The remaining angular fluctuation gets locked by a
small deviation from the self-dual models.

P. LECHEMINANT AND K. TOTSUKA PHYSICAL REVIEW B 74, 224426 �2006�

224426-18



HQ-SD-SC-RQ = HSO�6� −
g*

2
��OSD

� �2 + �OSC
� �2 + �OQ

��2

+ �ORQ
� �2� = −

iv
2 �

a=1

3

�	R
a �x	R

a − 	L
a�x	L

a

+ 
R
a �x
R

a − 
L
a�x
L

a� + g*��	�R · 	�L�2 + �
�R · 
�L�2

+ �	�R · 
�L�2 + �
�R · 	�L�2� , �105�

with g*�0.
As has been mentioned in Sec. IV C, the model �105�

describes the competition between the four different orders
of our problem: the staggered dimerized �SD�, scalar chiral
�SC�, and the two quadrumerized �i.e., period 4� orders �Q
and RQ�.

We apply the SU�3��U�1� bosonization scheme to our
Hamiltonian �105�. After some algebra, we obtain the fol-
lowing simple Hamiltonian:

HQ-SD-SC-RQ =
v
2

���x��2 + ��x��2� +
v
2

���x�� �2 + ��x�
��2�

−
g*

�2�
i=1

3

�cos��8��� i · �� � + cos��8��� i · ���� ,

�106�

where �� = ��s ,�f�, �� = ��s ,�f�, and �� i are the positive roots
of the SU�3� algebra: �� 1= �1/2 ,�3/2�, �� 2= �1/2 ,−�3/2�,
and �� 3= �1,0�. Equation �106� describes a Lie-algebraic
generalization70,71 of the self-dual sine-Gordon models con-
sidered in Ref. 72.

From Eq. �106�, one immediately observes that Hamil-
tonian �105� displays U�1� quantum critical behavior due to
the noninteracting bosonic field �. The interacting part of Eq.
�105� takes the form of an SU�3� self-dual sine-Gordon
model with a marginal interaction. From the self-duality

symmetry �� ↔�� in the SU�3� part, we may naively expect
additional critical degrees of freedom resulting from this
symmetry. However, this is not the case. To see this, we first
note that the interaction part of Eq. �105� is written com-
pactly as

Hint = −
g*

2
�	�R � 	�R + 
�R � 
�R� · �	�L � 	�L + 
�L � 
�L�

= 2g*I�R · I�L, �107�

where we have introduced the level-2 SO�3� currents I�R,L
defined by

I�R,L � −
i

2
�	�R,L � 	�R,L + 
�R,L � 
�R,L� . �108�

It is interesting to note that I�L,R are simply written as

IR,L
a = �� R,L

† �Sa��� R,L, �109�

where �Sa�bc=−i�abc �a=x ,y ,z� is a 3�3 representation of
spin operators which form an SO�3� subgroup of SU�3�.

By using these SO�3� currents, we can then rewrite the
initial Hamiltonian �105�, which governs the competition of
the four orders, in a current-current form:

HQ-SD-SC-RQ =
v
2

���x��2 + ��x��2� +
�v
3

�I�R
2 + I�L

2�

+ 2g*I�R · I�L. �110�

The second part of this Hamiltonian is that of the level-2
SO�3� WZW model perturbed by an SO�3�-invariant current-
current interaction and is integrable.74 Now the relation to
the previous model �Eq. �89�� is clear; if one adds current
interactions coming from the remaining five SU�3� currents,

the ��-dependent part of Eq. �106� is canceled and the form
�95� is recovered.

For g*�0, which is relevant to our problem, the second
part has a spectral gap and a nontrivial structure of massive
spinon. We thus deduce that the initial Hamiltonian �105�
exhibits only a U�1� quantum criticality due to the free boson
�. The transition that results from the competition between
the four orders is thus of a U�1� Gaussian type.

B. Transitions among dominant phases

The transitions between two dominant phases within the
same �spin-chirality� doublet �i.e., SD-SC and Q-RQ� have
been already discussed in the previous section in conjunction
with the low-energy physics of the self-dual models. Here we
concentrate on the transitions between different doublets
�e.g., Q-SD�.

Let us consider, for instance, the Q-SD transition �Eq.
�77a�� and begin with rewriting the interaction term �OQ

��2

+ �OSD
� �2. Plugging the bosonized expressions �97a� and

�97b� into the above, we obtain

�OQ
��2 + �OSD

� �2

= −
1

�
���x�� �2 + ��x�

� �2� +
1

�2a0
2

��
r=1

6

�cos��8��� r · �� � + cos��8��� r · �� �� ,

�111�

where �� = �� ,�s ,� f�, �� = �� ,�s ,� f�, and the last summation

here is taken over all six positive roots of SU�4�: �� r
= �1/2 , ±�3/2 ,0�, �1/2 , ±1/ �2�3� , ��2/3�, �0,1 /�3,
�2/3�, and �1, 0, 0� normalized so that ��r�=1. Therefore the
effective Hamiltonian corresponding to the ray �77a� reads

HQ-SD =
v�

2
���x�� �2 + ��x�

� �2� −
g*

�2a0
2�

r=1

6

�cos��8��� r · �� �

+ cos��8��� r · �� �� , �112�

where we have rescaled the velocity v so that ��x�� �2 terms
coming from interactions may be absorbed. If we replace

SU�3� ��� � by SU�4� ��� � and �� by �� in the previous section,
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this is nothing but the second part of Eq. �106�. Therefore the
argument here goes similarly to that in the previous section;
the effective Hamiltonian �112� can be written here in terms
of SO�4� currents JR,L

ij �1� i� j�4� as73

HQ-SD =
�v�

4 �
i�j

��JR
ij�2 + �JL

ij�2� + 2g*�
i�j

JR
ijJL

ij .

�113�

That is, we have obtained the level-2 SO�4� WZW model
�with central charge c=3� perturbed by an SO�4�-invariant
marginal current-current interaction which is an integrable
field theory.74 In contrast to the previous case, we have no
critical degrees of freedom here and we expect that the tran-
sition between the Q phase and the SD phase is of first order.
A similar result holds for the RQ-SC transition as well.

VII. GLOBAL STRUCTURE OF THE PHASE
DIAGRAM

In this section, we shall investigate the main effects of the
interactions �H5,6� in Eq. �6� that we have so far neglected in
our field-theoretical approach. In addition, we shall also use
variational and strong-coupling analyses to figure out the
global phase diagram of model �6�.

A. Effects of H5

So far, we have neglected the T-breaking three-spin inter-
action H5 of Eq. �4e�. In this section, we shall give a hand-
waving argument for its main effect. In Sec. V, it has been
argued that the T-breaking and the appearance of the SD and
SC phases can be understood as a pinning of the vector dou-
blet �OSD

� ,OSC
� � in the spin-chirality plane �see Fig. 5�. Now

the role of H5 can be discussed in a similar manner by means
of a semiclassical argument applied to the bosonized Hamil-
tonian.

According to Eq. �56b�, the T-breaking interaction H5
changes the form of the effective potential as

−
g*

6
��OSD

� �2 + �OSC
� �2� → −

g*

6
��OSD

� �2 + �OSC
� �2�

− g5OSD
� OSC

� . �114�

In the presence of H5, the spin-chirality plane is no longer
isotropic and the principal axes of the ellipsoid �see Fig. 5�
are tilted by � /4 �the sign of g5 determines the direction of
the longer axis.�. Then, we may expect that the two order
parameters OSD

� and OSC
� simultaneously take nonzero val-

ues.
To make the above argument more quantitative, we add

the g5 term to the interaction �95�. The interaction takes its
minima when ��s� and ��f� are given by Eq. �96�. Then the
expectation values of the � field are determined by finding
the minima of trigonometric functions. For ��s�= ��f�=0, ���
is determined by minimizing −9g5 /2 sin��16� /3��. The cal-
culation goes similarly for the other cases as well.

This analysis tells us that the doublet �OSD
� ,OSC

� � takes
one of the following values when T-breaking interaction g5 is
present:

�OSD
� ,OSC

� � = ��±
3

�2�a0

, ±
3

�2�a0
� for g5 � 0

�±
3

�2�a0

, �
3

�2�a0
� for g5 � 0.�

�115�

The above argument can be easily generalized to the case of
non-self-dual models.

B. Effects of H6

Now let us discuss the effect of the H6 interaction �Eq.
�4f�� which has been neglected in the preceding analysis. As
has been mentioned in Sec. II, our model �spin� Hamiltonian
can be rewritten in terms of spin-1 �hardcore� boson br,a �a
=x ,y ,z� as

H = AH1 + BH2 + CH3 + DH4 + EH5 + FH6 + GH7

= �B + D��
r,a

�br,a
† br+1,a + br+1,a

† br,a� + �B − D�

��
r,a

�br,a
† br+1,a

† + br+1,abr,a�

+ E�
r

�abc�br,a
† br+1,b

† br,c + br,c
† br,abr+1,b + �r ↔ r + 1��

+ �
r

��A + C�Tr · Tr+1 + 2C�Tr · Tr+1�2�

+ G�
r

nr
Bnr+1

B + �− 4C + F −
3

2
G��

r

nr
B, �116�

where the projection onto occupied states is implied for the
fourth term �the triplet-triplet interaction�. From this, it can
be easily read off that the coupling F of H6 affects the
chemical potential of the hardcore boson. Therefore for suf-
ficiently large values of �F�, the system becomes either a
carrierless insulator �i.e., nr

B=0 for all sites r� or a fully oc-
cupied state �i.e., nr

B=1 for all r�. Apparently, the ground
state of the carrierless insulator is trivial and is, in terms of
the original spins, given by a tensor product of local �rung�
singlets. The fate of the spin wave function in the latter case
depends strongly on the two couplings A and C which dictate
the spin-spin interaction between hardcore bosons. Here, we
will mainly focus on the case A+C�2�C� which corresponds
to the Haldane phase.75

When �F� is decreased, we have quantum phase transitions
to a conducting state. Let us first consider a transition from
the carrierless insulator. Then, the transition is equivalent to
the superfluid �SF�-onset transition of spin-1 bosons. For the
moment, let us neglect the interactions among different spe-
cies of particles �including the hardcore repulsion�. As is
well known,76 the bosonic two-body interactions are relevant
at the z=2 SF-onset transition and the system flows toward
the strong-coupling fixed point. In the presence of U�1�-
breaking anisotropy �B�D�, the particle number is no longer
conserved and the fixed point is replaced by that of the z
=1 critical 2D Ising model.77,78 Since we have three copies
of such Ising models, we may expect that the fixed point here
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is described by the level-2 SU�2� WZW model which is
equivalent to three massless Majorana fermions with c
=3/2. Now let us estimate the impact of the neglected
boson-boson interactions. Since they are given by O�3�-
invariant �i.e., spin-symmetric� products of four Fermi fields,
the only possible one should be the marginal interaction of
the form JR·JL �JL,R are the level-2 SU�2� currents of the
WZW model�. Therefore we may conclude that the SF-onset
transition from the rung-singlet phase �carrierless insulator�
to the staggered dimer-�SD� or the scalar-chirality �SC�
phase belongs to the level-2 SU�2� WZW criticality; the SD
or SC order appears as a consequence of the SF ordering in
the presence of the U�1�-breaking anisotropy. This is consis-
tent with the results of weak-coupling approach25,26,28 and
numerical analysis.27 Since the number of the bosonic par-
ticles is conserved, the transition at B=D �self-dual� is ex-
ceptional and belongs essentially to the Japaridze-Nersesyan-
Pokrovsky-Talapov �JNPT� universality class79 �note that we
have three copies of the JNPT criticality here�.

A similar argument applies to the transition from the fully
occupied state as well. The elementary particle here is a rung
singlet moving in the sea of rung triplets �note that we have
assumed that we are in the spin-gapped phase and the mag-
non excitations occur at the energy scale of the “Haldane”
gap�. Then the dynamics of these excited singlets may be
modeled by the interacting spinless fermion. The sign of the
fermion-fermion interaction will be positive �negative� when
G is much larger �smaller� than A and C. When A and C are
not so large and the anisotropy is absent �B=D�, the F-driven
transition is of the JNPT universality class again. The xy
anisotropy �B�D� alters the transition to that of the Ising
type. We show a schematic phase diagram illustrating the
effects of H5 and H6 in Fig. 6.

C. XYZ analogy and pseudospin description

In order to demonstrate the relevance of the pseudospin
picture �see Sec. II D 1�, we present two approaches which
are complementary to that developed in the previous sec-
tions. In both approaches, the key is how to identify the
pseudospin degrees of freedom on the lattice.

1. Variational approach

Let us begin with the self-dual models. In the above, we
have seen how the U�1� Gaussian model emerges as the low-
energy effective-field theory after the spin sector is gapped.
The spin and the �pseudo�charge decouple from each other at
low energies and the physics of the spin sector may be de-
scribed by the following bilinear-biquadratic interaction �see
Sec. II and Appendix A 2 for more details�

AH1 + CH3 � � ��A + C�Tr · Tr+1 + 2C�Tr · Tr+1�2� .

For this reason, we may expect that the Haldane-gap physics
a la Affleck, Kennedy, Lieb, and Tasaki75 dominates in a
reasonably large region of the phase diagram. Of course, we
have the additional pseudocharge degrees of freedom �i.e.,
motion of triplet rungs in the rung-singlet background� here
and the stability of the Haldane state is not so obvious. How-
ever, from a simple argument80 we know that the valence-
bond-solid state proposed in Ref. 75 is stable against the
motion of singlet rungs �or, holes in the spin-1 t-J model
given by Eqs. �24�–�30� or Eq. �116��. In fact, numerical
simulations carried out for the spin-1 bosonic t-J model81

�the set of parameters B=D= t /2, A=J, C=0 was used there�
show the existence of a finite spin gap and the Luttinger-
liquid behavior in the pseudocharge sector, which is consis-
tent with our conclusion in Sec. V A.

Now that we know that the spin sector is generically
gapped and decoupled from the pseudocharge sector, the
next question would be what kind of degrees of freedom
determines the global structure of the phase diagram. From
the bosonization analysis presented above, a natural guess
would be the pseudospin S=1/2 �or charge in the t-J lan-
guage�. As was described in Sec. II D, H2,4 correspond to the
pseudospin-flipping processes and H6 and H7 to magnetic
field and the SzSz interaction, respectively. The remaining
parts concern dynamics in the �true� spin sector, which is
separated from the low-energy sector by a finite spin gap.

To develop a variational theory for this kind of spin liq-
uid, we first construct a coherent state of the pseudospin S
by combining a local singlet �s�r and a triplet �t�r:

���� = �
r�rung

	e−i���r�/2� cos
��r�

2
�ei��r� tan

��r�
2

�s�r + �t�r�
 ,

where ��r� and ��r� are, respectively, azimuthal and polar
angles of the spin vector �r at rung r. Apparently, this is
unsatisfactory because we still have local spin degrees of
freedom represented by �t�r. To kill the spin degrees of free-
dom and construct a spin-gapped wave function out of the
above coherent states, the most natural way would be to
replace triplet states �t�r on rth rung by the following 2�2
matrix:82,83

FIG. 6. �Color online� A schematic picture illustrating the effects
of H6 and the anisotropy �=B−D in the spin-chirality plane on the
global structure of the phase diagram of our model. According to
the sign of the anisotropy, we have two different orderings; an an-
isotropic SF in the x direction �T even� for ��0 and one in the y
direction �T odd� for ��0. The duality symmetry D interchanges
the region with ��0 and that with ��0. On both sides of the
region enclosed by a dashed line �dominant singlet fluctuations�, we
find conventional phases �spin-1 or rung singlet�, which can be
interpreted as insulating ones.
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gr �
1
�3
� �t0�r − �2�t1�r

+ �2�t−1�r − �t0�r
�

��ta� is the rung-triplet state with Tz=a� and use the modified
ansatz

��� = �
r�rung

��3ei��r� tan
��r�

2
�s�r1 + gr� . �117�

Note that this is essentially the same as the building block of
the matrix-product ground state adopted in Ref. 46. Taking
the trace of the above matrix product, we can obtain the
desired �unnormalized� spin-singlet wave function with a fi-
nite correlation length. This wave function may be thought of
as the valence-bond-solid �VBS� state75 randomly “diluted”
by vacancies �see Fig. 7�b��.

To illustrate the usefulness of our pseudospin picture, we
map out the variational phase diagram of the two-leg spin
ladder with four-spin cyclic exchange Hladder+4-spin �see Eq.
�20��. As a variational ansatz, we choose

„��r�,��r�… = ���1,�1� for r = even

��2,�2� for r = odd.
� �118�

Thanks to the special form of ���, we can reduce the
computation of the ground-state expectation values
���Hladder+4-spin��� to that of 4�4 matrices82,83 and we ob-
tain the variational energy Evar��1 ,�1 ,�2 ,�2� to minimize.
Since the explicit form of Evar��1 ,�1 ,�2 ,�2� is unimportant,
we only show the resulting phase diagram in Fig. 7. It should
be compared with the phase diagram of the same model ob-
tained by large-scale numerical simulations29 �density-matrix
renormalization group�. The path searched in Ref. 29 corre-

sponds to the line JR=1 in Fig. 7. Three dominant phases
�rung-singlet, SD, and SC� found there appear in our varia-
tional phase diagram as well, while the phase denoted by
“dominant vector chirality,”29,30 whose nature is not clear
currently, is missing in ours.

Similarly, the ferromagnetic phase is beyond the scope of
our simple variational calculation since our variational wave
function �117� contains only spin-singlet phases. In our pic-
ture, both rung-triplet- and rung-singlet phases correspond to
(pseudo)spin-polarized states as is shown in Fig. 7. The spin-
chirality transformation U��� rotates the pseudospin vector
along the z axis. When the external magnetic field �H6� is not
very strong, spin-canted states �SD and SC� are favored by
the xy coupling H2,4; in the SD �SC� phase, the xy projection
of the pseudospin lies in the x�y� direction.

2. Strong-coupling approach

Another way to see the role of the pseudospin degrees of
freedom would be a strong-coupling expansion. A natural
starting point might be isolated rungs �as in the usual ladder
systems�. Unfortunately, however, all the phases that we
have found in the field-theory analysis break the periodicity
of the original Hamiltonian and the limit of isolated rungs is
not quite helpful �the phases accessible from the limit would
be more or less trivial�. Instead, we divide the whole lattice
into plaquettes �see Fig. 8�a�� and introduce a new coupling
� which controls the coupling between neighboring
plaquettes. On these plaquettes, a kind of coarse-grained de-
grees of freedom will be defined by which the low-energy
sector of our ladder system may be described.

To explore the vicinity of the SU�4� point, we adopt the
following Hamiltonian:

H = �
r=rung

Jr�h1�r� + �1 + �2�h2�r� + �1 + �3�h3�r�

+ �1 + �4�h4�r�� + �6�
r

S1,r · S2,r, �119�

where the couplings Jr alternate like

FIG. 7. �Color online� �a� Variational phase diagram obtained by
the ansatz �117�. Shown is the pseudospin direction �� ,�� for each
phase: conventional rung-singlet and rung-triplet �Haldane or VBS�
phases are spin-polarized states while the SD and SC phases may
be viewed as canted states with different XY projections. �b� Typi-
cal spin-singlet configuration contained in our variational wave
function �117�. Ovals and open circles respectively denote triplet
�occupied sites� and singlet �unoccupied sites� rungs. The spin-1
bosons totally form a spin-singlet valence-bond state. Due to mo-
tion and pair creation or annihilation of triplet bosons, the wave
function �117� describes a strongly fluctuating state.

FIG. 8. �Color online� �a� A two-leg ladder as a weakly coupled
plaquettes. Strongly coupled plaquettes, on which pseudospin 1/2’s
and coarse-grained spin-1’s are defined, are shown by thick lines.
All interactions �both two spin and four spin� connecting these
plaquettes are multiplied by ��1�. �b�, �c� Two triplet states which
constitute a �nearly� degenerate ground-state manifold in the vicin-
ity of the SU�4� point. Two spin-1 /2’s contained in each oval form
a spin triplet. In both �b� and �c�, two triplets �ovals� are antisym-
metrized to form a total spin triplet on a plaquette.
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Jr = 1 �for r even�, Jr = ��1� �for r odd� �120�

and hi�r� denote local Hamiltonians obtained by restricting
Hi to two rungs r and r+1.

Let us begin with the case of �=0, i.e., the limit of iso-
lated plaquettes. On a single plaquette, we have 16 states
which can be decomposed into the following multiplets:

�0�2
� �1�3

� �2� . �121�

Around the SU�4� point, two of the three triplets �see Figs.
8�b� and 8�c�� form nearly degenerate ground states �exactly
at the SU�4� point, they are completely degenerate�. The ex-
plicit forms of these states are given as

�122a�

�122b�

where arrows and double lines in the above respectively de-
note spin singlets and triplets �ovals in Fig. 8�.

It should be remarked that we shall construct an effective
theory in terms of new degrees of freedom �spin-1 and spe-
cies of triplets� defined on these plaquettes. In this plaquette
picture, our ladder is already dimerized and the two stag-
gered phases �SD and SC� should be understood as uniform
ones. Correspondingly, we shall introduce order parameters
defined on each plaquette:

OSD�p� = S1,r · S1,r+1 − S2,r · S2,r+1,

OSC�p� = �S1,r � S2,r� · �S1,r+1 + S2,r+1� + �r ↔ r + 1� ,

�123�

where p labels the plaquette formed by four points �1,r�,
�2,r�, �2,r+1�, and �1,r+1� �see Fig. 8�.

The point here is that the eigenstates of OSD and OSC can
be constructed out of the two triplets shown in Fig. 8:

�124�

where ±1 denote the eigenvalues of OSD,SC�p�.
The next step is to identify the states having the pseu-

dospin ��� up and down. To this end, we consider the coher-
ent state of a spin-1 /2:

��� = cos
�

2
�↑� + e+i� sin

�

2
�↓� .

If we identify the following eigenstates of �x and �y

��x = ± 1/2� =
1
�2

��↑� ± �↓�� ,

��y = ± 1/2� =
1
�2

��↑� ± i�↓�� �125�

with the eigenstates �124� of the order parameters �OSD and
OSC�, it is suggested that we should take

�126a�

and

OSD�p� = 2�p
x, OSC�p� = 2�p

y

�p
z = S1,r · S2,r + S1,r+1 · S2,r+1. �126b�

Obviously, �p
z is a generalization of Sz discussed in Sec. II D

to a plaquette system.
Now that we have identified the pseudospin degrees of

freedom, it is straightforward to carry out a perturbation ex-
pansion for �nearly� degenerate ground-state manifold made
up of and . Within this manifold, operators for spin,
p-nematic, and n-nematic read

S1,r + S2,r = S1,r+1 + S2,r+1 =
1

2
1 � Tp, �127a�

S1,r − S2,r = S1,r+1 − S2,r+1 = �x
� Tp, �127b�

2�S1,r � S2,r� = 2�S1,r+1 � S2,r+1� = �y
� Tp, �127c�

Qr
�� � �S1,r

� S2,r
� + S1,r

� S2,r
� �

= − �z
� �1

2
�Tp

�Tp
� + Tp

�Tp
�� − ���� = Qr+1

�� ,

�127d�

where Tp denotes a spin-1 operator on the plaquette p. Plug-
ging these equations into the original Hamiltonian, we obtain
the �first-order� effective Hamiltonian which describes the
physics around the SU�4� point:

Heff = � �
p=plaq

��1 + �2��p
x�p+1

x + �1 + �4��p
y�p+1

y +
1

4
�Tp · Tp+1

+ ��1 + �3��
p

��p
z�p+1

z ��Tp · Tp+1 + 2�Tp · Tp+1�2 − 2�

+ �
p

��2 − �3 + �4 + �6��p
z = � �

p=plaq
��1 + �2��p

x�p+1
x

+ �1 + �4��p
y�p+1

y +
1

4
�Tp · Tp+1 + 2��1 + �3��

p

��p
z�p+1

z �

���
�,�

Q̃p
��Q̃p+1

�� − 1� + �
p

��2 − �3 + �4 + �6��p
z , �128�

where we have introduced the coarse-grained n-type nematic

operators Q̃p
����Tp

�Tp
�+Tp

�Tp
�� /2 on plaquettes. This is simi-

lar to the well-known Kugel-Khomskii effective
Hamiltonian43 for the orbital-degenerate systems; here the
role of two degenerate orbitals is played by two types of
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triplets and . It should be noted that the xy-components
of the pseudospin �AF �x and p-nematic �y� couple to the
dipolar part �Tp ·Tp+1� of the magnetic Hamiltonian while
the z component is associated with the �n-type� nematic part

�Q̃��Q̃���.
In order to further simplify the effective Hamiltonian, we

again assume that the spin sector is well described by the
VBS wave function.75 Then the dipolar and the nematic part
of the effective Hamiltonian may be replaced by the follow-
ing expectation values:

�Tp · Tp+1�VBS = −
4

3
, ��

�,�
Q̃p

��Q̃p+1
�� �

VBS

= +
4

3

�129�

and the above effective Hamiltonian �128� reduces to that for
the pseudospins:

Heff = −
4

3
� �

p=plaq
��1 + �2��p

x�p+1
x + �1 + �4��p

y�p+1
y +

1

4
�

+
2

3
��1 + �3��

p

�p
z�p+1

z + �
p

��2 − �3 + �4 + �6��p
z .

�130�

This is nothing but the S=1/2 XYZ Hamiltonian in a mag-
netic field.84 For small �3 the system is xy-like �easy plane�
and ferromagnetic ordering will occur mainly in the xy
plane; when �2��4 ��2��4� the pseudospins align in the
x�y� direction and the SD �SC� phase will be stabilized �see
Eq. �126b��. For �2=�4 �the self-dual models�, on the other
hand, the system reduces to the well-known XXZ Hamil-
tonian and the low-energy sector is generically described by
the TL model �B6b�. These are exactly what we have found
by a field-theoretical analysis in Sec. V.

For appropriate choices of �2, �3, and �4, the zz part will
dominate and staggered ordering along the z axis will occur
�note that the sign of �z�z is antiferromagnetic�. Since this
ground state has a period two in the “plaquette” picture, it
has, when translated back to the original ladder, a period 4.

VIII. CONCLUDING REMARKS

In the present paper, we have developed a unifying ap-
proach to the problem of unconventional phases appearing in
generalized two-leg spin ladders. Although the low-energy
properties of the two-leg spin ladder with only two-spin �or,
ordinary exchange� interactions are fairly well known, not
much is known for the case with four-spin interactions.

To treat the problem from a wider viewpoint, we have
constructed, out of S=1/2 spins and their bilinears, a general
lattice model Hamiltonian with SU�2� �rotational� invariance
and symmetry under the exchange of two constituent chains.
We have adopted the so-called SU�4�-symmetric model as
the starting point to elucidate the interplay between two-spin
and four-spin interactions. In particular, the SU�4� symmetry
is the maximal continuous symmetry that one can have in
general two-leg S=1/2 spin ladders. The greatest advantage
of this extended symmetry approach is that it can unify the

unconventional phases �e.g., the SC phase� of the two-leg
spin ladder with four-spin exchange interactions.

In the present paper, we have shown that four unconven-
tional phases �Q, SD, SC, and RQ� of the generalized two-
leg spin ladder are unified at the SU�4� multicritical point.
These phases, which emerge in regions characterized by sub-
stantial strength of the four-spin interactions, is quite difficult
to describe by means of a perturbative approach starting
from the limit of two decoupled chains. Fortunately, how-
ever, we have a well-controlled starting point—the SU�4�
point—in our problem. In the field-theory language, the low-
energy properties of the SU�4� point are described by the
level-1 SO�6� WZW model which is equivalent to six copies
of the 2D Ising model at its critical point. The continuum
expressions of the interactions can then be written in terms
of this basis and we have revealed the existence of a duality
symmetry D, the so-called spin-chirality duality,30 and a new

hidden one D̃ which is an emergent symmetry. The one-loop
RG flow exhibits quite a simple structure �four dominant
phases and symmetric rays toward them� in spite of the com-
plexity in the RG equations. The duality transformation D
and its dual �D̃� map the dominant phases onto each other
�see Fig. 4�. The existence of these duality symmetries en-
ables us to investigate the nature of the quantum phase tran-
sitions between these competing orders which occur along
the self-dual manifolds. The behavior on the self-dual mani-
fold B=D is intriguing; the spin sector dies away by opening
a gap and in turn the pseudospin degrees of freedom come
into play in the low-energy physics. Their gapless spin-
singlet fluctuations are described by the c=1 TL model. In
fact, what controls the competition and quantum phase tran-
sitions between the unconventional spin-singlet phases �SD
and SC� is this pseudospin degrees of freedom and we dem-
onstrated this picture by a simple variational calculation in
Sec. VII C. The fact that the pseudospin sector displays an
U�1� quantum critical behavior helps us understand the glo-
bal phase structure in the same manner as we do in the S
=1/2 XXZ model. Note that the above U�1� criticality is not
an emergent one, whereas the other one within the manifold
g2=−g4 is emergent in the sense of Ref. 14.

Another interesting point concerning the physics on the
self-dual manifold is the emergent SU�3� symmetry. Al-
though this is not so obvious in the lattice analysis, our field-
theory analysis tells us that instead of the original SO�3� an
enlarged SU�3� symmetry appears in the low-energy limit.
As a byproduct, we established an interesting description of
our problem in terms of the spin-1 �hardcore� bosons. In this
respect, we hope that our results obtained for spin systems
will be of some help in understanding the phases of the spin
1 boson systems.85
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APPENDIX A: SUMMARY OF SU(4)

1. Generators

In Sec. II, we introduced 15 SU�4� generators Xi in the
form of 4�4 matrices. Below, we give the explicit forms of
them. Note that we use the singlet-triplet basis defined by

�s� =
1
�2

��↑↓� − �↓↑��, �tx� =
− 1
�2

��↑↑� − �↓↓�� ,

�ty� =
i

�2
��↑↑� + �↓↓��, �tz� =

1
�2

��↑↓� + �↓↑�� , �A1�

S1
1 = X1 =�

0
1

2
0 0

1

2
0 0 0

0 0 0
− i

2

0 0
i

2
0

� ,

S1
2 = X2 =�

0 0
1

2
0

0 0 0
i

2

1

2
0 0 0

0
− i

2
0 0

� ,

S1
3 = X3 =�

0 0 0
1

2

0 0
− i

2
0

0
i

2
0 0

1

2
0 0 0

� , �A2a�

S2
1 = X4 = −�

0
1

2
0 0

1

2
0 0 0

0 0 0
i

2

0 0
− i

2
0

� ,

S2
2 = X5 = −�

0 0
1

2
0

0 0 0
− i

2

1

2
0 0 0

0
i

2
0 0

� ,

S2
3 = X6 = −�

0 0 0
1

2

0 0
i

2
0

0
− i

2
0 0

1

2
0 0 0

� . �A2b�

The remaining nine generators are essentially given by the
tensor product of two Pauli matrices:

Gab =
1

2
�a

� �b = 2S1
aS2

b �a,b = 1,2,3� ,

G11 = X7 =�
−

1

2
0 0 0

0 −
1

2
0 0

0 0
1

2
0

0 0 0
1

2

� ,

G22 = X8 =�
−

1

2
0 0 0

0
1

2
0 0

0 0 −
1

2
0

0 0 0
1

2

� ,
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G33 = X9 =�
−

1

2
0 0 0

0
1

2
0 0

0 0
1

2
0

0 0 0 −
1

2

� , �A2c�

G12 = X10 =�
0 0 0

i

2

0 0 −
1

2
0

0 −
1

2
0 0

− i

2
0 0 0

� ,

G13 = X11 =�
0 0

− i

2
0

0 0 0 −
1

2

i

2
0 0 0

0 −
1

2
0 0

� ,

G21 = X12 =�
0 0 0

− i

2

0 0 −
1

2
0

0 −
1

2
0 0

i

2
0 0 0

� , �A2d�

G23 = X13 =�
0

i

2
0 0

− i

2
0 0 0

0 0 0 −
1

2

0 0 −
1

2
0

� ,

G31 = X14 =�
0 0

i

2
0

0 0 0 −
1

2

− i

2
0 0 0

0 −
1

2
0 0

� ,

G32 = X15 =�
0

− i

2
0 0

i

2
0 0 0

0 0 0 −
1

2

0 0 −
1

2
0

� . �A2e�

2. SU„3…ÃU„1…

The spin-chirality transformation introduces a natural cat-
egorization of the above generators in terms of a subgroup
SU�3��U�1�. The easiest way of understanding the appear-
ance of SU�3� would be to decompose the whole Hilbert
space into a singlet and a triplet �of course, the singlet cor-
responds to U�1� factor�; the SU�3� part acts only to the
triplet subspace.

With this identification, the SU�3� Gell-Mann matrices are
given as follows:

G1 = − �G12 + G21� =�
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0
� ,

G2 = S1
3 + S2

3 =�
0 0 0 0

0 0 − i 0

0 i 0 0

0 0 0 0
� ,

G3 = − G11 + G22 =�
0 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 0
� ,

G4 = − �G13 + G31� =�
0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0
� ,
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G5 = − �S1
2 + S2

2� =�
0 0 0 0

0 0 0 − i

0 0 0 0

0 i 0 0
� ,

G6 = − �G23 + G32� =�
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0
� ,

G7 = S1
1 + S2

1 =�
0 0 0 0

0 0 0 0

0 0 0 − i

0 0 i 0
� ,

G8 = −
1
�3

�G11 + G22 − 2G33� =�
0 0 0 0

0
1
�3

0 0

0 0
1
�3

0

0 0 0
− 2
�3

� .

They are supplemented by the generator of �spin chirality�
U�1�:

GU�1� = −�2

3
�G11 + G22 + G33� ,

which satisfies

�GU�1�,G
a� = 0 �a = 1, . . . ,8� .

These nine operators generate a subgroup SU�3��U�1�.
It is a straightforward task to rewrite our building blocks

Eqs. �4a�–�4g� in terms of the above generators. In particular,
one has

AH1 + CH3 = �
r

�A�G2�r�G2�r + 1� + G5�r�G5�r + 1�

+ G7�r�G7�r + 1�� + C�G1�r�G1�r + 1�

+ G3�r�G3�r + 1� + G4�r�G4�r + 1�

+ G6�r�G6�r + 1� + G8�r�G8�r + 1�

+ GU�1��r�GU�1��r + 1��� . �A3�

From which we observe that the model with A=C has an
SU�3� symmetry.

Interestingly, the remaining six SU�4� generators

S1 − S2, 2�S1 � S2�

are order parameters of the above SU�3��U�1�. In fact,

�S1 − S2� + i2�S1 � S2� and �S1 − S2� − i2�S1 � S2�

respectively transform like 3 and 3̄ under SU�3�. The spin-
chirality U�1� acts like

�S1 − S2� ± i2�S1 � S2� � e±i���S1 − S2� ± i2�S1 � S2�� .

APPENDIX B: BOSONIZATION DICTIONARY

To establish the notations, we briefly summarize the main
formulas used in our bosonization analysis. Consider N free
Dirac fermions defined by the following Hamiltonian:

HDirac = − iv� dx�
a=1

N

��a,R
† �x�a,R − �a,L

† �x�a,L� . �B1�

Let us first introduce N bosonic fields to bosonize N Dirac
fermions as follows:35

�a,R =
�̃a

�2�a0

exp�i�4��a,R� ,

�a,L =
�̃a

�2�a0

exp�− i�4��a,L�

�a = 1, . . . ,N� , �B2�

a0 being some ultraviolet cutoff �typically the lattice spacing�
and we use the following normalization for the chiral
bosonic fields:

��a,R�z̄��b,R�w̄�� = −
�ab

4�
ln�z̄ − w̄� ,

��a,L�z��b,L�w�� = −
�ab

4�
ln�z − w� , �B3�

where the complex coordinates z and z̄ are defined by z
=v�+ ix and z̄=v�− ix, respectively. The total bosonic fields
�a and their dual fields �a are defined as �a��a,R+�a,L,
�a�−�a,R+�a,L. We impose the following commutation re-
lation for the chiral bosonic fields:

��a,R,�b,L� =
i

4
�ab, �B4�

so that the left and the right movers of the same species
anticommute: ��a,R�x� ,�a,L�y��=0. The anticommutation
between fermions of different species is guaranteed by the
presence of the Klein factors �here Majorana fermions� �̃a in
the definition �B2�, which obey the anticommutation rule

��̃a,�̃b� = 2�ab. �B5�

Using these bosons, HDirac can be written as a Hamiltonian
of the so-called Tomonaga-Luttinger �TL� model:35

HDirac = �v� dx�
a=1

N

�JL,a
2 + JR,a

2 � �B6a�
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=
v
2
� dx�

a=1

N

���x�a�2 + ��x�a�2� = HTL, �B6b�

where the operators of the form An should always be under-
stood as normal-ordered: An:.35,36 The above equivalence is
established by the following bosonization formulas for fer-
mion bilinears:

JL,a = �a,L
† �a,L =

1
��

�x�a,L =
1

�4�
�x��a + �a� ,

�B7a�

JR,a = �a,R
† �a,R =

1
��

�x�a,R =
1

�4�
�x��a − �a� ,

�B7b�

JL,a
2 = +

i

�
�a,L

† �x�a,L, JR,a
2 = −

i

�
�a,R

† �x�a,R,

�B7c�

�a,R
† �a,L = −

i

2�a0
e−i�4��a, �B7d�

�a,L
† �a,R = +

i

2�a0
e+i�4��a.

APPENDIX C: SU(4) EFFECTIVE ACTION FROM
HUBBARD MODEL

In this section, we sketch the derivation of the SU�4�
fixed-point Hamiltonian from the two-band Hubbard model
at quarter filling:

HHubbard = − t �
i,a,�

�ca,�,i+1
† ca,�,i + ca,�,i

† ca,�,i+1�

+
U

2 �
i,a,b,

�,��

na,�,inb,��,i�1 − �a,b��,��� , �C1�

where ci,a,�
† creates an electron with spin ��=↑ , ↓ � in orbital

a�=1,2� of the site-i and na,�,i=ca,�,i
† ca,�,i. The key idea is the

following. When the Hubbard interaction U is sufficiently
large, the system becomes a Mott insulator and the charge
degrees of freedom gets decoupled from the low-energy
physics.56,86 However, we still have four states �a=1,2, �
= ↑ ,↓� on each site and we identify them with four states of
the fundamental representation of 4 of SU�4�. These states
constitute the low-energy sector of the system. As in the
usual single-band case, the effective Hamiltonian describing
the low-energy physics is obtained by the second-order per-
turbation:

Heff =
2t2

U
PG �

a,�

b,��

�ca,�,i+1
† ca,�,i + ca,�,i

† ca,�,i+1�

� �cb,��,i+1
† cb,��,i + cb,��,i

† cb,��,i+1�PG =
4t2

U
�

i

Pi,i+1

=
4t2

U
�
i,a

Xi
aXi+1

a + const, �C2�

where the projection onto the subspace with one electron per
site is enforced by PG. The operator Pi,i+1 appearing in the
last line is the SU�4� permutation operator acting on 4 � 4 on
neighboring sites. The Hamiltonian �Xi

aXi+1
a is nothing but

the SU�4�-invariant model �17� in Sec. II.
If we repeat the same steps starting from the continuum

expression of the two-band Hubbard model �C1�, we may
obtain the desired continuum field theory for the SU�4�
model �17�.56–58

Let us begin with the first term of HHubbard Eq. �C1�. As is
well known in the standard bosonization treatment of one-
dimensional electron systems, the spectrum of the four elec-
trons �c1�c1,↑, c2�c1,↓, c3�c2,↑, c4�c2,↓� near the Fermi
points k= ±kF= ±� /4 may be linearized to obtain the Hamil-
tonian of the Dirac fermions �B1� with N=4 and v
=2t sin kF. In order to obtain the continuum expression of the
second term �Hubbard interaction HU�, we need the expres-
sion of the density operator nb,i. Since we have two species
of Dirac fermions �L and R� for each fermion, the electron
density is made up of four pieces:

1

a0
ni,b � nb�x� = �b,R

† �b,R + �b,L
† �b,L + e−2ikFx�b,R

† �b,L

+ e+2ikFx�b,L
† �b,R �b = 1,2,3,4� . �C3�

With the help of Eqs. �B7a�–�B7d�, the right-hand side can
be readily bosonized as

nb�x� =
1

��
�x�b −

i

2�a0
e−2ikFxe−i�4��b +

i

2�a0
e+2ikFxe+i�4��b.

�C4�

Using this bosonized expression, one finds that the effec-
tive Hamiltonian which describes the low-energy properties
of the two-band Hubbard model at quarter filling consists of
four terms:

HU = Hc + HSU�4� + H2kF
+ H4kF

. �C5�

The two parts H2kF
and H4kF

contains terms oscillating with
wave vectors q= ±2kF and q=4kF, respectively, and may be
neglected in the first approximation. Before presenting the
explicit forms of Hc and HSU�4�, it is convenient to move to
another set of boson basis:
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�
�c

�s

�f

�sf

� =
1

2�
1 1 1 1

1 − 1 1 − 1

1 1 − 1 − 1

1 − 1 − 1 1
��

�1

�2

�3

�4

� . �C6�

Since the above is an orthogonal transformation, the Dirac
part is transformed to

HDirac =
v
2
� dx �

a=c,s,f,sf
���x�a�2 + ��x�a�2� . �C7�

The U-dependent part �Hc+HSU�4�� can be recasted as

U

2�
�

a,b=1

4

�x�a�M − 1�a,b�x�b +
2U

�2�a0�2

��
a�b

4

cos��4���a − �b��

=
U

2��3��x�c�2 − �
a=s,f,sf

��x�a�2�
+

U

�2a0
2 �cos��4��s�cos��4��f�

+ cos��4��f�cos��4��sf�

+ cos��4��sf�cos��4��s�� , �C8�

where M is a 4�4 matrix with all matrix elements equal to
unity. From Eqs. �C7� and �C8�, we can read off

Hc =� dx�v
2

���x�c�2 + ��x�c�2� +
3U

2�
��x�c�2�

�C9a�

and

HSU�4� =� dx �
a=s,f,sf

�v
2

���x�a�2 + ��x�a�2� −
U

2�
��x�a�2�

+
U

�2a0
2 � dx�cos��4��s�cos��4��f�

+ cos��4��f�cos��4��sf�

+ cos��4��sf�cos��4��s�� , �C9b�

which is written only in terms of three bosons �s, �f, and
�sf and dictates the physics of the SU�4� sector. Comparing
with the bosonization treatment of the single-band Hubbard
model, one finds that the �4kF� umklapp scattering present in
the single-band case is absent here while the SU�4� part
�“SU�4�” should be replaced with spin in the single-band
case� contains the marginally irrelevant backscattering as in
the case of the single band. This may seem contradicting
since we know the two-band Hubbard model will become
insulating �i.e., charge-gapped� for sufficiently large U �U
�2.8t�.86 This paradox is remedied by taking into account
the second-order �U2� perturbation coming from the OPE
H4kF

H4kF
. In fact, the above OPE yields the contribution like

−
3U2

8�4a0
2 cos��16��c�

which will pin the charge �c field for large enough U. There-
fore we may fix the value of the �c field and drop Hc in the
following analysis.

The final step is to rewrite the SU�4� Hamiltonian HSU�4�
in terms of six Majorana fermions. The mapping is provided
by the following correspondence:

	R/L
2 + i	R/L

1 =
�1

��a0

exp�− ip�4��s,R/L� ,


R/L
1 + i
R/L

2 =
�2

��a0

exp�+ ip�4��f,R/L� ,


R/L
3 + i	R/L

3 =
�3

��a0

exp�− ip�4��sf,R/L� , �C10�

where the integer p is defined by p= +1�L� and p=−1�R�.
The Majorana fermions �a�a=1,2 ,3� have been introduced
to guarantee the anticommutation. The following formulas
proved by taking OPEs are useful in rewriting the SU�4�
Hamiltonian �C9b�:

�x�s,R/L = i��	R/L
1 	R/L

2 ,

�x�f,R/L = i��
R/L
1 
R/L

2 ,

�x�sf,R/L = i��	R/L
3 
R/L

3 , �C11�

cos��4��s� = i�a0��1 + �2� ,

cos��4��f� = i�a0��4 + �5� ,

cos��4��sf� = i�a0��3 + �6� . �C12�

The Majorana fermions are normalized so that

�	a�z�	b�w�� = �
a�z�
b�w�� =
�a,b

2��z − w�
,

�	a�z�
b�w�� = 0, �C13�

and the Majorana bilinears �i are defined as

�a � 	R
a 	L

a , �a+3 � 
R
a 
L

a �a = 1,2,3� . �C14�

By using Eqs. �C11� and �C12�, the first term in Eq. �C9b�
can be written as

−
i

2
ṽ�

a=1

3 � dx�	R
a �x	R

a − 	L
a�x	L

a + 
R
a �x
R

a − 
L
a�x
L

a�

− U� dx��1�2 + �4�5 + �3�6� , �C15�
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where we have introduced the renormalized velocity ṽ= �v
−U / �2���. Similarly, Eq. �C12� enables us to recast the sec-
ond term of HSU�4� as

−
U

2
� dx��

a=1

6

�a�2

+ U� dx��1�2 + �4�5 + �3�6� .

�C16�

From these equations, we finally obtain the desired result:

HSU�4� = −
i

2
ṽ�

a=1

3 � dx�	R
a �x	R

a − 	L
a�x	L

a + 
R
a �x
R

a − 
L
a�x
L

a�

−
U

2
� dx��

a=1

6

�a�2

. �C17�

For repulsive interaction U�0, the interaction �the last term�
is marginally irrelevant and known to yield logarithmic
corrections87,88 to physical quantities.

APPENDIX D: DERIVATION OF THE DUALITY
TRANSFORMATION IN THE CONTINUUM LIMIT

If the duality transformation �10� works not only on a
lattice but also in a low-energy field theory, the uniform part
of the generators derived above should obey the same trans-
formation rule �since the duality transformation does not
change momentum of the system�. Plugging Eqs. �42� and
�34a� into Eq. �11�, we obtain the following set of equations
for the uniform part of S1:

	̃a	̃b = cos2��

2
�	a	b + sin2��

2
�
a
b −

1

2
sin ��	a
b − 	b
a� ,

�D1�

where we have dropped the indices L /R and �a ,b�= �2,3�,
�3,1�, �1,2�. Since all three equations are satisfied simulta-
neously for a transformation which is independent both of
color �a=1,2 ,3� and of the chirality �L /R�, we try the fol-
lowing:

� 	̃L/R
a


̃L/R
a � = �cos � − sin �

sin � cos �
��	L/R

a


L/R
a � . �D2�

After some algebra, we see that the above equations are sat-
isfied if we choose the parameter � as

� =
�

2
.

Moreover, it is not difficult to verify that the above choice
works for the equations for S2 as well:


̃a
̃b = sin2��

2
�	a	b + cos2��

2
�
a
b +

1

2
sin ��	a
b − 	b
a� .

�D3�

Therefore we may conclude that the following color and
chirality �L /R� independent SO�2� transformation R��� gen-
erates the “duality” in the continuum limit:

	̃L/R
a = 	L/R

a cos
�

2
− 
L/R

a sin
�

2
,


̃L/R
a = 	L/R

a sin
�

2
+ 
L/R

a cos
�

2
. �D4�

This is not the end of the story. Besides the uniform part
discussed above, the continuum expression of the SU�4� gen-
erators contain two kinds of oscillating parts; one has mo-
mentum ��=4kF� and oscillates in a staggered manner, and
the others exhibits ±� /2�=2kF� oscillation. The argument
goes similarly for the 4kF part and we can verify that the
choice �D4� works.

The easiest way to write down the transformation of the
2kF part would be to use the Dirac fermions instead of Ma-
jorana fermions 	 and 
 and look for the correct transforma-
tion rule for the Dirac quartet. Again, as in Eq. �D1�, we
require that the 2kF part of the transformed SU�4� generators

G̃
ˆ

= L̃†XaR̃�2kF� or R̃†XaL̃�− 2kF�

be correctly reproduced by linear combinations of the origi-
nal generators as in Eqs. �9a� and �9b�. The answer is quite
simple and is given as follows:

R̃ = U���R, L̃ = U���L , �D5�

where

R = ��R,1↑,�R,1↓,�R,2↑,�R,2↓� ,

L = ��L,1↑,�L,1↓,�L,2↑,�L,2↓� ,

and U��� is given by Eq. �10�.

APPENDIX E: NONZERO OPE COEFFICIENTS

The operator-product expansion of interaction operators is
defined as

Hi�z, z̄�H j�w,w̄� �
Cij

k

�z − w�2
Hk�w,w̄� �i, j = 1,2,3,4,7� .

Since Hi are written in terms of free fermions 	a and 
a, it is
straightforward to compute the right-hand side. The only
nonzero OPE coefficients are listed below:

C11
1 = C22

1 = C44
1 = −

1

�2 , C33
1 = −

5

�2 ,

C12
2 = C21

2 = −
1

�2 , C34
2 = C43

2 = −
3

�2 ,

C47
2 = C74

2 = −
1

2�2 , C13
3 = C31

3 = −
3

�2 ,
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C24
3 = C42

3 = −
1

�2 , C14
4 = C41

4 = −
1

�2 ,

C23
4 = C32

4 = −
3

�2 , C27
4 = C72

4 = −
1

2�2 ,

C13
7 = C31

7 =
8

�2 , C24
7 = C42

7 = −
8

�2 .

APPENDIX F: GROUND-STATE DEGENERACY

In this appendix, we describe how to obtain ground-state
degeneracy by inspecting the classical ground states within
the bosonization approach. As has been mentioned before,
bosonic expressions of the physical operators have a kind of
“gauge redundancy” and the ground states should be counted
modulo the gauge redundancy.

To this end, we have first to identify physical operators for
which we define “gauge transformations.” One obvious
choice may be U�3� Dirac fermions in Eq. �82�. However, the
expansion of physical �lattice� operators in terms of the con-
tinuum ones contains the 2kF terms which cannot be ex-
pressed by these Dirac fermions. This obscures how to im-
pose the gauge equivalence for three bosons �, �s, and �f.
Instead, we start from the four Dirac fermions used in Ap-
pendix C to obtain the effective Hamiltonian of the SU�4�
model. Throughout this section, we shall use the same nota-
tions as in Appendix C. By using the SU�4� bosons �s, �f,
and �sf �see Eq. �C6��, the interactions VA=−�A�OA

��2 �A
=Q, SD, SC, and RQ� read

VQ = −
2�Q

�2a0
2 �cos��4��s�cos��4��f�

+ cos��4��s�cos��4��sf�

+ cos��4��f�cos��4��sf�� , �F1a�

VSD = −
2�SD

�2a0
2 �− cos��4��s�cos��4��f�

+ cos��4��s�cos��4��sf�

− cos��4��f�cos��4��sf�� , �F1b�

VSC = −
2�SC

�2a0
2 �sin�����s + �s + �f − �f��

� sin�����s − �s + �f + �f��

+ �z sin�����s + �s + �f − �f��sin��4��sf�

+ �z sin������s − �s + �f + �f���sin��4��sf�� ,

�F1c�

VRQ = −
2�RQ

�2a0
2 �− sin�����s + �s + �f − �f��

� sin�����s − �s + �f + �f��

− �z sin������s + �s + �f − �f���sin��4��sf�

+ �z sin�����s − �s + �f + �f��sin��4��sf�� .

�F1d�

These expressions can be readily obtained from Eqs. �83�.
The 2�2 Hamiltonian is diagonal and we can freely choose
one of the eigenvalues �say, +1� of the Pauli matrix �z

throughout the calculation. In principle, our system may be
described only by these three bosons. However, the relation-
ship between three bosons �s��s�, �f��f�, �sf��sf� and
physical operators is not so obvious and it is convenient to
go back to the original �two-band� Hubbard model �see Ap-
pendix C�. For this reason, we recover the charge boson
�c��c� and add the following umklapp term to find the semi-
classical vacua of our problem:

− �umklapp cos��16��c� . �F2�

The procedure is as follows. First of all, the gauge
redundancy15 of the original four Dirac fermions �see Appen-
dix C for the definition of these fermions�,

�a,L =
�a

�2�a0

exp�− i�4��a,L� ,

�a,R =
�a

�2�a0

exp�+ i�4��a,R� �a = 1, . . . ,4� ,

reads

�a,L/R � �a,L/R + ��Na,L/R �Na,L/R � Z� . �F3�

That is, physical quantities should be unchanged even if we
make the above shift. Therefore the semiclassical ground
states which are “gauge-equivalent” by this shift should be
treated as one and the true ground states are the equivalence
classes of this gauge transformation.

For the two phases Q and SD, a straightforward semiclas-
sical analysis �for either � or �� is applicable and we can
proceed in essentially the same manner as in Ref. 15. For the
cases of SC and RQ phases, however, the situation is slightly
tricky. Since both � and � appear in a single sine cosine
interaction, we should introduce new fields

�s� =
1
�2

��s + �f�, �f� =
1
�2

��s − �f� ,

�s� =
1
�2

��s + �f�, �f� =
1
�2

��s − �f� �F4�

before applying a semiclassical argument. Then we can
readily find the semiclassical ground states of VSC,RQ to ap-
ply the method of Ref. 15.
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