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We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the
spin-1

2 triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground
state. Several striking features are observed compared to the classical �large-S� spin-wave spectra. Whereas, at
low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are
observed at high energies. In particular, we find rotonlike minima at special wave vectors and strong downward
renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present
detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion
to order 1 /S calculated recently by Starykh, Chubukov, and Abanov �Phys. Rev. B 74, 180403�R� �2006��. We
find many common features but also some quantitative and qualitative differences. We show that at tempera-
tures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently,
unlike for the square lattice model, a nonlinear sigma model description of the finite-temperature properties is
only applicable at temperatures �0.1J. Finally, we review recent NMR measurements on the organic com-
pound �-�BEDT-TTF�2Cu2�CN�3. We argue that these are inconsistent with long-range order and a description
of the low-energy excitations in terms of interacting magnons, and that therefore a Heisenberg model with only
nearest-neighbor exchange does not offer an adequate description of this material.
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I. INTRODUCTION

Spin-1
2 Heisenberg antiferromagnets on frustrated lattices

constitute an important class of strongly correlated quantum
many-body systems. The interest in these models has been
particularly stimulated by the tantalizing possibility that the
interplay between quantum fluctuations and geometric frus-
tration might lead to a spin-liquid ground state and fraction-
alized �i.e., S= 1

2 � “spinon” excitations. By a spin liquid we
mean a state which breaks neither translational nor spin ro-
tational symmetry. This exotic scenario originated with the
pioneering work by Anderson and Fazekas more than thirty
years ago,1 where they suggested that a short-range resonat-
ing valence bond �RVB� state might be the ground state of
the nearest-neighbor Heisenberg antiferromagnet on the tri-
angular lattice. More recently, considerable progress has
been made in understanding such states in terms of field
theory and quantum dimer models.2 Whereas the existence of
such a ground state and of spin-half excitations is well es-
tablished in one dimension,3 it is yet to be conclusively es-
tablished theoretically in a realistic two-dimensional Heisen-
berg model.4

Among the most important such models is the one con-
sidered by Anderson and Fazekas, namely, the Heisenberg
antiferromagnet on the triangular lattice with only nearest-
neighbor �isotropic� exchange interactions �hereafter just re-
ferred to as the triangular-lattice model for brevity�. How-
ever, over the past decade numerical studies5–8 using a
variety of different techniques do not support the suggestion
in Ref. 1 of a spin-liquid ground state for this model. Instead,
they provide evidence that the ground state is qualitatively

similar to the classical one, with noncollinear magnetic Néel
order with a three-sublattice structure in which the average
direction of neighboring spins differs by a 120° angle.

On the other hand, there are other theoretical results
which suggest that some properties of this model are indeed
quite unusual. First, a short-range RVB state is found to have
excellent overlap with the exact ground state for finite sys-
tems, much better than for the square lattice.9,10 Second,
variational calculations for RVB states, both with and with-
out long range order, give very close estimates for the ground
state energies.9,10 Third, early zero-temperature series expan-
sion studies found some evidence that this model may be
close to a quantum critical point.6 Fourth, one can make
general arguments, based on the relevant gauge theories11

that the quantum disordered phase of a non-collinear magnet
should have deconfined spinons,12 although in the ordered
phase the spinons are confined.13 Finally, high-temperature
series expansion studies14 performed for temperatures down
to J /4 �J being the exchange interaction� found no evidence
for the “renormalized classical” behavior that would be ex-
pected from a semiclassical nonlinear sigma model ap-
proach, if the ground state has long range order.15–17 The
actual behavior �summarized in some detail in Sec. VII A� is
rather striking and is in stark contrast to the square-lattice
model for which the “renormalized classical” behavior ap-
pears very robust.18

On the experimental side, there are currently no materials
for which it has been clearly established that their magnetic
properties can be described by the S=1/2 isotropic
triangular-lattice Heisenberg antiferromagnet. In contrast, it
has been clearly established that the one-dimensional and
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square lattice Heisenberg models with only nearest-neighbor
exchange give good descriptions of a number of materials.
Examples of the former include KCuF3 �Ref. 19� and
Sr2CuO3,20 and of the latter Cu�DCOO�2 ·4D2O.21 For the
triangular-lattice the most exciting prospect may be the or-
ganic compound �-�BEDT-TTF�2Cu2�CN�3,22 which is esti-
mated from quantum chemistry calculations to have weak
spatial anisotropy.23 Indeed comparisons of the thermody-
namic susceptibility with the high temperature expansions
calculated for a class of spatially anisotropic triangular-
lattice models suggest that the system may actually be very
close to the isotropic triangular-lattice Heisenberg model.24

In Sec. VIII B we review the recent experimental evidence
that this material has a spin liquid ground state.

In this work we present series expansion calculations for
the triangular-lattice model. The primary focus is on the dis-
persion relation of the magnon excitations above the 120°
spiral-ordered ground state. A brief description of some of
our results was presented in an earlier paper.25 In this paper
we discuss our results and the series expansion and extrapo-
lation methods in more detail. We also compare our results
quantitatively with very recent calculations of the spin-wave
dispersion by Starykh et al.26 based on nonlinear spin-wave
theory which includes quantum corrections of order 1 /S �to
be called SWT+1/S results� to the classical large-S or linear
spin-wave theory �LSWT� results.

One of the most striking features of the spectrum is the
local minimum in the dispersion at the six wave vectors in
the middle of the faces of the edge of the Brillouin zone.
Such a minimum is absent in the spectrum calculated in lin-
ear spin wave theory. In particular, along the edge of the
Brillouin zone the semiclassical dispersion is a maximum,
rather than a minimum at this point. This dip is also substan-
tially larger than the shallow minima which occurs in the
square lattice model. Hence, this unique feature seems to
result from the interplay of quantum fluctuations and frustra-
tion. We have called this feature a “roton” in analogy with
similar minima that occur in the excitation spectra of super-
fluid 4He �Ref. 27� and the fractional quantum Hall effect.28

In those cases, by using the single mode approximation for
the dynamical structure factor one can see how the roton is
associated with short range static correlations. Thus, an im-
portant issue is to ascertain whether this is also the case for
the minima we consider here. Calculations of the static struc-
ture factor for the square lattice do not show a minima at the
relevant wave vector.29 We note that the roton we consider is
quite distinct from the “roton minima” for frustrated antifer-
romagnets that has been discussed by Chandra, Coleman,
and Larkin.30 The effect they discuss only occurs for frus-
trated models which have a large number of classically de-
generate ground states not related by global spin rotations. If
we apply their theory to the triangular lattice it does not
predict such a minima. Finally, we note that anomalous roton
minima also appear in the spectrum of the Heisenberg model
with spatially anisotropic exchange constants on the triangu-
lar lattice in the regime where the magnetic order is
collinear.25 Such roton minima were also found in a recent
study of an easy-plane version of the same model,31 where
the elementary excitations of the system are fermionic vorti-
ces in a dual field theory. In that case, the roton is a vortex-

antivortex excitation making the “roton” nomenclature
highly appropriate.

The spectra we have calculated show substantial devia-
tions from the LSWT results, especially at high energies and
for wave vectors close to the crystallographic zone boundary,
emphasizing the importance of nonlinear effects in the spin
dynamics. Several features of our calculated spectra are cap-
tured by the nonlinear spin-wave theory,26 but there are also
quantitative and qualitative differences. Both calculations
show a substantial downward renormalization of the classical
spectra. However, the highest excitation energies in the Bril-
louin zone are lowered with respect to LSWT by about 40%
in the series calculations compared to about 25% in SWT
+1/S results. Both calculations show substantial flat or
nearly dispersionless spectra in large parts of the Brillouin
zone. However, the flat regions are much more pronounced
in the series calculations near the highest magnon energies,
whereas they are more pronounced at intermediate energies
in SWT+1/S results. In the series calculations the magnon
density of states �DOS� has an extremely sharp peak near the
highest energies, whereas in the SWT+1/S calculations the
largest peak in DOS is at intermediate energies. The roton-
like minima at the midpoints of the crystallographic zone
boundary are much more pronounced in the series calcula-
tions. They are much weaker in the SWT+1/S results and
are really part of the flat energy regions contributing to the
largest DOS peak in the latter calculations.

The SWT+1/S calculations are much closer to series ex-
pansion results than LSWT and on this basis one can con-
clude that the anomalous results obtained in series expan-
sions are perturbatively related to LSWT. In other words, a
picture based on interacting magnons captures the single-
magnon excitations, once the nonlinearities are taken into
account. Indeed, we find that, if we treat magnons as nonin-
teracting bosons and calculate their entropy from the DOS
obtained in the series calculations, we get an entropy per spin
of about 0.3 at T /J=0.3, a value not far from that calculated
in high temperature series expansions.14 Furthermore, we
find that the low energy magnons give the dominant contri-
butions to the entropy only below T /J�0.1. This provides a
natural explanation for why the nonlinear sigma model based
description, which focuses only on the low energy magnons,
must fail above T /J=0.1.

Before this work, it was an a priori possibility that the
anomalous finite temperature properties of the Heisenberg
model with nearest-neighbor exchange might be sufficient to
explain why ordering in �-�BEDT-TTF�2Cu2�CN�3 is not ob-
served experimentally. What this work shows is that the
finite-temperature anomalies can be explained in terms of
rotons �and the flat dispersion� which become important at a
temperature scale that, while rather small compared to J, is
still much larger than the lowest temperatures of the experi-
ments on �-�BEDT-TTF�2Cu2�CN�3. This provides an argu-
ment for why additional terms such as ring exchange may
actually be necessary to explain these experiments.

There remains an important open question with regard to
the spectra of the nearest-neighbor Heisenberg model studied
here. The question relates to the nature of the multiparticle
continuum above the one-magnon states. In particular, how
much spectral weight lies in the multiparticle continuum, and
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can it be described by an interacting-magnon picture, or is it
better thought of in terms of a pair of �possibly interacting�
spinons? This question is also related to the physical origin
of the roton minima. We note that neutron scattering mea-
surements have observed a substantial multiparticle con-
tinuum in the two-dimensional spin-1

2 antiferromagnet
Cs2CuCl4 �Ref. 32� �which is related to the triangular lattice
explored here, the main difference being that Cs2CuCl4 has
spatially anisotropic exchange couplings�. For that system
nonlinear spin-wave theory33,34 could not account quantita-
tively for the continuum line shapes observed experimen-
tally.

The plan of the paper is as follows. In Sec. II we present
our model Hamiltonian. In Sec. III we discuss the series
expansion methods used for studying zero-temperature prop-
erties including the excitation spectra. Tables of various se-
ries coefficients are also presented there. In Sec. IV we dis-
cuss series extrapolation techniques. After a short Sec. V
about ground state properties, we present results for the mag-
non dispersion in Sec. VI, and compare them in detail with
nonlinear spin-wave theory. In Sec. VII we consider how
thermal excitation of the rotons affects thermodynamic prop-
erties at much lower temperatures than might be expected, in
analogy with superfluid 4He. We show how this can explain
the absence of the renormalized classical behavior at finite
temperatures, well below T=J /4. In Sec. VIII we discuss a
possible interpretation of the roton in terms of confined
spinon-antispinon pairs and the relevance of our results to
experiments on �-�BEDT-TTF�2Cu2�CN�3. Finally, our con-
clusions are given in Sec. IX.

II. MODEL

We consider an antiferromagnetic S= 1
2 Heisenberg model

on a triangular lattice. More precisely we will analyze a two-
parameter Hamiltonian of this type, given by

H = J1�
�in�

Si · Sn + J2�
�ij�

Si · S j . �1�

Here the Si are spin-1
2 operators. The first sum is over

nearest-neighbor sites connected by “horizontal” bonds �bold
lines in Fig. 1� and exchange interaction J1, the second sum
is over nearest-neighbor sites connected by “diagonal” bonds

�thin lines in Fig. 1� with exchange interaction J2. As far as
results are concerned, in this paper our focus is on the iso-
tropic model defined by J1=J2	J, but we find it convenient
to distinguish between J1 and J2 for the purpose of making
our discussion of the series expansion �Sec. III� method more
general.

III. SERIES EXPANSIONS

In order to develop series expansions for the model in
the ordered phase, we assume that the spins order in the
xz plane, with an angle q between neighbors along J2 bonds
and an angle 2q along the J1 bonds. The angle q is consid-
ered as a variable; the actual value of q is that which mini-
mizes the ground state energy. We rotate all the spins so as
to have a ferromagnetic ground state, with the resulting
Hamiltonian29,35,36

H = H1 + J1H2 + J2H3, �2�

where

H1 = J1cos�2q��
�in�

Si
zSn

z + J2cos�q��
�ij�

Si
zSj

z, �3�

H2 = �
�in�

Si
ySn

y + cos�2q�Si
xSn

x + sin�2q��Si
zSn

x − Si
xSn

z� , �4�

H3 = �
�ij�

Si
ySj

y + cos�q�Si
xSj

x + sin�q��Si
zSj

x − Si
xSj

z� . �5�

We introduce the Heisenberg-Ising model with Hamiltonian

H��� = H0 + �V , �6�

where

H0 = H1 − t�
i

�Si
z − 1/2� , �7�

V = J1H2 + J2H3 + t�
i

�Si
z − 1/2� . �8�

The last term of strength t in both H0 and V is a local field
term, which can be included to improve convergence. At �
=0, we have a ferromagnetic Ising model with two degener-
ate ground states. At �=1, we arrive at our Heisenberg
Hamiltonian of interest. We use linked-cluster methods to
develop series expansion in powers of � for ground state
properties and the magnon excitation spectra. The ground
state properties are calculated by a straightforward Rayleigh-
Schrödinger perturbation theory. However, the calculation of
the magnon excitation requires new innovations compared to
a case of collinear order. Since Sz is not a conserved quantity
here due to the last terms in Eqs. �4� and �5�, the one-magnon
state and the ground state belong to the same sector. The
linked-cluster expansion with the traditional similarity
transformation37 fails, as it allows an excitation to annihilate
from one site and reappear on another far away, violating the
assumptions for the cluster expansion to hold. To get a suc-
cessful linked-cluster expansion, one needs to use the multi-
block orthogonality transformation introduced in Ref. 38. In-

FIG. 1. Exchange interactions in the Heisenberg model �1� on
the triangular lattice. In this paper we focus on results for the case
J1=J2	J.
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deed, we find that with proper orthogonalization the linked-
cluster property holds.

The series for ground state properties have been computed
to order �13, and the calculations involve a list of 4 140 438
clusters, up to 13 sites. These extend previous calculations6

by two terms, and are given in Table I. Since we are working
here with a model that has the full symmetry of the triangular
lattice, the series for the magnon excitation spectra can be
expressed as

��kx,ky�/J = �
r=0

�

�r�
m,n

cr,m,n
cos�m

2
kx�cos�n3

2
ky�

+ cos�ky
3�m + n�/4�cos�kx�m − 3n�/4�

+ cos�ky
3�m − n�/4�cos�kx�m + 3n�/4��� 3.

�9�

This series has been computed to order �9, and the calcula-
tions involve a list of 38959 clusters, up to 10 sites. The
series coefficients cr,m,n for t=1 are given in Table II.

IV. SERIES EXTRAPOLATIONS

In this section we discuss some details of the series ex-
trapolation methods used in our analysis.36 In order to get the
most out of the series expansions we have adopted a number
of strategies. The convergence of the series depends on the
parameter t. This parameter is varied to find a range where
there is good convergence over large parts of the Brillouin
zone. However, the naive sum of the series is never accurate
at points where the spectra should be gapless. This is true for
any model and its reasons are explained below.

We have found it useful to also develop series for the ratio
of our calculated dispersion ��k� to the classical �large-S�

dispersion �LSW�k� obtained from linear spin-wave theory.
Following Ref. 39, �LSW�k� for arbitrary � and t is given by

�LSW�k� = 2S��A + C���B + C� , �10�

where

A = J1cos�kx� + 2J2cos�kx/2�cos�3ky/2� ,

B = J1cos�kx�cos�2q� + 2J2cos� kx

2
�cos�3

2
ky�cos�q� ,

C = 2t�1 − �� − J1cos�2q� − 2J2cos�q� .

We can expand �LSW�k� in powers of �, and the ratio of our
series expansion calculation ��k� to the series for this linear
spin-wave energy �LSW�k� will be called the ratio series for
the rest of the paper. The naive sum of this ratio series ap-
pears to converge better because to get estimates for ��k�
from it, we need to multiply the sum by the classical energy
�LSW�k� and this ensures that both vanish at the same k
points.

We have also done a careful analysis of the series using
series extrapolation methods. By construction, the Hamil-
tonian H��� has an easy-axis spin-space anisotropy for �
�1, which leads to a gap in the magnon dispersion. This
anisotropy goes away in the limit �→1 when the Hamil-
tonian becomes SU�2� invariant. In this limit the gap must
also go away as long as the ground state breaks SU�2� sym-
metry. This closing of the gap is known to cause singularities
in the series. The singularities are generally weak away from
ordering wave vectors and gapless points, but are dominant
near the ordering wave vector where the gap typically closes
in a power-law manner in the variable 1−�.35,36

We have used d-log Padé approximants and integrated
differential approximants in our analysis. In general, these
approximants represent the function of interest f in a variable

TABLE I. Series coefficients for the ground state energy per site E0 /N and the order parameter M for t=0
and t=1 for the isotropic triangular-lattice model �q=2� /3�. Series coefficients of �n up to order n=13 are
listed.

n E0 /N for t=0 E0 /N for t=1 M for t=0 M for t=1

0 −3.750000000�10−1 −3.750000000�10−1 5.000000000�10−1 5.000000000�10−1

1 0.000000000 0.000000000 0.000000000 0.000000000

2 −1.687500000�10−1 −9.375000000�10−2 −1.350000000�10−1 −4.166666667�10−2

3 3.375000000�10−2 −3.125000000�10−2 5.400000000�10−2 −2.777777778�10−2

4 −4.433705357�10−2 −1.435119721�10−2 −1.363457908�10−1 −2.036471287�10−2

5 2.042585300�10−2 −9.090555800�10−3 8.589755026�10−2 −1.803575334�10−2

6 −2.832908602�10−2 −6.546903212�10−3 −1.657631567�10−1 −1.659741503�10−2

7 3.153484699�10−2 −4.684496998�10−3 2.055368406�10−1 −1.456148506�10−2

8 −4.765982794�10−2 −3.395880980�10−3 −3.691101414�10−1 −1.262324583�10−2

9 6.850871690�10−2 −2.535518092�10−3 5.890651357�10−1 −1.102173131�10−2

10 −1.025445984�10−1 −1.940417545�10−3 −1.005494430 −9.680160168�10−3

11 1.565521577�10−1 −1.501987905�10−3 1.700641966 −8.486511451�10−3

12 −2.455267547�10−1 −1.170051241�10−3 −2.948749946 −7.416819496�10−3

13 3.935047914�10−1 −9.185872231�10−4 5.156611906 −6.481274769�10−3
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x by a solution to a homogeneous or inhomogeneous differ-
ential equation, usually of first or second order, of the form

PK�x�
d2f

dx2 + QL�x�
df

dx
+ RM�x�f + ST�x� = 0, �11�

where PK, QL, RM, ST are polynomials of degree K, L, M, T,
respectively. The polynomials are obtained by matching the
coefficients in the power series expansion in x for the above
equation. They are uniquely determined from the known ex-
pansion coefficients of the function f and can be obtained by
solving a set of linear equations. If PK and ST are set to zero,
these approximants correspond to the well known d-log Padé
approximants, which can accurately represent power-law be-
havior. Integrated differential approximants have the addi-
tional advantage that they can handle additive analytic

or nonanalytic terms which cause difficulties for d-log Padé
approximants. It is also possible to bias the analysis to have
singularities at predetermined values of x with or without
predetermined power-law exponents. Using such approxi-
mants, which enforce a certain type of predetermined behav-
ior on the function, is called biased analysis. We refer the
reader to Ref. 36 for further details.

We found that the convergence near the ordering wave
vector Q �see Fig. 3�, was particularly poor. We know that
we must have gapless spectra at k=Q and k=0 as long as
there is long-range order in the system. Yet, most unbiased
analysis gave a moderate gap at k=Q. The convergence is
better near k=0, where unbiased analysis is consistent with
very small values of the gap. This behavior near Q may be
some evidence that long-wavelength correlations are not
fully captured by the available number of terms in the series.

TABLE II. Series coefficients for the magnon dispersion for the isotropic triangular-lattice model, calculated for t=1 in Eqs. �7� and �8�.
Nonzero coefficients cr,m,n in Eq. �9� up to order r=9 are listed.

�r ,m ,n� cr,m,n �r ,m ,n� cr,m,n �r ,m ,n� cr,m,n �r ,m ,n� cr,m,n

�0,0,0� 2.500000000 �7,4,0� −2.092658337�10−2 �7,8,0� −2.788171252�10−3 �8,12,0� 1.247798114�10−4

�1,0,0� −1.000000000 �8,4,0� −8.143627454�10−2 �8,8,0� −3.352709547�10−3 �9,12,0� 2.470018460�10−4

�2,0,0� −4.988839286�10−1 �9,4,0� −1.523543756�10−2 �9,8,0� 7.333948649�10−3 �7,12,2� 2.937003840�10−4

�3,0,0� −2.740918633�10−1 �3,5,1� 6.201171875�10−2 �5,9,1� 2.455267719�10−3 �8,12,2� 1.899234898�10−5

�4,0,0� −1.128855593�10−2 �4,5,1� −4.072501106�10−3 �6,9,1� −4.769602124�10−4 �9,12,2� −6.147374845�10−5

�5,0,0� 4.718452314�10−2 �5,5,1� 1.819088473�10−2 �7,9,1� −1.354096601�10−3 �7,11,3� 4.895006400�10−4

�6,0,0� 1.069731871�10−2 �6,5,1� 3.981234691�10−2 �8,9,1� −5.219152848�10−3 �8,11,3� 3.504866827�10−4

�7,0,0� −2.783715438�10−4 �7,5,1� −8.391751084�10−3 �9,9,1� −9.505943368�10−3 �9,11,3� 3.548457842�10−4

�8,0,0� 1.029634963�10−2 �8,5,1� −4.326852838�10−2 �5,8,2� 4.910535438�10−3 �7,13,1� 9.790012800�10−5

�9,0,0� −7.409203681�10−3 �9,5,1� 1.194051895�10−2 �6,8,2� 2.089776036�10−3 �8,13,1� −1.697239410�10−4

�1,2,0� 7.500000000�10−1 �3,6,0� 1.033528646�10−2 �7,8,2� −1.363667878�10−3 �9,13,1� −2.395827580�10−4

�2,2,0� 8.035714286�10−2 �4,6,0� −2.807172967�10−2 �8,8,2� −1.944215793�10−3 �7,14,0� 6.992866286�10−6

�3,2,0� −2.913527716�10−1 �5,6,0� −4.880096703�10−2 �9,8,2� 2.068274612�10−3 �8,14,0� −5.264758087�10−5

�4,2,0� −3.538253764�10−1 �6,6,0� −3.117757381�10−2 �5,10,0� 2.455267719�10−4 �9,14,0� −2.888908886�10−5

�5,2,0� −1.433040888�10−1 �7,6,0� 1.625826764�10−2 �6,10,0� −7.192654350�10−4 �8,13,3� −1.415213825�10−4

�6,2,0� 6.032017508�10−2 �8,6,0� 2.418896967�10−2 �7,10,0� 6.619708053�10−5 �9,13,3� −1.012838318�10−4

�7,2,0� 5.451813695�10−2 �9,6,0� −3.062453544�10−2 �8,10,0� 6.397714641�10−4 �8,14,2� −7.076069125�10−5

�8,2,0� −4.427446338�10−2 �4,7,1� −1.581420898�10−2 �9,10,0� −1.290395255�10−3 �9,14,2� 1.239259101�10−5

�9,2,0� −5.261673101�10−2 �5,7,1� −1.015665919�10−2 �6,10,2� −1.311427742�10−3 �8,12,4� −8.845086406�10−5

�2,3,1� −4.218750000�10−1 �6,7,1� −1.671867122�10−2 �7,10,2� −3.880276886�10−4 �9,12,4� −8.553417963�10−5

�3,3,1� 1.425980548�10−1 �7,7,1� −1.561157615�10−2 �8,10,2� 4.062057862�10−4 �8,15,1� −2.021734036�10−5

�4,3,1� 2.239011724�10−1 �8,7,1� 1.139858035�10−2 �9,10,2� −1.607660184�10−4 �9,15,1� 4.795929060�10−5

�5,3,1� −8.857143618�10−3 �9,7,1� 3.929130986�10−2 �6,11,1� −5.245710967�10−4 �8,16,0� −1.263583772�10−6

�6,3,1� −1.556426647�10−1 �4,6,2� −1.186065674�10−2 �7,11,1� 3.733048771�10−4 �9,16,0� 1.192482027�10−5

�7,3,1� −4.175359076�10−2 �5,6,2� −1.432147845�10−2 �8,11,1� 1.091608982�10−3 �9,15,3� 3.763753619�10−5

�8,3,1� 1.015643471�10−1 �6,6,2� −1.435136738�10−2 �9,11,1� 1.851573788�10−3 �9,14,4� 5.645630428�10−5

�9,3,1� 4.756044803�10−2 �7,6,2� −5.307444139�10−3 �6,9,3� −8.742851612�10−4 �9,16,2� 1.613037265�10−5

�2,4,0� −2.109375000�10−1 �8,6,2� −6.778541366�10−3 �7,9,3� −4.761605554�10−4 �9,17,1� 4.032593163�10−6

�3,4,0� −1.089232568�10−1 �9,6,2� −2.509466719�10−2 �8,9,3� −3.368803230�10−4 �9,18,0� 2.240329535�10−7

�4,4,0� 8.339453634�10−3 �4,8,0� −1.976776123�10−3 �9,9,3� −8.706110790�10−4

�5,4,0� 1.053325085�10−1 �5,8,0� 3.310043485�10−3 �6,12,0� −4.371425806�10−5

�6,4,0� 9.023634592�10−2 �6,8,0� 2.627504861�10−3 �7,12,0� 1.915360692�10−4
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V. GROUND STATE PROPERTIES

In this section we briefly discuss results for two ground-
state properties of the triangular-lattice model: the ground
state energy per site E0 /N and the Néel order parameter M
�i.e., the sublattice magnetization�. In Fig. 2 we show the
extrapolated ground state energy as a function of the angle q
between nearest neigbor spins along J2 bonds. Clearly the
ground state energy is minimized when q takes the classical
value 2� /3. The resulting value for the ground state energy
is E0 /N=−0.5502�4�J, which compares well with results ob-
tained from other methods �see Table III�.

The series for the order parameter M is extrapolated as-
suming a square-root singularity at �=1, i.e., we extrapolate
the series in the variable �=1− �1−��1/2 using integrated
differential approximants. This leads to the estimate M
=0.19�2�. This estimate is known to be sensitive to the
choice of the power law.6 Our value for M shows good con-
sistency with what is obtained from other methods �see
Table III�.

VI. EXCITATION SPECTRA

The triangular-lattice Brillouin zone with selected wave
vectors is shown in Fig. 3. In Fig. 4 we plot our most care-
fully extrapolated spectra along selected directions of the
Brillouin zone using integrated differential approximants

FIG. 2. The ground state energy per site E0 /N, as a function of
the angle q between nearest neighbor spins along J2 bonds, for the
triangular-lattice model �i.e., J1=J2	J�. The minimum energy is
obtained when q=2� /3, the same as for the classical model.

TABLE III. Ground state properties of the isotropic triangular-lattice model, obtained by different meth-
ods. E0 /N is the energy per site �in units of J� for a system with N lattice sites. The order parameter M is the
magnitude of the expectation value of the spin in the ordered state. It would have a value of 0.5 in the absence
of quantum fluctuations, and is zero in a spin liquid ground state. 	s is the average spin stiffness �in units of
J� which in a nonlinear sigma model description sets the temperature scale of the finite temperature proper-
ties. Note that some of the spin liquid states based on variational wave functions give values for the ground
state energy comparable to the best estimates. DMRG, QMC, V, GF, and ED denote density matrix renor-
malization group, quantum Monte Carlo, variational, Greens function, and exact diagonalization, respec-
tively. SRVB denotes short range RVB. GA denotes the Gutzwiller approximation. SB+1/N denotes
Schwinger boson mean-field theory with 1/N fluctuations.

Method Ref. N E0 /N M 	s

Series this work � −0.5502�4� 0.19�2�
ED 5 and 70 12 −0.6103

36 −0.5604 0.40

V SRVB 9 12 −0.6096 0 0

36 −0.5579 0 0

ED 62 36 0.06

DMRG 40 � −0.5442

GFQMC 41 � −0.5458�1� 0.205�10�
VQMC, SRVB 10 � −0.5123 0 0

VQMC, RVB 10 � −0.5357 0 0

VQMC, BCS+Néel 42 � −0.532�1� 0.36

SWT+1/S 43 � −0.5466 0.2497

SWT+1/S 44 � 0.266 0.087

d+ id RVB GA 60 � −0.484�2� 0 0

Coupled cluster 55 � 0.2134 	� =0.056

SB+1/N 56 � −0.5533 	� =0.09
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with appropriate biasing near the gapless points. The error
bars are a measure of the spread in the extrapolated values
from different approximants. Also shown in figure are the
results from naive summation of the series as well as naive
summation of the ratio series �see Sec. IV� with two different
t values. In Fig. 5 we plot the series expansion results to-
gether with LSWT and SWT+1/S spectra.

The comparisons in Fig. 4 show that the substantial de-
pression in the spin-wave energies obtained in the series ex-

pansions, over large parts of the Brillouin zone, is a very
robust result that does not depend on extrapolations. Roton-
like minima at wave vector B is also a very robust result
already present in naive summation of the series. On the
other hand, series extrapolations are essential near gapless
points O, C, and Q. Even though the ratio series gives gap-
less excitations at these points, it does not get the spin-wave
velocity right.

Since it is tedious to perform the full analysis of the spec-
tra at all points of the Brillouin zone �and not necessary for

FIG. 6. �Color online� Projection plot showing the magnon en-
ergies obtained from series expansions in the triangular-lattice Bril-
louin zone. The path in Fig. 3 is also shown �dashed lines�. The
low-energy regions are located around the Brillouin zone center and
corners.

FIG. 3. Reciprocal space of the triangular lattice including the
hexagonal first Brillouin zone. Squares denote ordering wave vec-
tors, circles denote wave vectors of the “roton” minima. The labeled
points have coordinates O= �0,0�, P= �2� /3 ,0�, A= �� ,0�, B
= �� ,� /3�, C= �2� /3 ,2� /3�, Q= �4� /3 ,0�, and E= �0,� /3�.
Also shown is the path ABOCPQBE along which the magnon dis-
persion is plotted in Figs. 4 and 5.

FIG. 4. �Color online� Calculated spectra along ABOCPQBE of
the Brillouin zone. Series extrapolation results �data points with
error bars� are plotted together with naive sum of series with t=2
�solid green curve� and naive sum of ratio series with t=1 �short-
dashed magenta� and t=2 �long-dashed blue�.

FIG. 5. �Color online� Magnon spectra along ABOCPQBE from
series expansions compared with LSWT �dashed red line� and
SWT+1/S �solid green line�.
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the higher energy spectra�, we have instead carried out a
more restricted D-log Padé analysis over the whole zone. In
Fig. 6 we show a two-dimensional projection plot of the
spectra in the full Brillouin zone. The color code is adopted
to highlight the higher energy part of the spectra, where our
results should be most reliable, and minimize the variation at
low energies where this analysis is not reliable. In Fig. 7, the
corresponding two-dimensional projection plot for the
SWT+1/S calculations is shown. Note that different color
schemes have been used in Figs. 6 and 7.45

In Fig. 8, we show the DOS obtained from series analysis,
LSWT and SWT+1/S. In each case the integrated density of
states is normalized to unity.

From these plots, we make the following observations.
�1� The SWT+1/S results share many common features

with the series expansion results. Over most of the Brillouin
zone the SWT+1/S results fall in between LSWT and series
expansion results. They show that quantum fluctuations lead to substantial downward renormalization of the higher en-

ergy magnon spectra. This is in contrast to unfrustrated spin
models, such as square-lattice or linear chain models, where
quantum fluctuations lead to increase in excitation energies.

�2� There are quantitative differences in the downward
renormalization. The highest magnon energies are lowered
with respect to LSWT by about 40% in the series results and
by about 25% in SWT+1/S results.

�3� The agreement in the low energy spectra and the spin-
wave velocities is good when SWT+1/S results are com-
pared to the biased integrated differential approximant analy-
sis of the series.

�4� Both the series results and SWT+1/S results show
relatively flat or dispersionless spectra over large parts of the
Brillouin zone. These lead to sharp peaks in the density of
states. However, there are some qualitative and quantitative
differences here. In the series results the flattest part of the
spectra that gives rise to the largest peak in the DOS are near
the highest energy. A second smaller peak in the DOS pri-

FIG. 7. �Color online� Projection plot showing the SWT+1/S
magnon energies in the triangular-lattice Brillouin zone. Note that
the color scheme used here is different than in Fig. 6. The path in
Fig. 3 is also shown �dashed lines�. The low-energy regions are
located around the Brillouin zone center and corners.

FIG. 8. �Color online� Plots of magnon density of states for the
series expansions, LSWT, and SWT+1/S spectra.

FIG. 9. �Color online� Highlight of regions in the Brillouin zone
that contribute to the DOS peaks in the series calculations.
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marily gets contributions from the neighborhood of the roton
minima. Both these regions are highlighted in Fig. 9. In con-
trast, in SWT+1/S results, the peak in the DOS near the
highest magnon energies is much smaller. The flattest part of
the spectra in SWT+1/S calculations are from the region
near the roton minima. These are highlighted in Fig. 10.

�5� The roton minima at wave vector B and equivalent
points are present in both series expansion results and in
SWT+1/S results. However, they are much more pro-
nounced in the series results. A similar roton minima is seen
in the square lattice at k= �� ,0�, where it is also more promi-
nent in series expansion and quantum Monte Carlo
results,46–48 absent in SWT+1/S results and barely visible in
the next higher order spin-wave results.49

�6� The two-dimensional plots for both series expansions
and SWT+1/S have a similar look with a central annular
high energy region, which is separated from six high energy
lobes by a minima in the middle. The annular region in
SWT+1/S appears more circular than in the series results,
although both have clear hexagonal features. The lobes also
have some differences.

�7� The SWT+1/S calculations also predict finite life-
times for spin waves located around the center of the Bril-
louin zone. These have not been taken into account in the
series calculations and may also contribute to the difference
between the two spectra.

Overall the comparison shows that the SWT+1/S results
have many common features but also some differences. Neu-
tron scattering spectra on a triangular-lattice material would
be very exciting to compare with. In the meanwhile, sharp
peaks in the DOS might be detected in optical measure-
ments. Given the qualitative differences, such measurements
should be able to differentiate between the predictions made
by the SWT+1/S and series calculations. However, such
spectra would depend on various matrix elements, and it
would be important to develop a detailed theory for Raman
scattering for these systems.

VII. FINITE TEMPERATURE PROPERTIES

In this section we discuss the implications of the spectra
we have calculated, particularly the rotons, to properties of
the triangular lattice model at finite temperatures. To empha-
size the importance of this issue we first discuss the renor-
malized classical behavior expected at low temperatures for
two-dimensional quantum spin systems, and the results of
earlier high temperature series expansions which suggested
otherwise.

A. Finite-temperature anomalies

For a two-dimensional quantum spin system with an or-
dered ground state, the low temperature behavior should cor-
respond to a renormalized classical �RC� one, that is a “clas-
sical” state with interacting Goldstone modes which is
captured by the nonlinear sigma model.18 It is instructive to
compare the behavior of square and triangular lattices. Spin
wave theory suggests that there are not significant differ-
ences between the quantum corrections for square and trian-

gular lattice models at zero temperature. For both lattices, a
diverse range of theoretical calculations suggest that the re-
ductions in sublattice magnetization and spin stiffness are
comparable. If this is the case then one might expect renor-
malized classical behavior in the model to hold upto compa-
rable temperatures. The relevant model for the square lattice
is the O�3� model, and it has been very successful at describ-
ing both experimental results and the results of numerical
calculations on the lattice model.18

For the triangular lattice, there are three Goldstone modes,
two with velocity c� and one with velocity c�. The corre-
sponding spin stiffnesses are denoted 	� and 	�. Several dif-
ferent models have been suggested to be relevant, including
O�3��O�3� /O�2� �Ref. 15� and SU�2�.16 All of these mod-
els predict similar temperature dependences for many quan-
tities.

FIG. 10. �Color online� Highlight of regions in the Brillouin
zone that contribute to the DOS peaks in the SWT+1/S
calculations.
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In the large N expansion, including fluctuations to order
1 /N �the physical model has N=2�, the static structure factor
at the ordering wave vector is17

S�Q� � 0.85� T

4�	s
�4


�T�2, �12�

where the correlation length 
�T� �in units of the lattice con-
stant� is given by50


�T� = 0.021� c

	s
��4�	s

T
�1/2

exp�4�	s

T
� , �13�

where c= �2c�+c�� /3 and 	s= �2	�+	�� /3 is the zero-
temperature spin stiffness, which sets the temperature scale
for the correlations. These expressions are quite similar to
those for the O�3� model that is relevant to the square lattice,
with the 4� replaced by 2�. An important prediction of Eqs.
�12� and �13� is that a plot of T ln�S�Q�� or T ln�T
2�T��
versus temperature at low temperatures should increase with
decreasing temperature and converge to a finite non-zero
value which is proportional to the spin stiffness in the or-
dered state at zero temperature. Indeed, the relevant plots for
the spin-1

2 square lattice model14 and the classical triangular
lattice model51 do show the temperature dependence dis-
cussed above. However, in contrast, the plots for the spin-1

2
model on the triangular lattice do not. In particular,
T ln�S�Q�� or T ln�T
2�T�� are actually decreasing with de-
creasing temperature14 down to 0.25J. This is what one
would expect if the ground state was actually quantum dis-
ordered with a finite correlation length at zero temperature.
Hence, to be consistent with the ordered ground state at zero
temperature these quantities must show an upturn at some
much lower temperature.

The zero temperature value of the spin stiffness has been
estimated for the TLM by a variety of methods, as shown in
Table III. The values are in the range 0.06J to 0.09J. For
	s=0.06J and c=Ja taken from nonlinear spin wave theory
�also consistent with the dispersion relation found by series
expansions�, Eq. �13� implies that the correlation length
should be about 0.6 and 12 lattice constants at temperatures
of T=J and T=0.25J, respectively. For comparison, the high
temperature series expansions give14 values of about 0.5 and
1.5 lattice constants, at T=J and T=0.25J, respectively. It
should be noted that the definitions of the correlation length
in the field theory and in the series expansions is slightly
different.17

Furthermore, the entropy for the nonlinear sigma model at
low temperatures is just that of noninteracting bosons in two
dimensions

s�T� = A� 1

c�
2 +

2

c�
2 �T2 + O�T4� , �14�

where A is a dimensionless constant of O�1�. SWT+1/S
gives c� =1.11J and c�=0.69J.17,44 This means that for T�J
the system should have very small entropy. Indeed for the
square lattice this is the case: it is about 0.05 at T=0.3J.
Quantum Monte Carlo calculations found that for T�0.25J
the internal energy for the square lattice had the correspond-

ing T3 dependence.52 However, for the triangular lattice the
entropy is still 0.3 at T=0.3J. Chubukov, Sachdev, and
Senthil17 suggested that the origin of the above discrepancies
was related to a crossover between quantum critical and
renormalized classical regimes. Previously, we suggested25

that the above discrepancies could be explained if one con-
sidered the rotons to be composed of a spinon and antispinon
which were excited thermally. However, we now show how
thermal excitations of rotons can explain the above discrep-
ancies. There is a significant analogy here with the role that
rotons play in superfluid 4He where they start to make sub-
stantial contributions to the entropy at temperatures much
less than the roton gap.53,54

B. Contributions of rotons to finite temperature properties

We will calculate the entropy of the triangular-lattice
model by assuming that the magnon excitations can be
treated as a gas of noninteracting bosons with a dispersion as
obtained from the series calculations. The entropy per site for
noninteracting bosons �measured in units of kB=1� is given
by

s�T� = �
0

�

d�g���
 �/T

e�� − 1
− ln�1 − e−���� , �15�

where the DOS g��� is normalized to unity. A plot of this
entropy calculated from the series DOS in Fig. 8 is shown in
Fig. 11. It is seen that the entropy is in fact larger than 0.3 at
T=0.3J and thus consistent with the high-temperature series
data. It is also clear that the contribution to the entropy from
the rotons or high-energy excitations �energy �0.5 and
above� starts dominating over the contribution from the low-
energy Goldstone modes at temperatures slightly above T
=0.1J which is only about 1/5 of the roton gap. This shows
that for the triangular lattice model the presence of rotons
significantly influences thermodynamic properties even at
very low temperatures and thus provides an explanation of

FIG. 11. �Color online� Entropy of the triangular-lattice Heisen-
berg model due to the magnon excitations. Contributions to the
entropy from different energy ranges are shown. The low energy
magnons only dominate the entropy below T=0.1J.
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why the finite-temperature behavior of the triangular-lattice
model are very different from the square lattice model. In
particular it implies that a nonlinear sigma-model description
will be valid only at very low temperatures.

VIII. DISCUSSION

We have seen that SWT+1/S results for the spectra share
many features of the series expansion results. Furthermore,
the existence of rotons and flat regions in the spectra at fairly
low energies �about four times lower than for the square
lattice�, gives a natural explanation for why the results of
high-temperature series expansions for the square and trian-
gular lattice models are qualitatively different. However,
there are still some important questions to be addressed.
First, we should stress that we still lack a physical picture
�such as exists for superfluid 4He, thanks to Feynman27� of
the nature of the rotons. Moreover, recent experimental re-
sults on �-�BEDT-TTF�2Cu2�CN�3, and recent variational
RVB calculations with spinon excitations, raise further is-
sues. We now briefly review these points.

A. Are magnons bound spinon-antispinon pairs?

In our earlier paper25 we suggested a possible explanation
of the “roton” minima in the magnon dispersion relation in
terms of a downward energy renormalization due to a level
repulsion from a higher-energy two-spinon continuum. This
requires that the spinon dispersion have local minima at spe-
cific wave vectors. For the square-lattice model a similar
interpretation, based on the �-flux phase,57 was originally
proposed by Hsu58 �see also Ref. 59� to explain the minima
observed at �� ,0� in that case. For the triangular-lattice
model, several RVB states have spinon excitations with
minima at the required locations. For example, Lee and
Feng60 and Ogata61 considered a Gutzwiller projected BCS
state with dx2−y2 + idxy pairing symmetry in the Gutzwiller
approximation. However, the variational energy of this state
�−0.484J� is about 15 per cent higher than the best estimates
of the true ground state energy �see Table III�. In contrast, the
Gutzwiller projected BCS states recently studied by Yunoki
and Sorella10 using variational Monte Carlo have energies
comparable to the best estimates of the ground state energy.
In their study, a state which can be related to a short range
RVB state, has very good variational energy, and has spinons
with mean field dispersion relation

E�k� = �2 + ���2�cos2k1 + cos2k2 + sin2�k1 − k2���1/2,

�16�

where k1 and k2 are the components of k that are parallel to
the reciprocal lattice vectors G1 and G2 of the triangular
lattice. This dispersion has local minima at the four wave
vectors k= 1

4 �±G1±G2�. Spinon-antispinon excitations which
make up spin triplet excitations will then have local minima
at the six points in the middle of the edges of the Brillouin
zone, i.e., the location of the roton minima found in the
series expansions.

B. Experimental results

We now review recent experimental results on the Mott
insulating phase of �-�BEDT-TTF�2Cu2�CN�3. Very interest-
ingly, this material does not show any magnetic long-range
order down to the lowest temperature studied, 32 mK,22 de-
spite the fact that this temperature is four orders of magni-
tude smaller than the exchange interactions estimated to be
around 250 K. The temperature dependence of the Knight
shift and nuclear magnetic relaxation rate 1 /T1 associated
with 3C nuclei �which have a significant interaction with the
electron spin density� have also been measured for this
material.63,64 This is a particularly useful measurement be-
cause the relaxation rate gives a measure of the range of the
dynamical antiferromagnetic correlations. The observed tem-
perature dependence of the Knight shift is the same as that of
the uniform magnetic susceptibility,22 as it should be. As the
temperature decreases, the ratio 1/T1T increases by a factor
of about 2 from 300 down to 10 K, and then decreases
by about thirty per cent down to 6 K. There is no sign
of splitting of NMR spectral lines, as would be expected
if long range order develops. In contrast, for �-�BEDT-
TTF�2Cu2�N�CN�2�Cl, 1 /T1T increases rapidly with decreas-
ing temperature and exhibits a cusp at the Neel temperature,
reflecting the diverging antiferromagnetic correlation length.
Evidence for the existence of magnetic order, in the latter
material, comes from the splitting of NMR lines at low
temperatures.65

The observed temperature dependence of 1 /T1T and the
spin echo rate 1 /T2 for �-�BEDT-TTF�2Cu2�CN�3 is dis-
tinctly different from that predicted by a nonlinear sigma
model in the renormalized classical regime,16 namely, that
1 /T1T be proportional to T5/2
�T�, and 1/T2 be proportional
to T3
�T�, where the correlation length is given by Eq. �13�.
In particular, if this material has a magnetically ordered state
at low temperatures, then both 1/T1T and 1/T2 should be
increasing rapidly with decreasing temperature, not decreas-
ing. In the quantum critical regime, close to a quantum criti-
cal point16 1 /T1�T�, where � is the anomalous critical ex-
ponent associated with the spin-spin correlation function.
Generally, for O�n� sigma models, this exponent is much less
than 1. If ��1, as occurs for field theories with deconfined
spinons,16,31 then 1/T1T decreases with decreasing tempera-
ture, opposite to what occurs when the spinons are confined,
because then ��1.18 It is very interesting that at low tem-
peratures, from 1 K down to 20 mK, it was found64 that
1 /T1�T3/2 and 1/T2�const. In contrast for the materials
described by the Heisenberg model on a square lattice66 or a
chain,20 both relaxation rates diverge as the temperature de-
creases. Hence, these NMR results are clearly inconsistent
with a description of the excitations of this material in terms
of interacting magnons. It is also observed that a magnetic
field induces spatially nonuniform local moments.64 Motru-
nich has given a spin liquid interpretation of this
observation.67 The simplest possible explanation of why
these results at such low temperatures are inconsistent with
what one expects for the nearest neighbor Heisenberg model
is that such a model may not be adequate to describe this
material and the spin liquid state may arise from the presence
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of ring exchange terms in the Hamiltonian.24 This has led to
theoretical studies of such models.68,69

IX. CONCLUSIONS

The present comparisons of the series results of the spec-
tra with the order 1 /S spin-wave theory suggests that the
shape of the magnon dispersion relation can be understood in
a more conventional picture of interacting magnons. Further-
more, the existence of the roton minima at points in the
middle of the edges of the Brillouin zone and regions of flat
dispersion in the zone, can explain why the low temperature
properties of the triangular lattice model are so different
from those of the square lattice. However, we still lack a
clear physical picture for the nature of the rotons. An impor-
tant issue to resolve is whether the most natural description
for them is in terms of bound spinon-antispinon pairs.

From a theoretical point of view it may be interesting to
add other destabilizing terms to the Hamiltonian, such as
second neighbor interactions and ring-exchange terms, which
can demonstrably lead to short correlation lengths and desta-
bilize the 120° order, and then explore the changes in the
dispersion relation, one-magnon weight and continuum line
shapes with variations in the model parameters.

It is also important to examine these results in the
context of the triangular-lattice organic material �-�BEDT-
TTF�2Cu2�CN�3, which does not show long-range order
down to temperatures four orders of magnitude smaller than

the estimated exchange coupling strength. We have argued
that, although the measured uniform susceptibility shows
good agreement with the spin-1

2 Heisenberg model on a tri-
angular lattice, NMR measurements cannot be explained as-
suming only nearest-neighbor exchange interactions, and
higher order spin interactions such as ring exchange may be
important in stabilizing a spin-liquid ground state in this ma-
terial.

Note added. After this work was completed we learned of
Ref. 71 which also addresses the excitation spectra of the
triangular-lattice Heisenberg model.
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