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We study the solitons, both topological and nontopological, stabilized by spin precession in a classical
two-dimensional lattice model of Heisenberg ferromagnets �FM� with easy-axial anisotropy. These solitons can
be regarded as bound states of large number N of magnons, their properties are treated both analytically using
a continuous model and numerically for a discrete set of the spins on a square lattice. Both exchange anisotropy
with constant � and single-ion anisotropy with constant K are taken into account. In continuum approximation,
both terms give additive contributions to the effective anisotropy constant Keff=K+2�. Beyond this approxi-
mation, the properties of solitons depend on the microscopic origin of anisotropy. Solitons can be conveniently
classified in the �Keff ,N� plane. We have shown that the stable solitons exist for N higher than some critical
value Ncr. At N�Ncr and for Keff�0.3J, J is exchange constant, the solitons in FM with any type of anisotropy
could be described fairly well by continuum model. The continuum description fails at Keff� �0.3�0.4�J for
exchange anisotropy, but still valid for FM’s with a single-ion anisotropy up to Keff�0.6J. For higher values
of anisotropy, the continuous approach is no more valid and the above discrete model should be used. For
Keff�0.6J, in the entire range of N values, we found some fundamentally new soliton features absent in
continuum models. Namely, the soliton energy E�N� becomes non-monotonic with the minima at some “magic
numbers” of N. In this case, the soliton frequency ��N�=dE�N� /dN have quite irregular behavior, with
step-like jumps and negative values of � for some N regions. In these regions, the static soliton textures,
stabilized by the lattice effects, are present.
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I. INTRODUCTION

An analysis of topological solitons has been an active area
of research in physics and mathematics for more than
30 years, see a recent monograph.1 Topological solitons
appear in several branches of condensed matter
physics—superfluidity,2 superconductivity, both conven-
tional and high-temperature,3 low-dimensional magnetism as
well as in some areas of high-energy physics.1 Also, some
soliton solutions after the change y→c� �� is an imaginary
time, c is the speed of magnons� determine so-called instan-
tons, describing nonsmall quantum fluctuations in one-
dimensional �1D� isotropic antiferromagnets,4 giving rise to
so-called Haldane phase.

In the physics of magnetism the solitons are important for
the description of low-dimensional magnets. For two-
dimensional easy-plane magnets with continuously degener-
ate ground state there appear magnetic vortices, responsible
for the Berezinskii-Kosterlitz-Thouless �BKT� phase
transition.5,6 The presence of vortices leads to the emergence
of a central peak in dynamical response functions of a
magnet,7 which can be observed experimentally.8

The vortices in magnets and other types of ordered media
�like superfluids and/or superconductors� as well as those in

general field-theoretical models like complex Ginzburg-
Landau models �gauge or global�, Gross-Pitaevskii model
with its gauged counterpart, known as Schrödinger-Chern-
Simmons model, see Ref. 9, are characterized by �1 topo-
logical invariant and have an infinite energy, see Refs. 1 and
10 for details about the topological classification of solitons.

The �1 topological vortices are stable relatively to small
and nonsmall perturbations. Latter perturbation appear, for
example, in the collision of two vortices.1 On the other hand,
there are no vortices in the magnets with discretely degener-
ate ground state, for example, isotropic and easy-axial mag-
nets, where �1 is trivial. Instead, various types of localized
topological solitons appear there.

Localized two-dimensional �2D� topological solitons have
�2-topological charge and their energy can, in principle, be
finite. In subsequent discussion we will call �2-topological
solitons as solitons, while the term “vortex” will be used for
�1 solitons with infinite energies.

Belavin and Polyakov were the first to construct the exact
analytical solutions for 2D topological solitons in a con-
tinuum model of the isotropic magnet.11 The energy of such
Belavin-Polyakov �BP� solitons EBP in a magnet with ex-
change constant J is finite and described by the universal
relation
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EBP = 4�JS2, �1�

S is the atomic spin. The structure of such solitons is de-
scribed by a topologically nontrivial distribution of the mag-
netization field m� �x ,y�,12 which is determined by the
�2-topological invariant, see below Eq. �12� and Refs. 1 and
10 for more details. Belavin and Polyakov have also proved
that such solitons are responsible for the destruction of the
long-range magnetic order in purely continuous isotropic
models at any finite temperature.11

Note that the properties of the solitons in this isotropic
model is rather academic problem since all real magnets
have a discrete lattice structure and nonzero magnetic aniso-
tropy. The role of uniaxial anisotropy has been investigated
in a number of papers, see Refs. 12 and 13, for review. To-
pological solitons of the same �2-topological structure are
also inherent for standard continuum �with accounting of
terms quadratic on the magnetization field gradients, like the
term W2 in the first line of Eq. �9�� models of anisotropic
magnets. The basic problem of soliton physics in 2D mag-
nets is related to a soliton stability. According to the famous
Hobard-Derrick theorem �see original works,14,15 and also
the monograph1 for review of recent works�, the stable static
non-one-dimensional soliton with finite energy and finite ra-
dius does not exist in the standard nonlinear field-theoretical
models; the soliton is unstable against collapse. This is, in
particular, true for the uniaxial 2D ferromagnet with the an-
isotropy energy density Wa	mx

2+my
2, see Refs. 16 and 17

and the explanation below Eq. �14� for details.
The possibility to construct two-dimensional solitons

stable against collapse is due to the presence of additional
integrals of motion. For example, such solitons with finite
energy, both nontopological and �2 topological, can be real-
ized in the uniaxial ferromagnet due to the conservation of z
projection of the total spin.12,13 This leads to the appearance
of so-called precessional solitons characterizing by time-
independent projection of magnetization onto the easy axis
�z-axis hereafter�, with the precession of the magnetization
vector m� at constant frequency around the z axis. The analo-
gies of such precessional solitons are known to occur in dif-
ferent models of field theory. The well-known examples
from field theory are Coleman’s Q-balls,18 which do not have
topological properties as well as so-called Q-lumps,19 which
have �2-topological charge, for details see Ref. 1.

The analysis of the above examples shows that the stabil-
ity of 2D solitons is not related directly to their topological
properties; the nontopological dynamical solitons may also
exist and be stable, while at the same time a presence of
�2-topological charge does not necessarily make a soliton
stable. Two-dimensional magnets, in contrast to many other
field-theoretical models, may have both �2-topological soli-
tons and those without nontrivial topological properties.
Thus it is important to understand their common features and
differences as well as possible contribution of these solitons
to different physical effects. First of all, here we should note
that all stable precessional solitons, topological and nontopo-
logical, realize the minimum of energy for a given number of
spin Sz deviations. In the semiclassical approximation, this
value can take integer values N only, and can be interpreted

as a number of magnons excited in the magnet. Thus, we
naturally arrive at the concept of a soliton, both topological
and nontopological, as a bound state of a large number of
magnons.12

Two-parameter �parameters are precession frequency and
velocity of translational motion of a soliton� small-amplitude
nontopological magnetic solitons moving with arbitrary ve-
locity in a two-dimensional easy-axis ferromagnet have been
constructed in Ref. 20. Their minimal energy ENT=11.7JS2

depends only on combination JS2 similar to Eq. �1�, which is
a bit smaller than the energy of the above discussed Belavin-
Polyakov soliton, ENT=0.93EBP. For such solitons, the rela-
tion between their energy �for given N� and momentum can
be thought of as their dispersion law. Near the minimal en-
ergy ENT, this dispersion law has a form E�P ,N��
�P�N,
where 
�P� is a dispersion law for linear magnons. For
P=0, this gives the critical number of bound magnons
Nc=ENT/
�0�. Thus, these solitons are nothing but weakly
coupled magnon clouds, see Fig. 2. The expression for the
soliton dispersion law is used to calculate the soliton density
and the soliton contributions to thermodynamic quantities
�response functions� like specific heat. The signature of soli-
ton contribution to the response functions of a magnet is an
Arrhenius temperature dependence like exp�−E0 /T� with the
characteristic value E0 as a soliton energy. Such behavior
with ENT�E0�EBP has been observed experimentally in
Refs. 21 and 22, see Ref. 23 for review. Comparison of con-
tributions from solitons and free magnons shows that there is
a wide temperature range where the solitons give more im-
portant contribution to thermodynamic functions such as heat
capacity or density of spin deviations.20

We note here, that the structure of these nontopological
solitons for E�ENT is essentially different from that of to-
pological solitons in uniaxial magnets. Namely, for minimal
energy of a topological soliton, as E→EBP, the radius of
topological soliton in continuous model of anisotropic mag-
nets diminishes, making them “more localized,” contrary to
nontopological solitons, which become delocalized as
E→ENT. Hence, although the energy of topological solitons
is a little larger than that of nontopological solitons �0.89 and
1 in the units of EBP, see above�, it is possible that only
BP-type topological solitons would contribute to response
functions measured by neutron scattering in the region of
nonsmall momentum transfer. On the other hand, recent
Monte Carlo simulations for 2D discrete models of easy-
axial magnets did not show any signatures of small-radius
topological solitons.24 Thus, in principle, both types of
solitons, topological and nontopological, could be of
importance.

The above situation resembles the one-dimensional case,
there are also topological solitons—kinks and nontopological
solitons—breathers with smaller energy. But it is well
known, that in the 1D case for low anisotropy only kinks
contribute to the response functions since small energy
breathers transit continuously into weakly coupled magnon
conglomerates. We note that for such systems in one space
dimension, the difference between topological and nontopo-
logical solitons for high anisotropy is not that large. For in-
stance, the spin complexes with several N�10 magnons
have been observed in a chain material CoCl2 ·2H2O with
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high Ising-type anisotropy.25 These complexes can be inter-
preted as nontopological one-dimensional solitons.

We now turn to the main problem of present work,
namely to the analysis of the effects of discreteness and ar-
bitrarily large anisotropy. For real magnets, which are dis-
crete spin systems on a lattice, there is an additional problem
of application of the topological arguments, which, strictly
speaking, can be applied only to continuous functions m� �r� , t�.
It is widely accepted that the continuous description is valid
for discrete systems if the characteristic scale l0 of magneti-
zation m� �r� , t� variation, ��m� � ��m� � / l0, is much larger than
lattice constant a. The analysis of the magnetic vortices have
shown that �1—topological charge of a vortex is determined
by the behavior at infinities only so that the topological
structure of such a vortex survives even in “very discrete”
models with l0�a. As for our case of �2, topological charge,
the situation is not so simple and obvious. From one side, the
continuous approach describes quantitatively the magnetiza-
tion distribution in the vortex core already at l0�1.5a.26 On
the other side, so-called cone state vortices, with different
energies for two possible spin directions in the vortex core
are much more sensitive to the anisotropy, in fact, to the
parameter a / l0. Even for l0�10a their �2, topological
charge �polarization p	mz�0�= ±1�, characterizing the core
structure of vortices, for heavy vortices with higher energy
can change so that they convert into more preferable light
vortices with opposite polarization p,27 that never happened
for the continuum model.28 Thus, the role of the discreteness
effects is quite ambiguous.

The present work is devoted to the analysis of 2D soli-
tons, both topological and nontopological, in the strongly
anisotropic magnets accounting for discreteness effects. In
other words, here we investigate the influence of finiteness of
a / l0 on the soliton structure. For intermediate values of an-
isotropy some “critical” number of bound magnons is
present: the topological soliton is stable at N�Ncr only. For
very large anisotropy we found the specific effects of non-
monotonic dependence of soliton properties on the number
of bound magnons, caused by discreteness, which leads to
the presence of “magic” magnon numbers.

II. THE DISCRETE MODEL AND ITS CONTINUOUS
DESCRIPTION

We consider the model of a classical 2D ferromagnet with
uniaxial anisotropy, described by the following Hamiltonian:

H = − 

n� ,a�

�JS�n� · S�n�+a� + �Sn�
zSn�+a�

z � + K

n�

��Sn�
x�2 + �Sn�

y�2� .

�2�

Here S� 	�Sx ,Sy ,Sz� is a classical spin vector with fixed
length S on the site n� of a 2D square lattice. The first sum-
mation runs over all nearest-neighbors a� , J�0 is the ex-
change integral, and the constant � describes the anisotropy
of spin interaction. In subsequent discussion, we will refer to
this type of anisotropy as exchange anisotropy �ExA�. Addi-
tionally, we took into account single-ion anisotropy �SIA�
with constant K. We consider the z axis as the ease magne-
tization direction so that K�0 or ��0.

The Hamiltonian �2� commutes with the z projection of
total spin. It is more convenient to use semiclassical termi-
nology, and to present it as a number of bound magnons in a
soliton N, defined by the equation

N = 

n�

�S − Sn�
z� . �3�

The spin dynamics is described by the Landau-Lifshitz
equations

dS�n�

dt
= −

1

��S�n� 

�H

�S�n�
� . �4�

In the case of weak anisotropy, K, ��J, the characteristic
size of excitations l0�a, see Eq. �14� below, so that the
magnetization varies slowly in a space. In this case we can

introduce the smooth function S��x ,y , t� instead of variable

S�n�t� and use a continuous approximation for the Hamil-
tonian �2�. It is based on the expansion of a classical mag-

netic energy E in power series of magnetization S� gradients,

E = W2 + W4 + ¯ , �5�

where W2 contains zeroth and second order contributions to
magnetic energy and W4 contains the fourth powers. These
are given by

W2 =
 d2x�Keff

a2 �S2 − Sz
2� +

J

2
��S��2 +

�

2
��Sz�2� , �6a�

W4 = −
a4

24

 d2x�J�� �2S�

�x2�2

+ � �2S�

�y2�2�
+ ��� �2Sz

�x2 �2

+ � �2Sz

�y2 �2�� , �6b�

where � is a 2D gradient of the function S��r� , t�. Here, we
used integrations by parts with respect to the fact that our
soliton texture is spatially localized. We omit unimportant
constants and limit ourselves to the terms of fourth order
only as they are playing a decisive role in stabilization of
solitons, see for details.16,27 Also, we introduce the effective
anisotropy constant

Keff = K + 2� . �7�

We note here, that single-ion anisotropy enters only W2, but
not W4 and higher terms, while exchange anisotropy enters
every term of the above expansion over powers of magneti-
zation gradients. Usually, this difference is not important for
small anisotropy, K, ��J, but, as we will see below, this fact
gives qualitatively different behavior near the soliton stabil-
ity threshold.

Introducing the angular variables for normalized magne-
tization
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m� =
S�

S
= �sin � cos �;sin � sin �;cos �� , �8�

we obtain the following form of the classical magnetic en-
ergy:

E��,�� = W2 + W4,

W2 = S2
 d2x�Keff

a2 sin2 �

+
1

2
�����2�J + � sin2 �� + J����2 sin2 ��� ,

W4 = −
1

24
a2S2
 d2x���2��2�J + � sin2 ��

+ ����4�J + � cos2 �� + J sin2 �����2�����2 + 2����2�

+ 2 sin � cos ���2��������2 − J����2�� . �9�

In this long expression we omitted the terms with scalar
product of gradients like ��� ,���, because they do not con-
tribute to the trial function we will use for analysis, see be-
low.

In terms of fields � and �, the continuous Landau-Lifshitz
equations �4� read

sin �
��

�t
=

a2

�S

�E

��
, sin �

��

�t
= −

a2

�S

�E

��
. �10�

These equations can be derived from the Lagrangian

L��,�� = −
�S

a2 
 d2x�1 − cos ��
��

�t
− E��,�� . �11�

The simplest nonlinear excitation of the model �11� with
E	W2 is the 2D localized soliton, characterized by the ho-
mogeneous distribution of magnetization far from its core.
Topological properties of the soliton are determined by the
mapping of physical XY plane to the S2 sphere given by the
equation m2=1 of the order parameter space. This mapping
is described by the homotopy group �2�S2�=Z, see Ref. 10,
which is characterized by the topological invariant �Pontrya-
gin index�

Q =
1

8�



S2
d2x
���m� ���m� 
 ��m� �� =

1

4�



S2
sin �d�d� ,

�12�

taking integer values, Q�Z. Here 
�� is Levi-Civita tensor.
To visualize the structure of a topological soliton, we con-

sider the case of the purely isotropic magnet with Keff=0 and
W4=0. For this isotropic continuous model the soliton solu-
tion is aforementioned BP soliton of the form11

tan
�

2
= �R

r
��Q�

, � = �0 + Q� , �13�

where r and � are polar coordinates in the XY plane, �0 is an
arbitrary constant. The energy �1� of this soliton does not
depend of its radius R, which is arbitrary parameter for the

isotropic magnet, see Ref. 11. However, even small aniso-
tropy breaks the scale invariance of the above model since
now the well-known scale

l0
2 =

a2J

2Keff
�14�

enters the problem. The value of l0 is indeed a domain wall
thickness and can also be obtained from the simple estima-
tions with respect to the fact that for finite anisotropy the
magnon spectrum has a gap.

In the latter case, the soliton energy with respect to only
W2 term has the form E=EBP+const�R / l0�2 and hence has a
minimum at R=0 only, which signifies the instability of the
static soliton against collapse in this model. Obviously, the
scale invariance is also broken in the initial discrete model.
The “trace of discreteness” in our continuous model �11� is
the presence of a contribution W4. This term gives the con-
tribution to the soliton energy proportional to JS2a2 /R2. Such
terms �called Skyrme terms� have often been included in the
field-theoretical models to obtain stable non-one-dimensional
soliton textures, see Ref. 1. However, for magnets the terms
containing higher powers of a magnetization field gradients

like ��� m� �4 �with positive sign�,29–32 which might be able to
stabilize even static soliton against collapse, see Ref. 16 for
details, are rather exotic. For example, discrete magnetic
models with Heisenberg interaction of nearest neighbors
only �i.e., those without biquadratic exchange and/or next-
nearest-neighbors interaction� have negative W4�0, and the
higher powers of magnetization gradients do not stabilize a
static soliton in this case. Moreover, as we will show below,
the presence of discreteness ruins the stability of the preces-
sional soliton with N�Ncr even in the case, when it is stable
in the simplest model with W=W2 only.

We now discuss the stability of precessional solitons. For
a purely uniaxial ferromagnet the energy functional E�� ,��
does not depend explicitly on the variable � so that there
exists an additional integral of motion,12 which is the con-
tinuum analog of Eq. �3�,

N =
S

a2 
 d2x�1 − cos �� . �15�

The conservation law �15� can provide a conditional �for
constant N� minimum of the energy functional E, which sta-
bilizes the possible soliton solution. Namely, we may look
for an extremum of the expression

L = E − ��N , �16�

where � is an internal soliton precession frequency, that can
be regarded as a Lagrange multiplier. Note that this func-
tional is nothing but the Lagrangian �11� calculated with re-
spect to specific time dependence

� = �t + Q� + �0,

which holds instead of �13� in this case. This condition leads
to the relation,12
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�� =
dE

dN
, �17�

which makes clear the microscopic origin of the precessional
frequency, �. Namely, an addition of one extra spin devia-
tion �bound magnon� to the soliton changes its energy by ��.
Thus, the dependence ��N� is extremely important for the
problem of a soliton stability. For the general continuum
model of a ferromagnet, even containing the terms like W4,
the sufficient and necessary condition of soliton stability
reads d� /dN�0,33 but for the discrete model the validity of
this condition is not clear yet. The point is that the known
analytical methods of a soliton stability analysis rely essen-
tially on the presence of a zeroth �translational� mode, which
is obviously present for any continuous model, but is absent
for discrete models, where lattice pinning effects are present.
To solve the problem of soliton stability we will investigate
explicitly the character of conditional extremum of the en-
ergy with N fixed.

III. THE METHODS OF A SOLITON STRUCTURE
INVESTIGATIONS

To get the explicit soliton solution and investigate its sta-
bility we must solve the Landau-Lifshitz equations �10� with
respect to the energy �9�. For the simplest model accounting
for W2 only, an exact ansatz

� = ��r�, � = Q� + �t , �18�

can be used, leading to the ordinary differential equation for
the function ��r�. This equation can be easily solved numeri-
cally by the shooting procedure, using the value of d� /dr at
r=0 as a shooting parameter, see Ref. 12. In this problem, �
is a free parameter and there exist a class of soliton solutions,
depending on this parameter and corresponding to different
E or N values. However, it is more convenient to classify the
above solutions by the value N of bound magnons number. In
the case of the soliton with large N�N2	2�S�l0 /a�2�, the
approximate “domain wall” solution works pretty well. This
solution has the shape of a circular domain wall of thickness
l0, see �14� and radius R,

cos �0�r� = tanh
r − R

l0
. �19�

Using this simple structure one can obtain the number of
bound magnons, which is proportional to the size of the soli-
ton, N�2�S�R /a�2 and energy, E=4�S2�2JKeffR /a. Note
that such a solution is the same for topological and nontopo-
logical solitons except for the behavior near the soliton core.
This means, that the characteristics of such solitons are pretty
similar. In the case of the small radius soliton �R� l0�, the
following interpolative solution works well:34

tan
�0�r�

2
=

R

r0
KQ� r

r0
�, r0 =

l0

�1 − �/�0

, �20�

where KQ�x� is the McDonald function with index Q, and �0

is a gap frequency for linear magnons. It provides correct
behavior at r�R� l0, where it converts to the Belavin-

Polyakov solution �13�. For large distances �r�R�, this ex-
pression gives an exponential decay �instead of power decay
for a Belavin-Polyakov soliton� with characteristic scale r0.
For solution �20� �→�0 as N→0 so that small radius soli-
tons in anisotropic magnets have two different scales, the
core size R� l0 and the scale of the exponential “tail”
r0= l0 /�1−� /�0� l0.16,34

For even minimal accounting for the discreteness on the
basis of a generalized model with fourth spatial derivatives,
the problem becomes much more complicated. The complex-
ity of the problem is not only due to the fact that for the
energy �9� it is necessary to solve the fourth order differential
equation, and use a much more complicated three-parameter
shooting method. But the basic complication here is the fact
that in general fourth-derivative terms contain anisotropic
contributions like ��2� /�x2�2, ��2� /�y2�2, which cannot be
reduced to the powers of radially symmetric Laplace opera-
tor �these terms are omitted in Eq. �9� for simplicity�. In this
case, the radially symmetric ansatz is no more valid, and,
strictly speaking, we must solve a set of partial nonlinear
differential equations. To the best of our knowledge, an exact
method for construction of soliton �separatrix� solutions for
such type of equations do not exist so that some other ap-
proximate methods should be used for this problem.

A. Variational approach for general continuum model

One of the approaches, which we use for the approximate
analysis of the solitons in the model �9�, is the direct
variational method. For the minimization of the energy
E=W2+W4 we use a trial function,

tan
�

2
= �RK1��r� . �21�

Here, we consider the case Q=1, and the case of higher
topological invariants is qualitatively similar. Note, that trial
function �21� is based on the interpolative solution �20�. The
trial function �21� gives correct asymptotics both for r→0
�corresponding to BP soliton� and for r→� �exponential de-
cay with characteristic scale 1 /��, see above. Our analysis
shows that the same results can be obtained using a simpli-
fied trial function, which also captures the asymptotic behav-
ior of the soliton. This function has the form

tan
�

2
=

R

r
exp�− �r� . �22�

In the spirit of the minimization method above discussed we
consider the parameter � as variational, keeping the param-
eter R constant as it is related to N, N	R2, see, e.g., Ref. 12.
In other words, we minimize the energy �9� with the trial
function �21� or �22� over � for constant R. This approach
has the advantage that simultaneously with equation solving,
it permits investigation of the stability of obtained solution
on the base of simple and obvious criterion. Namely, a soli-
ton is stable if it corresponds to the conditional minimum of
the energy at fixed N, and it is unstable otherwise.
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B. Numerical analysis of the lattice model

Since the continuous description fails for the case of a
high anisotropy, one needs to elaborate the discrete energy
�2� on a lattice. We are not able to solve the problem analyti-
cally, thus we discuss the numerical approach to study the
solitonlike spin configurations in a discrete square lattice.
Obviously, the direct molecular dynamics simulations on a
lattice is a powerful tool for the soliton investigation, for any
value of anisotropy. Direct spin dynamics simulations of 2D
solitons have been recently performed in Refs. 35 and 36.
After the relaxation scheme, where an initial trial solution
was fitted to the lattice, the spin-dynamical simulations of
the discrete Landau-Lifshitz equations were performed. This
approach, however, is quite computer intensive, requiring
powerful computers. To minimize the calculation time, the
parallel algorithms have been used.36

For this reason, we obtained desired spin configuration by
direct minimization of the energy E, keeping N constant. For
our modeling we choose the square lattices with “circular”
boundary conditions. We fix the values of spins on the
boundary to the ground state ��=0�; those values have been
kept intact during minimization. The method of minimization
is the simplex type method with nonlinear constraints. This
method is based on the steepest descent routine applied to
the functions of a large number of variables. The above
method is able to find the conditional minimum of a given
function with several �usually small number� constraints,
consisting of relations between variables. In our problem,
such variables are the directions of each spin, parametrized
by the angular variables �n and �n, and the conditional mini-
mum of the energy, E has been obtained for a fixed value of
z—projection of the total spin. As this additional constraint
slows down the calculations substantially, we use another
method, valid for initial configurations where N differs from
the necessary one less than unity. The idea of the method is
as follows: the angle � of an arbitrarily chosen “damper”
spin was excluded from the minimization procedure, and its
value has been kept constant, to achieve the necessary N
value throughout whole minimization with respect to all
other variables.

The method is dealing formally with the static problem,
but it gives the possibility to find directly the precessional
frequency. To find �, we used the discrete Landau-Lifshitz
equation �4� rewritten for the angular variable �n, in the way
used in Eq. �10�. Using relation ��n /�t=�, we obtain

� =
1

sin �n

1

�S

�H
��n

, �23�

which does not depend on index n throughout all the system.
Here H is the discrete Hamiltonian �2�.

To find the above local minimum, we start from the BP
initial configuration. The size of lattice clusters varied from
20
20 �for large anisotropies, where discreteness of a lattice
is revealed most vividly� to 32
32 for small anisotropy
when system is well described by a continuous model. The
criterion of the presence of a truly local soliton configuration
was its independence of the system size. Another important
criterion was the constancy of the frequency �, calculated

from Eq. �23� throughout the soliton configuration. Some-
times we found the minimum over the variables �n only,
considering �n to obey Eq. �18� and choosing the reference
frame origin in the symmetric points between the lattice
sites. Our analysis has shown that for moderate anisotropies
Keff�0.5J the above partial minimization gives the same en-
ergy and frequency as well as the instability point position,
as complete minimization over �n and �n. The use of partial
minimization over �n permits not only an acceleration of the
numerical calculations, but turns out to be useful for con-
struction of “quasitopological” textures for extremely high
anisotropies, see below, Sec. V. In Fig. 1, the dependence of
a soliton energy and precession frequency, is shown as a
function of the bound magnon number for Keff=0.3 for
single-ion and exchange anisotropies. The frequency was
calculated directly from Eq. �23� and also found by differen-
tiation of the energy with respect to N, see Eq. �17�. Here, far
from the instability point Ncr, the behavior of ��N� is almost
the same for both types of anisotropy, single-ion and ex-
change, while near this point it is different. For both above
types of anisotropy the singularities in the dependencies
��N� as N→Ncr are well seen.

For N�Ncr the minimal configuration cannot be found.
In fact, any attempt to find the topological soliton with
N�Ncr leads to appearance of nontopological solitons with
�� /���0. This occurs even for the above “partial” �i.e.,
over �n only� minimization. In this case, some spins turn by
nonsmall angles � to organize the structure with zero Q. This
demonstrates the instability of topological solitons for
N�Ncr quite vividly. These features, as well as the values of
Ncr or Ecr, can be described also on the basis of a variational
approach with simple trial functions, see the next section.

IV. SOLITONS FOR MODERATE VALUES OF
ANISOTROPY

In this section we shall analyze the generalized continu-
ous model variationally. Subsequent comparison with nu-
merical results for lattice model will permit us to check the
region of validity of the continuous model.

To perform specific calculations for the generalized con-
tinuous model �6a�, it is convenient to introduce the follow-
ing dimensionless variables:

FIG. 1. �Color online� Dependence E�N� and ��N� for a soliton
with Keff=0.3J, obtained from numerical simulations.
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x = �r, � = a�, z = �R , �24�

as before, a is the lattice constant. Further we may express
both trial functions �21� and �22� in the following universal
form:

tan
�

2
= zf�x�, f1�x� = K1�x�, f2�x� =

exp�− x�
x

. �25�

Then using the equations �15� and �9�, we can calculate the
number of bound magnons in the soliton

N

S
= 4�

z2

�2��z�, ��z� = 

0

�

xdx
f2�x�

1 + z2f2�x�
, �26�

and the soliton energy

E

2�JS2 =
Keff

�2 �0�z� + �2�z� −
1

24
�2�4�z� . �27�

Here we introduced the following notations:

�0�z� = 

0

�

sin2 �xdx ,

�2�z� =
1

2



0

�

xdx���2�1 + � sin2 �� +
sin2 �

x2 � ,

�4�z� = 

0

�

xdx���x��2�1 + � sin2 �� + ��4�1 + � cos2 ��

+
sin2 �

x2 � 1

x2 + 2��2� + �x� sin 2�����2 −
1

x2�� ,

�28�

�� =
d�

dx
, �x� =

d2�

dx2 +
1

x

d�

dx
.

Thus, we express the energy and the number of magnons
via two parameters, � and z. It turns out, that initial dimen-
sional variables � and R enter the problem only in the form
of their product z. The dependence of N and E on z enters the
problem via a few complicated functions �, �0, �2, and �4,
which can be written only implicitly in the form of integrals.
However, in terms of these functions, the dependence on �
�27� turns out to be quite simple. This permits reformulation
of the initial variational problem in terms of variables z and
N only. Namely, we express

�2 = 4�
z2

�N/S�
��z� �29�

and substitute this expression in the dimensionless energy
�27�. This gives us the expression for the energy of a soliton
with given N, as a function of variational parameter z. Then
we can find a minimum of E with respect to z, keeping N
constant. The result of such minimization in the form of the
dependence Emin�N� is shown in Fig. 2 for a magnet with
purely exchange anisotropy �i.e., for that with K=0�. We
show this dependence for �=0.2. It is seen that there is a

good correspondence between the dependencies E�N� found
by variational and numerical �full symbol� minimizations in
the region of parameters where the soliton is stable. This
justifies the applicability of the variational approach with the
trial functions of the form �25� to the problem under consid-
eration. The approach based on more simple trial functions f2
reproduce well the particular feature found for numerical
analysis of the discrete model; namely, the value of the
threshold number Ncr.

Also, for comparison, we show in Fig. 2 the result of
variational minimization of W2 �i.e., energy, incorporating
only squares of magnetization gradients�. It is seen, that in
this case there is no Ncr, which coincides well with the pre-
vious investigations of solitons in the continuum
models.12,16,34 This means, that mapping of the initial dis-
crete model even for small anisotropy Keff�J on the sim-
plest continuum model with only squares of magnetization
gradients can be wrong for some values of N, and to get the
correct description of solitons in a 2D magnet one must take
into account at least fourth powers of gradients. This seem-
ingly paradoxical result is actually due to the fact that the
terms with ��m� �2 are scale invariant while the soliton size is
determined by the fourth derivatives and magnetic aniso-
tropy. On the other hand, for large enough N and even mod-
erate value of anisotropy, the role of this higher derivative
terms is less important; it is in agreement with the recent
numerical simulations of soliton dynamics for easy-axial dis-
crete models of ferromagnets with low anisotropy.36

It is seen from Fig. 2, that the topological solitons in such
a model are not very “robust”—there is a quite large param-
eter region where those solitons do not exist. That is why for
comparison we show the dependence E�N� for nontopologi-
cal solitons �open symbols on the figure� which have been
studied in detail analytically in Ref. 20. The main feature of
nontopological solitons is that while �→�0, the amplitude
of such solitons diminishes �so that at ���0 such soliton
decays to a number of noninteracting magnons� but both its
energy E	ENT�11.7EBP and bound magnons number
N	Nc=ENT/��0 are left intact.20 This behavior is opposite
to that of a topological soliton, where as �→�0 the ampli-

FIG. 2. Dependence Emin�N� for topological and nontopological
solitons for the case of exchange anisotropy only, �=0.2J. Dashed
lines, parallel to the axes, correspond to characteristic number of
bound magnons N=Nc for nontopological soliton, see the text
above. Curves, corresponding to contribution of W2 only are shown
for comparison.
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tude still has its maximal value with decreasing soliton ra-
dius so that soliton becomes “more localized.” This tendency
is seen in Fig. 2, where a nontopological soliton exists up to
N	NNT �corresponding to �=�0, shown as vertical dotted
line in the figure� and then decays smoothly into a noninter-
acting magnon cloud with the energy above on the corre-
sponding curve �dotted line in the figure�. This is because as
�→�0 the nontopological soliton has the same energy as the
corresponding magnon cloud. But the soliton is “coherent”
�in a sense that it is a bound state of many magnons�, while
magnon clouds is not coherent. Actually, the above remark
reflects the important point in a physics of solitons under
consideration, namely the difference in behavior of topologi-
cal and nontopological solitons.

As was mentioned above, there is a critical value of
bound magnons number Ncr such that the topological soliton
exists with N�Ncr only. The value of this threshold depends
on the effective anisotropy Keff. We will call the dependence
Ncr on Keff a phase diagram. The shape of these phase dia-
grams is determined by the character of anisotropy. For ex-
change anisotropy, this diagram is depicted in Fig. 3�a�. The
solitons exist in the region 1 above corresponding curves and
do not exist in the region 2 below them. For comparison, on
the same figure, we plot the points Ncr, corresponding to
different trial functions. Very good coincidence between
these points shows that both trial functions are well suited
for variational treatment of the solitons.

It is seen that the threshold number of bound magnons
calculated using the simple variational approach grows infi-
nitely both for �→0 and for �→�lim�0.312. The compari-
son with the numerical data shows that the divergence at the
large values of anisotropy is simply an artifact of continuous
description, and the corresponding “numerical” curve for
discrete model decreases monotonously with growing of an-
isotropy. For high anisotropies, the soliton structure becomes
strongly anisotropic, and the description based on radially
symmetric trial functions fails. We will discuss this in the
next section.

On the other hand, the divergence of Ncr at small � has a
clear physical meaning and coincides well with the numeri-
cal data. The divergence of Ncr at �→0 is related to the fact
that in BP soliton, which is the exact soliton solution for
purely isotropic ferromagnet, the integral describing the
value of bound magnons N diverges logarithmically as
r→� due to slow decay of the function ��r�	1/r. Using the
variational approach with the asymptotics of the functions
�28� it is possible to derive the asymptotic formula for Ncr in
this region, which reads

Ncr�Keff� �
2.8JS

Keff
. �30�

In contrast, the critical value of energy Ecr=E�Ncr� is finite at
the instability point,

Ecr�Keff� � 4�JS2�1 + 1.87�Keff/J� . �31�

This limiting energy contains nonanalytical dependence on
the anisotropy constant �. It appears due to simultaneous
accounting of the anisotropy and fourth derivative terms
in our generalized continuum model. For typical values
Keff /J=0.2–0.4, this energy is well above the Belavin-
Polyakov limiting energy, see Figs. 1 and 2. The correction
to EBP becomes smaller then 1% at extremely low anisotro-
pies like Keff�10−5J only. The situation here is very similar
to the analysis of heavy �less energetically favorable� vortex
decay in the cone state of an easy plane ferromagnet,27 which
situation occurs in a magnetic field, perpendicular to the easy
plane.27,28 There, in the simple continuum model, the heavy
vortices are stable in the entire region of cone state existence
�0�H�Ha, Ha is an anisotropy field�,28 but already for very
small anisotropies ��10−4, when l0�10a, this region has
diminished substantially so that at ��0.1 the heavy vortices
have already become absent.27

In Fig. 3�b�, the phase diagrams for exchange �curve 1�
and single-ion anisotropies �curve 2� are shown. It is seen,
that while at small � and K the corresponding curves lie
close to each other, for larger anisotropies there is a drastic
difference. While the �unphysical� limiting value of Ncr for
high exchange anisotropy � equals 0.312, corresponding to
Keff=0.624, the same value for single-ion anisotropy con-
stant Keff=K is almost to 0.5. This means that the continuous
description for exchange anisotropy is valid for larger values
of anisotropy constants, even in the region Keff�0.5, where
it already fails for single-ion anisotropy. This is a conse-
quence of the fact, that the single-ion anisotropy constant K

FIG. 3. Soliton phase diagram �a� Exchange anisotropy, solitons
exist in the region 1 and do not exist in the region 2. For small � the
value of Ncr�1.4SJ /�. �b� Comparison between exchange
�curve 1� and single-ion �curve 2� anisotropies. Limiting values of
Ncr for both types of anisotropies are shown by vertical dashed
lines.
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enters the problem only in the spatially homogeneous term
�via the combination Keff, see above�, while the constant �
enters all terms of expansion Wi.

V. SOLITONS IN THE DISCRETE MODEL WITH HIGH
ANISOTROPY: MAGIC NUMBERS OF BOUND

MAGNONS

A. A role of DW pinning and magic numbers

For large anisotropies, the discreteness plays a decisive
role so that analytical treatment of the problem is impossible.
However, an account for the following fact permits to ac-
complish a comprehensive approximate study. Namely, as
was mentioned in the early presentations,37–39 for the large
number of bound magnons N�S�l0 /a�2, any solitons in two
and three dimensional magnets, topological and nontopologi-
cal, can be presented as a finite region of flipped spins, sepa-
rated by 180° domain wall �DW� from the rest of a magnet.

As the anisotropy grows, l0�a and the characteristic
magnon number becomes comparable with 2�S. At the same
time, the DW becomes thinner so that at � ,K�J its width
becomes comparable with lattice constant a. It is clear that
already at high anisotropy the structure of bound states �soli-
tons� with N /S�10 is above the described flipped area bor-
dered by the DW �we recollect here that we consider a soli-
ton as a bound state of many magnons� so that the soliton
properties will be completely determined by those of the
DW. It is also clear that for this case the difference between
topological and nontopological solitons will be negligible.
We will see, that in this case the structure of bound state is
strongly dependent on the character of anisotropy. That is
why for a description of such bound states it is useful to
study first the structure and properties of the DW’s in highly
anisotropic 2D magnets with different types of anisotropy.
First of all, of importance is a notion of the DW pinning, i.e.,
the dependence of its energy both on the DW center position
in a lattice �positional pinning� and on its orientation with
respect to the lattice vectors �orientational pinning�.

The positional pinning of the DW can be discussed on the
basis of a simple 1D model of a spin chain. This case is
obviously applicable to the 2D square lattice with nearest-
neighbor interaction for the DW orientation along lattice di-
agonals �the directions of �1,1� type�. For a chain, it is natu-
ral to associate the DW coordinate X with the total spin
projection on the easy axis Stot

z �0� and to define it as follows.40

Let us choose some lattice site and define the DW located on
this site to have the coordinate X=0. Let us then determine
the coordinate of any DW via the z projection of the total
spin Stot

z of a magnet from the expression

X =
a

2S



n=−�

n=�

�Sn
z�X� − Sn

z�X = 0�� , �32�

where Sn
z�X=0� defines the spin distribution for DW at a

reference point X=0.
For the solitons description, the different properties of

DW placed in different positions plays a crucial role. First,
consider a DW situated in the middle between two arbitrary
lattice sites, for which X /a is half-odd, X=a�2n+1� /2. Only

domain walls of such type in the highly anisotropic magnet
can be purely collinear, i.e., it may have Sz= ±S, respectively,
on the left- and right-hand sides of the DW center. For the
case of a spin chain with single-ion anisotropy this is
achieved for K�0.5,41 which was associated with the de-
struction of noncollinear topological structure.35 According
to the definition �32�, it is a vital necessity to have a nonin-
teger Stot

z and noncollinear component for the rest of the DW
positions. For example, for X= �a /2��2n� in the one of the
sites Sz=0, i.e., �=� /2.

The question regarding the character of the pinning poten-
tial U�X� is also important. Gochev has shown, that there is
no pinning, i.e., U=0, in a spin chain with purely exchange
anisotropy.42 On the other hand, for the anisotropy of a pure
single-ion type, the potential U�X� has minima in the points
of type a�2n+1� /2, which favors the appearance of collinear
DWs.40 For the small perturbation of a problem with ex-
change anisotropy by single-ion anisotropy with negative
sign K�0, it turns out that U�X� has the minimum at integer
values of X /a, X=0, ±a , . . . i.e., the creation of a noncol-
linear structure becomes favorable. For the two above-
mentioned cases one can expect substantially different spin
distributions in a soliton boundary. In particular, a DW
pinned between lattice cites becomes collinear and hence its
topological structure can be completely lost. On the other
hand, DW pinning on lattice sites can yield the conservation,
at least partial, of a soliton topological structure even with
strong discreteness effects.

It is clear, that for the question about the structure of a
closed soliton boundary, the important point is its angular
pinning, i.e., the dependence of the planar DW energy on its
orientation in a crystal. Gochev suggested, that the optimal
DW direction is parallel to the primitive vectors of lattice
translation, �1,0� and �0,1�,42 that differs from the conclu-
sions of Ref. 35. Our analysis has shown that almost all
numerical data about the properties of the solitons in highly
anisotropic FM’s can be described under supposition that a
DW tends to be parallel to the �0,1� direction. The latter
result agrees well with Gochev prediction. As we shall show,
only N /S is a main parameter determining the soliton struc-
ture at high magnetic anisotropy. It turns out that the varia-
tion of N /S by around few percent yields substantial varia-
tions of DW structure, which leads to sharp dependence of
energy E �see Fig. 4� and particularly the frequency � on N,
see Fig. 7. This effect is different for single-ion and ex-
change anisotropies, the most substantial manifestation is for
the single-ion case. These dependencies have a nonmono-
tonic component. Its analysis reveals certain specific num-
bers Nmag, which, analogously to nuclear physics, can be
called the magic numbers. To explain the origin of these
magic numbers, we consider the case when a DW tends to
occupy a position between atomic planes of �1,0� and/or
�0,1� type so that both DW bend and noncollinear structure
formation are unfavorable. Then, the optimal �from the point
of view of DW energy� configuration, is that where the spins
with Sz=−S occupy a rectangle lxly, separated from the rest
of a magnet by a collinear DW. Clearly, the most favorable
configuration is that with spin square lx= ly, which yields
Nmagic=2l2S, but configurations with lx� ly, like those having
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N /S=2�l��l+1�, for example, N /S=2
 �3
4�=24 are also
quite profitable, see Fig. 4. We will call such values of N
half-magic. As we shall see, such a model describes the soli-
tons in magnets with single-ion anisotropy �where the pin-
ning is strong� for N /S=15–50 well. If the energy of spatial
and angular pinnings is not so important, we may expect
more or less circular shape of a soliton core and smooth
dependencies E�N� and ��N�. The numerical analysis has
demonstrated, that both of the above tendencies reveal them-
selves in a FM with single-ion anisotropy �SIA� and ex-
change anisotropy �ExA�, respectively, see Fig. 4 for E�N�

dependence. Namely, for SIA the dependence E�N� has a
nonmonotonous component, while for ExA this dependence
seems to be more regular. The minima in the nonmonotonous
dependence E�N� for SIA occur for N /S=18=2
32,
24=2�3
4�, and 32=2
42. Hence, the above magic and
half-magic numbers, related to the DW pinning between two
atomic planes, are clearly seen in the E�N� dependence.

B. Nontopological solitons on a discrete lattice

We now discuss nontopological spin configurations for
different numbers of bound magnons for ferromagnets with
single-ion and exchange anisotropy with large value of effec-
tive anisotropy constant Keff=J, see Figs. 5 and 6. Let us first
consider the small values n	N /S�20. To economize the
notations, hereafter we will use n instead of N. For very
small n�10 the soliton textures have the same noncollinear
structure for both types of anisotropies, SiA and ExA, see
Figs. 5�a� and 5�b�. The difference between spin textures for
SIA and ExA solitons becomes visible for n�10. In this
case, the effects of lowering of a soliton symmetry with re-
spect to expected lattice symmetry of fourth order C4, are
possible. For half-magic number n=12, corresponding to
collinear texture with flipped spins rectangle 2
3, the sym-
metry C4 is obviously absent both for SIA and for ExA, see
Figs. 5�c� and 5�d�. Also, there is no big difference between
spin textures in Figs. 5�c� and 5�d�. However, for n far from
magic numbers, the difference between SIA and ExA is
much more pronounced. In particular, for the SIA case there
is not even a C2 axis �Fig. 5�f��, while for ExA, the C4

FIG. 4. �Color online� Dependence E�N�, obtained by numerical
simulations for Keff=J. Curve 1, single-ion, K=J; curve 2, ex-
change, �=0.5J.

FIG. 5. The structure of the soliton textures for the magnets with exchange and single-ion anisotropy with the same value of effective
anisotropy and different values of n=N /S �shown as subfigure captions�. The arrows present in-plane spin projections in 20
20 lattice.
“Up” �0���10° � and “down” �170° ���180° � spins are presented by dotted and crossed circles, respectively. The in-plane projections
of the spins with “up” and “down” z projections are depicted by arrows with open and full heads, respectively.

IVANOV et al. PHYSICAL REVIEW B 74, 224422 �2006�

224422-10



symmetry is restored �Fig. 5�e��. The explanation is pretty
simple: the DW pinning is weaker for ExA then that for SIA
so that in the former case the symmetric closed DW is
formed, while for SIA more favorable is the formation of a
piece of “unfavorable” DW, occupying only the part of a
soliton boundary, which makes possible optimization of DW
structure for the rest of the boundary. As n increases further
for SIA the purely collinear structures of the above discussed
type, can appear, see Figs. 5�h� and 6�j�. As for the ExA case,
even at sufficiently large n=32, the soliton texture does not
contain a purely collinear DW, see n=18 in Fig. 5�g� and
large n=32 in Fig. 6�i�.

Thus, at small n, the certain tendency, which is confirmed
at larger values of n �see Fig. 6�, is clearly seen. Namely, the
strong DW pinning for the SIA case yields almost always the
nonsymmetric configurations, where n growth occurs due to
increase or decrease of “DW pieces” on a soliton boundary,
Figs. 6�b� and 6�f�. The exceptions are magic numbers
nmag=2l2 �Figs. 5�h� and 6�j�� or close to them “half-magic”
numbers nhm=2l�l+1� �Fig. 6�d��, where the collinear struc-

ture of the flipped spins square or rectangle type �with sym-
metries, respectively, C4 and C2� is present in the SIA case.

For the ExA case the numbers nmag and nhm are also re-
vealed, but in a quite different manner. Namely, for n=nmag
the soliton does not have a collinear structure but resembles
a square, see Figs. 6�a� and 6�i�. Here, however, there is a
fundamental difference with the SIA case. The same struc-
tures with C4 symmetry are formed also for n nonmagic,
n�nmag, nhm. This becomes clear if we recollect that in this
case the pinning is weak �see above� so that “DW piece”
formation is absolutely unfavorable. This means that C4
symmetry occurs both for n magic and nonmagic, see Figs.
5�g� and 6�i�. However, for n half-magic, the rectangular
shape of a soliton core occurs also for ExA both for small
�Fig. 5�c�� and large n �Fig. 6�c��. Thus, the soliton structure
for the ExA case also depends on n nonmonotonously, but
here the “half magic” numbers are more important since
close to these numbers the soliton symmetry first lowers
from C4 to C2 and then it is restored back to C4. At the magic
number n=32, see Figs. 6�i� and 6�j� as well as near this

FIG. 6. The same as in Fig. 5 for larger values of n.
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magic number, both SIA and ExA textures have quite sym-
metric structure with almost collinear DW, see Figs. 6�g� and
6�h� for n=31.

This complex and irregular picture of soliton behavior
“maps” onto the E�N� dependence only as a local energy
lowering at n�nmag. The irregular behavior of soliton char-
acteristics is revealed much more vividly in the dependence
��N�, seen in Figs. 7�a� and 7�b�. For both types of aniso-
tropy, the explicit traces of nonmonotonous behavior like
jumps, regions with d� /dN�0, and even those with ��0
�for SIA, see Fig. 7� occur. At this point it is useful to make
two remarks. First, we recollect, that for discrete systems,
contrary to the continuous ones, the condition d� /dN�0 is
no more a soliton stability criterion. Second, the condition
��0 just means that in this region of parameter values, the
soliton energy decreases as N increase, but says nothing
about the soliton stability. It is seen from Fig. 7�a�, that the
nonmonotonous structure of the corresponding ��N� curves
manifests itself most vividly at n�10–15. For SIA, the
abrupt vertical up and downward jumps with growing of n
on the curve ��N� appear at certain values of n. The upward
jumps occur near magic and half-magic numbers introduced
above. After these upward jumps, the frequency has plateaus
at 18�n�20, 24�n�26, 32�n�34, and then the deep
minima. For large n�31–32 this minimum becomes so deep
that the frequency becomes negative, ��0. The fact, that
these negative values occur only for SIA for n, slightly less
then the “magic” value n=32, corroborates the above sug-
gested concept.

For the case of exchange anisotropy �Fig. 7�b��, the up-
ward jumps on the curve ��N� are almost absent, and the
smooth increase of � occurs instead, i.e., the effect of
“magic” numbers is much weaker. The downward jumps are
clearly seen at the same values of n as those for SIA. These
jumps sometimes are much sharper that those for SIA, but
for ExA the amplitude of these jumps are smaller, than for
SIA, and ��0 everywhere.

The physical explanation of the above quite complicated
behavior can be done based on the aforementioned picture.
First, the upward jumps for n=nmag with subsequent almost
constant � can be easily understood for SIA. In this case, at
n=nmag the formation of favorable collinear structure has
already been finished so that the plateau at larger n is due to
the creation and growth of a “DW piece.” It is clear that for
ExA this scenario does not occur, and this effect is com-
pletely absent. The downward jump and general decrease of
the soliton frequency is related to the transition to more sym-
metric configurations, where the excessive number, n of
magnons is easily spread along the soliton boundary. Such
transitions take place for both types of anisotropies, which
explains the behavior similarities.

C. Discrete analog of topological solitons

Let us discuss now the possibility of the topological soli-
ton existence in high anisotropy ferromagnets. In this spe-
cific case, it is useful to utilize a simplified obvious definition
of the topological invariant. The �2-topological invariant
�12� for the case of large anisotropy has simple geometric
meaning. Namely, only ��0,� make a contribution into in-
tegral �12� so that for its evaluation it is sufficient to consider
the DW region. Formally, the integral �12� can be repre-
sented as a contour integral along the DW,

Q →
1

2�
� ��

��
d� .

This value defines a mapping of the DW line �which is of
necessity a closed loop� onto the closed contour which is a
domain of angle � variation. This representation makes it
obvious that the topological charge, Q notion is meaningful
only in the case when the DW has a well-defined noncol-
linear structure throughout its length. The DW regions with
collinear spins play the role of a “weak link,” where � can
change abruptly by 2� almost without overcoming the po-
tential barrier. Hence, even for nonsymmetric soliton tex-
tures, when soliton has a quite large “piece” of noncollinear
DW, with “quasitopological” spin inhomogeneity, literally
topological structures are absent. Although the difference be-
tween topological and nontopological solitons in the magnets
with Keff�J is not that large and the question about realiza-
tion of topological solitons in such structures is rather aca-
demic, this problem will be discussed in more details.

To answer the question about the presence or absence of a
topological texture, we have carried out the numerical mini-
mization both over a complete set of variables and over �’s
only with fixed in-plane spin directions. Contrary to the
above considered case of moderate anisotropy, the latter
minimization �i.e., that over �’s only� never gives the insta-

FIG. 7. Dependence ��N� for a soliton with Keff=J, obtained
from numerical simulations. �a� Single ion anisotropy, �b� exchange
anisotropy. Dashed lines are for better comparison and correspond
to exchange anisotropy �a� and single ion one �b�.
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bility of a nontrivial topological structure. Instead, the de-
crease of noncollinear structure amplitude �either uniformly
along the entire DW or on its individual parts� occurs as Keff
increases. The behavior is quite different for different values
of n=N /S so that these cases should be considered sepa-
rately. For specific analysis, we have chosen a few n values,
typical “magic” number n=32 and two nonmagic, n=35 and
n=36. In spite of closeness of these numbers, the soliton spin
texture behavior in these cases differs drastically as aniso-
tropy increases.

The energy of the topological soliton as a function of
Keff /J for magic number n=32 and two types of anisotropy
is shown in Fig. 8. These curves have been obtained by nu-

merical simulations on a lattice, for an anisotropy increase
from its small value, when there is a well-defined topological
soliton texture. It is seen that at large Keff for both kinds of
anisotropy, the soliton energy tends to some finite limiting
value, E0=32JS2, that is typical for a collinear structure with
the “magic number” n=32. But the behavior of these func-
tions near this limiting value is different for single-ion and
exchange anisotropies, corresponding to the different sce-
narios of annihilating of both noncollinear spin structure and
topological structure in a soliton. It is interesting to trace the
disappearance of a soliton topological structure at anisotropy
increase, which is shown in Fig. 9. For small Keff the topo-
logical structure is well defined, and this structure is similar
for both SIA and ExA, see Figs. 9�a� and 9�b�. If the value of
Keff increases to some critical value, Kcrit, the in-plane spin
amplitude decreases, but a “vortexlike” configuration with
approximate symmetry C4 is still visible. For larger aniso-
tropy K�Kcrit the soliton structure becomes purely collinear.
For SIA the critical value is Kcrit�0.8, but for ExA this value
is much larger, Kcrit�1.1, compare Figs. 9�d� and 9�c�. For
ExA, the topological structure is still visible for such strong
anisotropy as 2�=Ke=J, see Fig. 9�e�. However, for high
enough � the structure finally becomes collinear and of the
same structure as that for SIA, as is shown in Fig. 9�f�. In
other words, for “magic” magnon numbers the topological
structure of a soliton decays smoothly as the anisotropy con-
stant grows, which is seen for both types of anisotropy, com-
pare Figs. 9�d� and 9�f�.

For Keff�Kcrit for both kinds of anisotropy there is no
more topological spin structure—all spins are directed either
up or down and energy does not depend on Keff any more

FIG. 8. The energy of the soliton with N /S=32 �magic� as a
function of effective anisotropy constant. Inset shows the behavior
of a derivative dE /dKeff near Kcrit�0.8J.

FIG. 9. Soliton structure for magic number of bound magnons N=32S and different values of effective anisotropy constant Keff. The
value of Keff /J, together with the type of anisotropy, are shown below pictures of spin distribution.
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�see Fig. 8�. Such a picture resembles very much the phase
transition of a second kind with the collinear soliton texture
as more symmetric phase. This agrees with the behavior of
the energy E�Keff� near Kcrit �see inset to Fig. 8�,

E − E0 	 �Kcrit − Keff�2. �33�

To understand better the picture of the transition from a to-
pological �noncollinear� soliton texture to a collinear texture,
we discuss the analogy with the second order phase transi-
tion in more detail. Note, that any collinear spin structure
with arbitrary positions of “up” and “down” spins has the
same symmetry element, namely, rotation about the z axis in
a spin space. This symmetry is due to the symmetry of the
Hamiltonian �2�. On the other hand, the spin textures, even
noncollinear, with n=32 and C4 symmetry, are invariant with
respect to a rotation by �� /2�k, k�Z, simultaneously in spin
space and coordinate space. Thus, “magic” collinear textures
with spatial symmetry C4 have higher symmetry, being in-
variant relative to the independent rotation of the coordinate
space by �� /2�k and of the spin space by arbitrary angle,
while noncollinear “magic” ones are invariant only relatively
to simultaneous rotation by �� /2�k in spin and coordinate
spaces. This means that on a transition from a “magic” col-
linear soliton to noncollinear one, spontaneous symmetry
breaking occurs and phase transition of the second kind ap-
pears naturally.

For “nonmagic” numbers n=35 and n=36, the symmetry
of soliton structures and their behavior is fundamentally dif-
ferent. First, note that the collinear structure can be realized
for even values of n only. For any noneven n, oddinteger or
noninteger, some spins must be inclined to the z axis. Thus,
these two cases must be considered separately.

The value n=36 is rather far both from “magic” number
n=32 and from the nearest “half-magic” n=40, correspond-
ing to the favorable configuration with a rectangular collin-
ear DW. Here, for small anisotropy Keff�0.6J we see the
structure with C4 symmetry, similar to that for “magic”
n=32 for both types of anisotropy, see Figs. 9�a� and 9�b�.
However, with the increase of Keff, the evolution is different,
as seen in Fig. 10. The difference in behavior of E�Keff� is the
largest for exchange anisotropy, where the saturation, de-
picted in Fig. 8, did not occur up to quite large ��0.6J
�Keff�1.2J�. However, for single ion anisotropy there is also
a difference from the above considered “magic” case n=32.

Those differences could be explained in terms of previ-
ously discussed fact that DW pinning is stronger for SIA
compared to ExA. Using symmetry arguments, we note that
the purely collinear texture for n=36 has a DW of complex
form, lower symmetry �Fig. 11�h��, and is much less ener-
getically favorable, than that for n=32. Hence, this state in
its pure form occurs only for sufficiently large SIA with
K�1.18J rather then for K�0.8J as for the “magic” case
n=32. We have found that the textures with sufficiently high
symmetry �in any case they have a center of symmetry or a
couple of C2 axes� are inherent to exchange anisotropy. Such
textures for nonmagic n’s have DW’s of strong noncollinear
structure with a great number of spins with ��90°. For the
ExA case, the DW does not “tear apart” up to quite large

��0.5J �Keff�J�. Here both topological and nontopological
soliton textures exist. The energy of the latter textures is
shown in Fig. 10 by open symbols. For ��0.4 both types of
solitons have a rectangular shape and rather high symmetry.
Their difference is that for nontopological soliton the inver-
sion center is present even for Keff�1.2J while the symme-
try of a topological soliton lowers already for Keff�J, see
Figs. 11�e� and 11�g�. This difference can be understood as
follows: For a topological soliton, the DW containing spins
with ��90� �since the spin angle � is inhomogeneous� is
less favorable than that for nontopological solitons. Thus, for
topological solitons the spins with ��0,� concentrate near
one of the soliton edges. However, the energy difference of
these solitons at Keff�1.1J is quite small. Thus we may as-
sert that in the wide range of ExA constants we have two
soliton types with similar structure of spins along the easy
axis and approximately equal energies.

In the SIA case the DW pinning plays a much more im-
portant role so that the low symmetry, which is characteristic
of collinear texture of the type shown in Fig. 11�h�, can be
traced already for sufficiently small Keff�0.7J, see Figs.
11�d� and 11�f�. Since the DW inhomogeneity, caused by a
topology, is localized in a small part of a boundary, its role is
not essential so that there is no big difference between topo-
logical and nontopological solitons. At least this difference is
much less pronounced than that for ExA where the noncol-
linearity amplitude decreases smoothly as K increases. The
new element of symmetry �a rotation in a spin space� appears
in a transition to the collinear state at Keff�Kcrit. That is why
this transition resembles the phase transition of a second
kind. This behavior of E�N�, similar to that for “magic” mag-
non numbers, can be seen in Fig. 10 for SIA �but not for
ExA�.

As we have found out in the above example of n=32 and
n=36, the final stage of evolution of a soliton with even n is
a collinear structure. Since the transition of a soliton into a
collinear state is related to the symmetry increasing, it for-
mally resembles a phase transition of the second kind. The
collinear structure cannot be realized, for obvious reasons,
for any n, which is not even. In this case, which has been

FIG. 10. The energy of the soliton with N /S=36 �nonmagic,
even� as a function of effective anisotropy constant Keff. For ex-
change anisotropy, full symbols present data for topological soli-
tons, open symbols for nontopological solitons with Q=0. The val-
ues of Keff�1.13J for the transition from noncollinear to collinear
soliton for single ion anisotropy are shown by vertical dotted lines.
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considered for n=35, the smooth variation of a soliton en-
ergy and structure occurs, see Fig. 12. In particular, its en-
ergy is a monotonously increasing function of Keff for both
types of anisotropies. For high enough anisotropy, the differ-
ence between topological and nontopological solitons dimin-
ish.

VI. CONCLUSIONS

In this paper we have studied the solitons, stabilized by
precessional spin dynamics, topological and nontopological,
for the classical 2D ferromagnet with high easy-axial aniso-

tropy on a square lattice. Our analysis has been performed
both analytically in the continuous approximation and nu-
merically. The main conclusion is that in the 2D case the
solitons properties change drastically during departure from
the “singular point”—simplest isotropic continuous model
with W4=0, containing BP solitons. Similar to previous stud-
ies, it turns out that the presence of even weak anisotropy
makes solitons dynamic, i.e., those with nonzero precession
frequency for any number N of bound magnons. It is very
interesting and unexpected, that the role of discreteness turns
out to be of the same importance as that for anisotropy, even
for �, K�J, when l0�a. The minimal consideration of dis-
creteness �via higher degrees of gradients� yields the exis-
tence of some critical value �lower threshold� of both soliton
energy and the number of bound magnons. Similar to the
problem of cone state vortices, the instability is related to the
joint action of discreteness and anisotropy “responsible” for
l0 formation �see Eq. �14��. As a result, the critical value of
bound magnons Ncr is present and nonanalytic dependence of
the critical soliton energy �31� on the anisotropy constant
appear.

On the other hand, for intermediate values of anisotropy,
like Keff� �0.25–0.3�J, and for the values of N far enough
from the critical value of the bound magnons Ncr, we have
checked and confirmed a number of results from the “ordi-
nary” continuum theory with W4=0 about the soliton struc-
ture. In particular, the relation between the number of bound
magnons and precession frequency of spins inside the soliton
is common for these two approaches so that a soliton struc-
ture does not depend on the anisotropy character, either SIA
or ExA. In agreement with Ref. 20 nontopological solitons

FIG. 11. Soliton structure for N=36 �even nonmagic number� and different values of effective anisotropy constant Keff /J.

FIG. 12. The energy of the soliton with N /S=35 �nonmagic,
odd� as a function of effective anisotropy constant. Full symbols
present data for topological solitons with inhomogeneous DW, open
symbols correspond to nontopological solitons with Q=0.
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have, as a rule, the lower energy than the topological ones
�see Fig. 1�, and they are stable for any allowable N.

Some principally new features in soliton behavior appears
as the anisotropy grows. For “magic” numbers of bound
magnons, N=2l2S, l is an integer, the soliton texture corre-
sponds to the most favorable structure with a collinear DW
of a square shape. In this case the soliton topological struc-
ture disappears �as anisotropy grows� continuously �to some
extent analogously of the second order phase transition� giv-
ing purely collinear state. Such behavior is inherent for both
types of anisotropy, but for SIA the critical value Kcrit is
lower and the transition is sharper. For nonmagic numbers,
when the collinear structure is certainly less favorable, it still
appears for even numbers N /S and the SIA case by a smooth
transition, but with essentially larger Kcrit. Note that in all
cases this value of Kcrit is much larger than that for the 1D
spin chain, Kcrit

�1D�=0.5J.35,41 Finally, if n is not an even num-
ber, then for K�J the soliton always has a noncollinear
structure in the form of DW “piece” or even a single spin
with Sz� ±1. The energy of such a soliton is almost inde-
pendent of inhomogeneity of planar spin components in the
DW.

Let us note one more interesting property of the solitons
in magnets with strong anisotropy, which is the existence of
the stable static solitons in this case. It is widely accepted,
that such solitons are forbidden both in the model with W2
�Hobart-Derrick theorem� and in the generalized model with
negative contribution of fourth powers of magnetization gra-
dients �W2+W4, in this paper�. However, the region of N
values, where the soliton frequency changes its sign, is
clearly seen in Fig. 7 for SIA. This means the existence of
certain characteristic values of N, where �=0 and the soliton
is actually static. Also, for given number of N in some region
one can find the corresponding value of anisotropy constant
�high enough� to fulfill the condition �=0 and to realize this
static soliton with noncollinear state. In addition, all purely
collinear configurations, existing for sufficiently strong an-
isotropy of both types, are indeed static since the precession
with the frequency � around the easy axis does not define
any real magnetization dynamics. Hence, in the magnets
with sufficiently strong anisotropy the stable static soliton
textures can exist. But, contrary to Ref. 16, they are due to
discreteness effects, namely due to DW pinning.

To finish the discussion of the problem considered in this
work, let us discuss the effects taking place at the transition

from classical vectors S�n� to quantum spins. Usually the
simple condition of integrity of the total z projection of spin
N, see �15�, is considered as a condition of semiclassical
quantization of classical solutions of the Landau-Lifshitz
equation for uniaxial ferromagnets.12 Moreover, the depen-
dence E=E�N� is used to be interpreted as a semiclassical
approximation to the quantum result �for some exactly inte-
grated models, for example, XYZ- spin chain with spin
S=1/2, the exact quantum result coincides with that derived
from the semiclassical approach, see Ref. 12�. This simple
picture was elaborated for solitons having the radial symme-
try. Now we consider how this picture may be modified for
solitons with lower spatial symmetry discussed in this paper.
Solitons with low enough symmetry, say “rectangular” soli-
tons for “half-magic” numbers, or even lower symmetry,
which occurs for “nonmagic” numbers and especially odd
ones, apparently occur for high-anisotropy magnets. It is
clear, that they can be oriented in a different way in a lattice,
that may be construed as k-fold degeneration of a corre-
sponding state in the purely classical case, with k=2 for a
“rectangular” soliton or k�2 for less symmetrical states like
those in the Fig. 11. With the account for effects of coherent
quantum tunneling transitions between these states, this de-
generation should be lifted. According to the semiclassical
approach, which is valid for bound states of a large number
of spin deviations in high anisotropy magnets, the transition
probability is low and can be calculated using instantons
concept with Gaussian integration over all possible instanton
trajectories.43 As a result one can expect the splitting of
states degenerated in the purely classical case, with creation
of k multiplet and lifting of the symmetry of the soliton. A
detailed discussion of these effects is beyond the scope of the
present work.
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