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A theoretical justification is given for the phenomenologically introduced method of ground-state moment
analysis of magnetic dichroic x-ray absorption spectra of 3d-transition metals. This method allows us to
determine in an element-specific manner ground-state moments such as, e.g., spin and orbital moments of
atoms in solids, from the line shape of the dichroic spectra rather than from the use of sum rules. It may be
used for early transition metals for which the spin-orbit coupling for the core states is so small that the L2- and
L3-absorption spectra overlap and the sum rule analysis thus cannot be used.
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I. INTRODUCTION

The application of sum rules1,2 for the analysis of experi-
mental spectra of x-ray magnetic dichroism3,4 �XMCD� has
become a very powerful tool to extract in an element-specific
manner the spin and orbital moments for systems with late
3d-transition metals such as Fe, Co, and Ni. In these systems
there is a large spin-orbit splitting of the 2p1/2- and the
2p3/2-core states, and the L2 and L3 edges are well separated.
This separation is a precondition for the determination of the
spin momentum via the spin sum rule,2 as the latter involves
a weighted subtraction of the two energy-integrated spectra.
For early 3d-transition metal atoms such as Cr or V the spin-
orbit splitting is smaller, and this constitutes two problems.

�i� The 2p1/2- and 2p3/2-wave functions do no longer ap-
pear as pure core states, but there is a quantum mechanical
mixing. As a result, the so-called branching ratio which
qualifies the relative contributions of the 2p1/2 and 2p3/2 ab-
sorption, deviates from the “ideal” value. It is generally ac-
cepted that this mixing is due to a many-body effect, i.e., the
Coulomb interaction between the core hole �created by the
x-ray absorption� and the valence electrons, but there is also
a single-electron contribution arising from the effect of the
aspherical effective potential on the core states.5 A simple
phenomenological approach to obtain quantitative informa-
tion from XMCD spectra on the core-state mixing in light
transition metals has been suggested recently by Goering.6

�ii� The L2 and L3 edges overlap, and this renders the
determination of the spin moment via the spin sum rule dif-
ficult or even impossible.

In the present paper we want to develop a method to
obtain ground-state moments of the system, e.g., the spin and
orbital moment, from the spectral shape of the absorption
signal at the L2 and L3 edges rather than from the energy-
integrated spectra �as in the sum rule analysis�.

The idea to extract ground-state moments from the spec-
tral shape has been introduced by van der Laan.7 He consid-
ered single ions in a solid and neglected the effect of a crys-
tal field exerted by the rest of the system on the electronic
states of the ion as well as the hybridization of the electronic
orbitals localized at various atomic sites, i.e., the band broad-
ening. However, he took into account the splitting of the core
levels with total angular momentum j into 2j+1 sublevels by

an effective exchange field, i.e., the contributions of the jm
sublevels, convoluted with a Lorentzian, respectively, deter-
mine the shape of the absorption spectrum at the L2 and L3
edge. Van der Laan managed to represent the resulting spec-
trum in terms of ground-state moments, among which are the
spin and the orbital moment. In metallic magnetic solids,
however, the shape of the XMCD signal is much stronger
influenced by the band broadening than by the exchange
splitting of the core levels. Goering et al.8 therefore have
developed an intuitive approach called moment analysis in
order to incorporate in a phenomenological manner the effect
of the band broadening into van der Laan’s model.

In the present paper, we represent the shape of the absorp-
tion signal in terms of single-electron expectation values of
ground-state operators. The information on the type of the
considered electronic system is completely given by the
energy- and angular-momentum-resolved density matrix for
the single-electron eigenstates. Specifying this density matrix
further, we thus can treat on equal footing both, the case of
an ionic model in a crystal field or the case of a metallic band
magnet. The exchange splitting of the core levels, which
gives only a minor contribution to the shape of the absorp-
tion signal for the late 3d-transition metals and which is hard
to incorporate mathematically, will be neglected. It then will
be shown that under certain preconditions the ground-state
moments can be obtained from a fit to the experimental spec-
tra. The calculations represent a theoretical justification of
the general strategy of the moment analysis suggested intu-
itively by Goering et al.8 although the details of the two
fitting procedures are slightly different �e.g., because we ne-
glected the exchange splitting of the core levels�.

II. CALCULATIONAL PROCEDURE

Ankudinov and Rehr9 have calculated the energy-
integrated absorption coefficient for x rays within a single-
electron description, thereby solving the involved angular-
momentum recoupling problem by use of analytical
expressions for 3jmj symbols. They managed to represent
the absorption coefficient in terms of single-electron expec-

tation values of six ground state operators Ôi.
In contrast, Carra et al.2 started from a multiplet descrip-

tion to calculate the absorption coefficient for an ion, and
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they used graphical methods to solve the involved angular-
momentum recoupling problems. They managed to represent
the absorption coefficient by multiplet expectation values of

eight ground-state operators Ŵ0
�xy�a �see below�, and the op-

erators Ôi can be represented as linear combinations of the

operators Ŵ0
�xy�a. These operators appear also in van der

Laan’s calculation7 of the absorption spectrum for an ion in
an effective exchange field, and in the intuitive phenomeno-
logical extension of van der Laan’s theory by Goering et al.8

to the case of band magnets, and in the resulting moment
analysis of the XMCD spectra. Because we want to give a
theoretical basis for the justification of such a moment analy-
sis, we combine the single-particle approach of Ankudinov
and Rehr9 with the graphical techniques of Carra et al.2

which leads to the involvement of the desired operators

Ŵ0
�xy�a. Because the various steps of our calculation are

analogous to the corresponding steps in Refs. 2, 7, and 9 we
give only a short summary of our procedure.

We start with the general single-particle expression for the
coefficient �q��� as a function of frequency � for the ab-
sorption of electromagnetic waves with polarization10 q by
electric dipole transitions from initial states �i� to final states
�f�,

�q��� =
4�2mee

2

c � V
��

i

occ

�
f

unocc

�i�rĈq
1†

�f��f �rĈ−q
1 �i���� − � fi� .

�1�

Here me and e denote the mass and the charge of the elec-
tron, c is the speed of the light, V is the volume of the
sample, and �� fi=Ef −Ei is the energy difference of the ini-
tial and final states �i� and �f�, respectively. The operator

Ĉq
1�� ,�� represents the normalized spherical harmonics with

angular-momentum quantum number 1 and magnetic quan-
tum number q

Ĉq
1��,�� =�4�

3
Yq

1��,�� . �2�

In the following we represent the initial core states �i� by the
eigenfunctions �nhjmj�= �Rnhj� �hjmj� of a spherically sym-
metric Hamiltonian including spin-orbit coupling, where
n ,h , j ,mj denote the principal quantum number, the orbital-
momentum quantum number, the total angular-momentum
quantum number, and the magnetic quantum number of the
total angular momentum, respectively. Accordingly, we rep-
resent the final unoccupied valence states by the eigenfunc-
tions �n�lmlms�= �Rn�l� � lmlms� of the spherically symmetric
Hamiltonian without spin-orbit coupling, where n� , l ,ml ,ms
denote the principal quantum number, the angular-
momentum quantum number, and the magnetic quantum
number for the orbital and spin momentum, respectively.

For a simplification of Eq. �1� we perform the following
approximations: Because we want to describe the L2 and L3
absorption, we have n=2 and h=1. For electric dipole tran-
sitions the angular momentum quantum number of the final

state is l=h±1. Thereby the contributions from the transi-
tions h→ l=h−1 are usually an order of magnitude less im-
portant.

The first approximation is to neglect these contributions,
and thus we have l=2. As a second approximation we con-
sider only transitions to n�=3, l=2 but neglect transitions to
d states with n��3. In a third approximation we assume that
j and mj are good quantum numbers for the initial states, i.e.,
we neglect the mixing of the 2p1/2 and 2p3/2 states and the
mixing of different mj components by the aspherical part of
the effective potential.

The initial and final states then may be written as

�i� = ĉjmj

† �0� , �3a�

�f� = �
mlms

�mlms�f�l̂mlms

† �0� , �3b�

where ĉjmj

† and l̂mlms

† are the creation operators for the states
�21jmj� and �32mlms�, and �0� is the vacuum state. Finally,
we neglect the exchange-splitting of the initial core level
with quantum number j into 2j+1 sublevels, and therefore
we can replace within Eq. �1� the quantity � fi in the argu-
ment of the � function by � f j.

Representing rĈq
1†

in second quantization, i.e.,

rĈq
1†

= �
jmj

�
lmlms

�21jmj�rĈq
1†

�32mlms�ĉjmj

† l̂mlms
, �4�

decomposing the �21jmj� state by means of Clebsch-Gordan
coefficients into �21mhms�� components where mh and ms� de-
note the angular-momentum quantum number and the corre-
sponding magnetic quantum number, and using the Wigner-
Eckardt theorem, �1� can be rewritten to

�q��� = �
j

� j,q��� , �5a�

where11

� j,q��� � � �
mjmh

mj�mh�

�
mlms

ml�ms�

�
i

occ

�
f

unocc

�− �1−q�2j

+ 1�P1j2
2 �i�ĉjmj

† l̂mlms
�f��f �l̂ml�ms�

† ĉjmj�
�i�

	 	1/2 1 j

ms mh mj

	 1 1 2

mh q ml

	1/2 1 j

ms� mh� mj�



		 1 1 2

mh� − q ml�

��� − � f j� �5b�

represents the single j edges of the absorption spectrum. This
may be compared to the expression �2� within Ref. 2.

In Eq. �5b� the expression in parenthesis is a 3jmj symbol.
Furthermore one has

P1j2 = �1��C1†
��2�Rj2

23 �6�

with the reduced matrix element and the radial matrix ele-
ments
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�1��C1†
��2� = 5	1 1 2

0 0 0

 and Rj2

23 = �R21j�r�R32� , �7�

respectively.
The angular factor in Eq. �5b� given by summations over

a product of four 3jmj symbols has exactly the same struc-
ture as the corresponding angular factor in Eq. �2� of Ref. 2.
From Eq. �5b� the j edges of the so-called dichroic spectra
� j

�a���� can be obtained via linear combinations over the po-
larization index q including a 3jmj symbol, i.e.,

� j
�a���� ª n1a

−1�
q

�− �1−q	 1 a 1

− q 0 q

� j,q��� ,

where n1aª � 1 a 1

−1 0 1 � is a normalization factor.

The quantity a now classifies the different types of di-
chroic spectra: � j

�a=0�=� j,1+� j,0+� j,−1 denotes the isotropic
spectrum, � j

�a=1�=� j,1−� j,−1 denotes the XMCD spectrum,
� j

�a=2�=� j,1+� j,−1−2� j,0 denotes the spectrum of the x-ray
magnetic linear dichroism �XMLD�. Using the same graphi-
cal methods as in Ref. 2, the basic result for the j edges of
the dichroic spectra is

� j
�a���� � − n1a

−1P1j2
2 ��

xy


 j
�xy�a �

f

unocc

�f �Ŵ0
�xy�a�f���� − � f j� .

�8�

Within the coefficients


 j
�xy�a = �2j + 1��2x + 1��2y + 1��− � j+3/2� 1 1/2 j

1/2 1 y
�

	
2 1 1

2 1 1

x y a
� , �9�

the expressions in the curly brackets denote the 6j and the 9j

symbols, respectively. The quantities Ŵ0
�xy�a are coupled ten-

sor operators which are evaluated in Table I. The different
sets �xy�a of Table I are obtained via the conditions for non-
vanishing coefficients 
 j

�xy�a.

TABLE I. The coupled tensor operators Ŵ�xy�a. The index � refers to the single electrons of the 3d
shell.

−Ŵ0
�00�0� �

�


l̂�

† l̂�


=N̂ number operator

−Ŵ0
�11�0� �

�

�l̂ · ŝ��
=�̂ls

spin-orbit coupling

−Ŵ0
�01�1� �

�

ŝz,�
=Ŝz

total spin momentum

−Ŵ0
�10�1� �

�

l̂z,�
=L̂z

total orbital momentum

−Ŵ0
�21�1� �

�

1
2 ��̂ − 3r�r · �̂�r−2�z,� = �

�

�Q��
̂��z,�
=T̂z

anisotropy of the spin distribution

−Ŵ0
�20�2� �

�

1
2 �3l̂z

2 − l̂2��
=Q̂zz

charge anisotropy

−Ŵ0
�11�2� �

�

1
2 �3l̂zŝz − l̂ · ŝ��

=P̂zz l̂ŝ orientation

−Ŵ0
�31�2� �

�

1
4 �5l̂z�l̂ · ŝ�l̂z − �l̂2 − 2�l̂ · ŝ − �2l̂2 + 1�l̂zŝz��

=Rzz l̂ŝ alignment
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Inserting Eq. �3b�, Eq. �8� can be rewritten in terms of a
density matrix which yields our final result for the dichroic
spectra

� j
�a���� � − n1a

−1P1j2
2 ��

xy


 j
�xy�a

	 �
mlms

ml�ms�

�mlms�Ŵ0
�xy�a�ml�ms���mlml�,msms�

�j� ��� ,

�10�

where the quantity

�mlml�,msms�
�j� ��� ª �

f

unocc

�f �mlms��ml�ms��f���� − � f j� �11�

is the energy- and angular-momentum resolved density ma-
trix for the final valence states.

The physical character of the system �localized electrons,
band electrons, etc.� is described by this density matrix. In
the following section we will consider first the density matrix
for a single ion with open 3d shell in a cubic crystal field.
This will give us the general idea for a moment-analysis of
the absorption spectra by a suitable approximation for the
density matrix of a solid.

III. REPRESENTATION OF ABSORPTION SPECTRA VIA
GROUND-STATE MOMENTS

To motivate the method of moment analysis of dichroic
spectra, which we will suggest within this section, we first
consider an isolated ion in a cubic crystal field. According to
group theory, an unperturbed fivefold degenerate nd level
with energy End splits into a twofold degenerate level with
energy Eeg

and a threefold degenerate level with energy Et2g
if the spherical symmetry is reduced to cubic symmetry.
Within perturbation theory, the corresponding orbital parts of
the eigenfunctions may be represented in terms of the eigen-

functions �ndmd� of the unperturbed nd-shell �spin-orbit cou-
pling is neglected for the moment�

��1
�eg�� = �nd 0�, ��3

�t2g�� = �nd + 1� ,

��2
�eg�� =

1
�2

��nd + 2� + �nd − 2��, ��4
�t2g�� = �nd − 1� ,

��5
�t2g�� =

1
�2

��nd + 2� − �nd − 2�� .

For the final states, including the spin functions, then one has
�f�� ���1,2

�eg�� � m̄s�, ��3,4,5
�t2g� � � m̄s�� and the corresponding density

matrix reads12

�mlml�,msms�
�j� ��� = �

meg
m̄s

unocc

Nmeg

−2 �meg
ml

�mlml�
�m̄sms

�msms�

− ��Eeg
− � − Ej�

+ �
mt2g

m̄s

unocc

Nmt2g

−2 �mt2g
ml

�mlml�
�m̄sms

�msms�

− ��Et2g
− � − Ej� , �12�

with

meg
= 0, ± 2, where Nmeg

−2 = 
1 for meg
= 0,

1

2
for meg

= ± 2,

mt2g
= ± 1, ± 2, where Nmt2g

−2 = 
1 for mt2g
= ± 1,

±
1

2
for mt2g

= ± 2.

�13�

Inserting Eq. �12� into Eq. �10� yields

�14�

Obviously, for an ion in a cubic crystal field the situation is
rather simple. The density matrix exhibits two peaks at the eg

and t2g level and is diagonal with respect to the orbital an-
gular momentum and spin quantum numbers. Accordingly,
the absorption coefficient consists also of two peaks at these
two energies, and their height is determined by the expecta-

tion values of the operators Ŵ0
�xy�a evaluated with the unoc-

cupied eg and t2g eigenfunctions, respectively.

The situation becomes more complicated when going
from the isolated ion in a cubic crystal field to a cubic solid
with finite bandwidth of the electronic states. Then, the den-
sity matrix is a continous function of the energy and is in
general nondiagonal in the orbital angular momentum and
spin quantum numbers. However, especially for the systems
with small bandwidth, it is likely that the density matrix is
distinctly peaked at some energies and that the angular mo-
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mentum character of the density matrix is about the same
�

mlml�,msms�
�i�

, close to these peak energies.

We then can approximate the density matrix by

�mlml�,msms�
�j� ��� � �

f

unocc

�f �mlms��ml�ms��f���� − � f j�

= �
i

�mlml�,msms�
�i� D�i��� + Ej − Ei� . �15�

From now on all energies Ef, Ej, Ei are measured from the
lower edge of the valence band. We thereby decomposed the
total energy-resolved density of unoccupied states D��+Ej�
into contributions D�i���+Ej −Ei� centered around the peak
energies Ei, i.e.,

D�� + Ej� = �
i

D�i��� + Ej − Ei� �16�

with

�
unocc

d�D�� + Ej� = �
i
�

unocc
d�D�i��� + Ej − Ei� = �

i

Nh
�i�

= Nh, �17�

where Nh
�i� is the number of holes associated with D�i� and Nh

is the number of holes contained in the complete valence
band. The function D�i� then may be normalized according to

D�i��� + Ej − Ei� ¬ Nh
�i�DN

�i��� + Ej − Ei� . �18�

In the following we neglect the difference of the quantities
P1j2 for different j, which, according to Eqs. �6� and �7�,
means that we neglect the difference of the radial core wave
functions �R21j� for different j �as in Ref. 9�.

Inserting Eqs. �15� and �18� into Eq. �10� then yields

� j
�a���� � ��

xy,i
�Ŵ0

�xy�a�unocc
�i� �i�j�

�xy�a�� + Ej − Ei� �19�

with the profile functions

�i�j�
�xy�a�� + Ej − Ei� ¬ n1a

−1
 j
�xy�aDN

�i��� + Ej − Ei� . �20�

The quantities

�Ŵ0
�xy�a�unocc

�i� = �
mlms

ml�ms�

�ml�ms��Ŵ0
�xy�a�mlms��mlml�,msms�

�i� Nh
�i�

�21�

are expectation values of the operators Ŵ0
�xy�a evaluated with

the unoccupied valence states corresponding to section i on
the � scale as follows from Eq. �8�. The expectation value
over the whole unoccupied part of the valence band thus is

�Ŵ0
�xy�a�unocc = �

i

�Ŵ0
�xy�a�unocc

�i� . �22�

The desired ground state moments �Ŵ0
�xy�a�, i.e., the expecta-

tion values of the operators Ŵ0
�xy�a over the occupied part of

the valence band are

�Ŵ0
�xy�a� = − �Ŵ0

�xy�a�unocc �23�

with the exception of −�Ŵ0
�00�0� which gives the number of

electrons in the valence d-band and which is ten minus the
number of holes.

IV. GROUND-STATE MOMENT ANALYSIS OF DICHROIC
SPECTRA

Based on Eq. �19� we suggest the following fitting proce-
dure to extract the ground-state moments from experimental
dichroic spectra.

�i� Determine the energies Ei from the main peaks in the
energy-resolved density of unoccupied d states D��−Ej�.
This is simple if the density is available, either from ab initio
calculations or from inverse photoemission experiments. If
not, the positions of the main peaks of the experimental ab-
sorption spectrum � j

�0���� can be used, hoping that these
coincide with the peak positions of the density of states.

�ii� Choose a spectral form for the normalized functions
DN

�i���+Ej −Ei�, e.g., a Gaussian or a Lorentzian function,
with widths �i, respectively. Determine the quantities Nh

�i� and
�i by fitting the expression

FIG. 1. �Color online� Schematic depiction of the profiles �i�j�
�xy�1

for various �xy� for a model density of states curve with two distinct
peaks. As an example on the left hand side a schematic density of
states curve is shown for a cubic solid with small bandwidth. On the
right hand side the onset of the L3 and L2 absorption, respectively, is
marked by a dash-dotted horizontal line.

THEORETICAL JUSTIFICATION OF GROUND-STATE… PHYSICAL REVIEW B 74, 224424 �2006�

224424-5



D�� + Ej − Ei� = �
i

Nh
�i�DN

�i��� + Ej − Ei,�i� �24�

to the energy-resolved density of states D���. If the latter is
not available we can fit the expression

� j
�0����=! ��

i

A�i��Nh
�i��DN

�i��� + Ej − Ei,�i� �25�

to the experimental absorption spectrum, hoping that we can
describe the absorption spectrum with the same functions
DN

�i���+Ej −Ei ,�i� as the density of states. Of course, the
latter fit does not determine the quantities Nh

�i� of Eq. �18�,
which, however, are not required anyway because later on

we will fit the �Ŵ0
�xy�a�unocc as given by Eq. �21� as whole

entities which include the quantities Nh
�i�.

�iii� Calculate the profiles �i�j�
�xy�a��+Ej −Ei� according to

Eq. �20� and place them at the positions Ei�j�=Ei−Ej on the
� scale, see Fig. 1. Logically, this corresponds to Fig. 1�b� of
Ref. 7. As explained in Sec. I, in this reference the band
broadening of the valence states has been neglected but the
splitting of the core levels by an exchange field has been
taken into account, whereas we neglect the exchange split-
ting but focus on the band broadening. Accordingly, our po-
sitions Ei�j� correspond to the positions Ejm in Ref. 7. Finally,
our step �iii� corresponds to the third step in the fitting pro-
cedure of Ref. 8 where the authors have positioned the whole
set of exchange-split profiles of Ref. 7 at the peak energies Ei
of the density of states. If they had neglected the exchange
splitting, their third step would be equivalent to our step �iii�.

�iv� The quantities �Ŵ0
�xy�a�unocc

�i� are fitted to the experi-
mental spectrum ��a����=� j� j

�a���� according to Eq. �19�,
i.e.,

��a���� � ��
xy,i

�Ŵ0
�xy�a�unocc

�i� ��i�j+�
�xy�a�� + Ej+

− Ei� + �i�j−�
�xy�a��

+ Ej−
− Ei�� . �26�

It is clear that such a fit is able to determine separate values

for the various �Ŵ0
�xy�a�unocc

�i� only if the profile functions in the

square brackets are linearly independent for different �xy�a.
As becomes obvious from Eqs. �19� and �20�, this is not the

case if 
 j+

�xy�a /
 j+

�x�y��a=
 j−

�xy�a /
 j−

�x�y��a. This holds in case of
XMCD for �01�1 and �21�1 as well as for �11�2 and �31�2 in
case of XMLD. Then, the fits can yield just the sum

�Ŵ0
�xy�a�unocc

�i� + �Ŵ0
�x�y��a�unocc

�i� .
�v� Determination of the ground-state moments according

to Eqs. �22� and �23�. The keypoint of the fitting procedure is
that it requires neither the knowledge of N�i� nor the knowl-

edge of �
mlml�,msms�
�i�

because the �Ŵ0
�xy�a��i� which contain these

quantities are fitted as whole entities.

V. CONCLUSIONS

We have developed a procedure to determine the ground-
state moments of a magnetic solid �e.g., spin and orbital
moment� from the shape of dichroic x-ray absorption spectra
� j

�a���� rather than by the use of sum rules. The method may
be used for early transition metals with small spin-orbit cou-
pling for which the spectra � j

�a���� for j= j−=1/2 and j= j+

=3/2 overlap so that a sum rule analysis is not possible. Of
course, it can also be used for a consistency check of the sum
rules for late transition metals. A precondition for such a
ground-state moment analysis is that there are sections on the
� axis for which the orbital character of the density matrix of
the valence states varies only slowly with �. For systems
with rather well localized electronic states and hence rather
small bandwidth and distinctly structured density of states
this is well justified. Our paper yields the theoretical basis for
a justification for the intuitive phenomenological method of
ground-state-moment-analysis of E. Goering et al.8 In Ref. 8
an explicite example for the practical use of the ground-state-
moment-analysis of experimental data for an early transition
metal, i.e., Cr in CrO2, is given.
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