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Critical behavior of the helicity modulus for the classical Heisenberg model
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The critical scaling of the helicity modulus of the classical O(3) 3d Heisenberg ferromagnet is studied
directly. Monte Carlo methods that impose either an antiperiodic boundary condition or a finite twist of definite
handedness across otherwise periodic boundaries in one lattice direction are used to measure scale-dependent
enthalpy variations in a simple cubic lattice at the ferromagnetic critical temperature. Finite-size scaling is then
used to determine the critical exponents vy and vy for helicity and, by evaluating three independent
hyperscaling-linked pairs of v and «, to test hyperscaling for this model. It is observed that antiperiodic
boundary conditions in particular constrain the lattice to have a nonzero topological charge, establishing a
connection between topological charge and helicity in the model.
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I. INTRODUCTION

The helicity modulus (spin-wave stiffness) Y is a direct
measure of the response of an ordered, isotropic system to a
suitable helical or “phase twisting field” [see Fisher, Barber,
and Jasnow' (FBJ)]. As such, it is a quantity of great interest
in studies of the critical behavior of O(n)-symmetric continu-
ous spin systems such as O(2) superfluids (where it has been
studied with Monte Carlo methods)?>™ or the O(3) classical
Heisenberg model. For example, the helicity modulus can be
shown to be equal to the effective superfluid fraction in a
suitably granulated model of superconductivity.®

There are still open questions in symmetric spin systems,
in particular whether or not there is a topological element to
the phase transition. A number of researchers have looked at
the phase transition for O(3) spins in a three-dimensional
lattice to try to determine whether or not it can fairly be
characterized as an unbinding of hedgehog (chargelike) de-
fects in the spin field, similar to the way the transition in
O(2) XY models can be viewed as the unbinding of current-
like defects (spin loops of opposite handedness).”!!

Helicity is also of interest in closely related chiral field
theories;!? the ordered phase of continuous isotropic systems
is characterized by both the appearance of Goldstone (trans-
verse) modes and an associated breakdown of the disordered
phase’s exponential decay of correlations in both condensed
matter and field theories. However, the connection of helicity
with topological charge has not been studied in the O(3)
models in particular.

The critical scaling of the helicity modulus is a useful
thing to study in continuous spin systems. The correlation
function is extremely difficult to study directly with, e.g.,
Monte Carlo methods on a lattice with periodic boundary
conditions because the existence of periodic images of a spin
causes a significant deviation of the correlation function
from its asymptotic form in precisely the asymptotic region
one is hoping to fit. However, the energy response to a heli-
cal twist of the image spins a maximal distance away yields
direct information about the correlation decay across the en-
tire intervening range as it effectively constrains the system
to populate the specific long-wavelength spin modes that are
energetically consistent with the temperature. FBJ showed
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that the helicity modulus may be used to define a “phase
coherence length,” which has been conjectured to be the ac-
tual correlation length in the ordered phase for a variety of
models [see the discussion around their equation (3.9)].

This conjecture (as is outlined below) rests upon the va-
lidity of hyperscaling (lattice dimension d dependent) rela-
tions such as dv=2-e. If hyperscaling can be shown to be
valid for the model, Monte Carlo measurements of the helic-
ity modulus yield direct information about the transverse cor-
relation function and hence increase our understanding of the
structure of the ordered phase near criticality.

In addition, if we measure at least one nonhyperscaling
critical exponent ratio such as B/v while conducting such a
Monte Carlo experiment, the rest of the static critical expo-
nents for the model can be determined from (say) B8 and v
and the usual scaling and hyperscaling relations.

To these ends this work studies the critical behavior of
helicity in the O(3) model in three lattice dimensions (the
isotropic classical Heisenberg ferromagnet). The microscopic
Hamiltonian corresponding to this model in the absence of a
symmetry breaking external field is

neighbors

H=-J 2 §l§]’ (1)

i<j

where the sum is over nearest-neighbor spins only. The spins

are classical unit vectors in three dimensions, S=sX+s,y
+5,Z, with +\J’sx+s§+sf= 1. Equivalently the spins can be de-
scribed by a pair of angles on a unit sphere in spherical polar
coordinates.

Using the Monte Carlo methodology described in detail
below, the related critical exponents of the helicity modulus
vp and vy were computed. The exponent vy is related in
known ways to a and v as shown in FBJ. The critical expo-
nent ratio a/ v was directly evaluated by fitting the finite-size
scaling of E(T,,L) and C(T,,L) independently from the re-
sulting Monte Carlo data. The results of these three distinct
computations were then compared and found to be in excel-
lent agreement with each other subject to the assumption of
hyperscaling. A consistent set of hyperscaling exponents «
and v and the helicity exponents vy and vy with reasonable
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error bounds were estimated as a consequence of this com-
parison.

While accumulating the Monte Carlo data used to mea-
sure the helicity exponents and energy moment exponents,
the data required one to perform a very-high-precision finite-
size scaling computation of the exponent ratio B/v (or the
critical exponents of other order-parameter moments) were
also sampled and accumulated. In all cases the computations
were run indefinitely in a loop that distributed independent
runs (each with a unique random number seed) onto the
nodes in a compute cluster until demanding relative preci-
sion targets (reliably evaluated using the standard deviation
associated with independent runs) were reached over the en-
tire log;o decade being fit.

As discussed below, the order parameter, energy, and he-
licity averages thus obtained at 7. for various L were too
precise over too large a range of L for a traditional finite-size
scaling fit to work (with a single nonanalytic algebraic term
and no confluent corrections) and still produce an acceptable
X>. In most cases (with the notable exception of the energy)
an additional algebraic confluent term was required to ac-
commodate the low-L measurements in the fit and obtain an
acceptable y? over the largest possible range of L. The cor-
rection term generally improved the asymptotic character of
the fit by not requiring data that clearly fall on a confluent
curve (on a log-log scale) that has not yet reached its asymp-
totically straight form to be fit by a straight line.

II. CRITICAL SCALING OF THE HELICITY MODULUS

The helicity modulus was introduced by FBJ in Ref. 1 by
the definition

AF(®) = Y AD(VaY, 2)

where AF(®) is the change in the free energy density when
the periodic boundary condition on one face of an L* cube
(for example) of O(n) ferromagnetic spins is twisted by the
angle O (as L— ) relative to its periodic partner. For |@|
=<, this introduces a continuous Mobius twist in the spins
along one axis of the periodic three-torus. Vép=@/L is the
average gradient of the twist angle across the cube; for small
O this corresponds to forcing, in thermal equilibrium, the
excitation of a long-wavelength (A\>L) spin wave. (Note
that although there are also spin waves with A=L and
shorter that match the imposed periodic twist, these typically
correspond to much greater excitation energies and make a
much smaller contribution to the free energy response.) We
have labeled the helicity modulus with a free energy density
label F for reasons that will shortly become apparent.

Because of the relative algebraic ease of working with
inversion compared to small specific twists in the range
above, FBJ introduce antiperiodic boundary conditions
across one lattice direction as equivalent to an average twist
of |V|==m/L between planes of spins perpendicular to the
twisted dimension. This leads to
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(21
YR(T) = LITJC (7>[Fa(T,L) - F,(T,L)], (3)

where F,(T,L) and F,(T,L) are the free energy densities of
the lattice with antiperiodic or periodic boundary conditions
in one chosen direction (and normal periodic boundary con-
ditions in the rest).

There is something very interesting and perhaps unex-
pected about this particular choice and definition. Let us con-
sider its implications for O(2) models and O(3) models sepa-
rately. In O(2) the spins have an orientation described by a
single angle (or, equivalently, an order parameter phase for,
e.g., superfluids). Imposing a twist across a lattice dimension
by adding or subtracting an angle to all the angles of the
boundary spin periodic images produces a boundary condi-
tion that can be satisfied by multiple twisted configurations,
not just the one that corresponds to a true twisted suscepti-
bility associated with a twisted spin field of definite axis and
handedness that is then permitted to smoothly vanish. The
helical twist angles that smoothly connect across the lattice
to satisfy the particular twisted boundary condition (such as
might be imposed in an actual Monte Carlo computation) are
unique only to within an arbitrary integer multiple of 2.
Also, the same relative twist angle can be reached by means
of a left-handed or a right-handed twist distributed across the
lattice.

For arbitrary relative twist angles, let us try to understand
the relative contribution to equilibrium of the left- and right-
handed twists that connect smoothly across the lattice. Let us
by convention observe the lattice from a perspective such
that the smallest in magnitude of the possible twist angles
imposed on the boundary spins, ® < 7, is right handed (posi-
tive). Let us define

V¢, =0IL, 4)

Ve =(0-2m)IL, (5)

to be the average right- and left-handed interlayer spin gra-
dients across the twisted direction that corresponds to a par-
ticular (right-handed) twist angle ®. Note that V¢, is the
smaller of the two possible interlayer angles, but we will
assume that L>27 is large enough that both of them are
“small angles” in the sense that |V ¢|>> |V |*.

We can consider each of these separately to gain some
insight into the relative likelihood of quenching into one or
the other of the possible handednesses in a Monte Carlo
computation. Below T the systems is “stiff’—it has a non-
zero helicity modulus—and

AF(0) = SY ATV, ©)

AF(©) = VATV, g

where AF,<AF, except at ®@=m where AF,=AF, Chiral
symmetry is broken—there is a gap between the right-
handed (small-angle) and left-handed (large-angle) free ener-
gies that gradually vanishes as ® — . It costs more free

224413-2



CRITICAL BEHAVIOR OF THE HELICITY MODULLUS...

energy to twist the system around to a given angle ® “the
long way” (or through additional multiples of 24r), which
tends to suppress the mixing of unwanted helicity states that
match the given boundary twist when the gap is large.

If ®=m, though, chiral symmetry is technically
restored—there are two chiral states of distinct helicity with
the same free energy. Nevertheless, we expect to observe
only one of them in any given “experiment” (e.g., Monte
Carlo quench) because the ergodicity of the system should be
broken—in order to go from a left-handed twist of 7 to a
right-handed twist of 7r the system has to go through inter-
mediate states of much higher energy that are correspond-
ingly improbable. It basically must accumulate a helical twist
of at least 27 across a distance much less than L—effectively
a “defect plane”—which must then grow across the lattice).

Switching helicity states below T'. in a system with a con-
strained boundary spin rotation of 7 is thus an Ising-like
behavior—similar to the breaking of ergodicity that occurs
when quenching an Ising model to a state of broken symme-
try and ergodicity below its T,.. However, it is being observed
in a continuous spin model.

In a continuous spin model, there is obviously no free
energy barrier to a uniform rotation applied to all spins as the
microscopic Hamiltonian is symmetric under rotations. In a
Monte Carlo computation of such a model for a finite sys-
tem, the order parameter will slowly wander around and
sample different directions due to local thermal spin fluctua-
tions or the application of the importance sampling Markov
process may be [as mentioned in FBJ and studied in detail in
Ref. 13 for O(3) spins]. However, in a system quenched to a
state with a boundary twist of 7 the handedness of the twist
it quenches to is likely to persist for much longer (divergent)
timescales.

Above T, there is enough free energy to accommodate
states with mixed helicity and one expects to find domains
with locally distinct helicity smoothly intertwined through-
out the lattice for any imposed relative boundary twist angle
. The system is no longer “stiff.”

Finally, ar T, (our region of interest) things are maximally
complex. For a finite-size lattice, the system is weakly stiff
(as the order parameter is nonzero but very small, vanishing
as L7 as L— ). We therefore expect AF,<AF, up to ©
=17 as above (where we are of course referring to these quan-
tities evaluated for a finite-size lattice with the intent of using
finite-size scaling theory later) but now as the gap AF;
—AF, narrows we can no longer presume that mixing is sup-
pressed and the distinct quadratic forms of AF; and AF, are
maintained. Basically, it is by no means clear that the pre-
sumed quadratic form of AF for small V¢ will be maintained
for a relative twist angle of ® =17 where the free energy can
include the entropic contribution from states of mixed helic-
ity even if V¢ remains small.

In any event, for an O(2) spin system it is expected that
the use of spin inversion in place of a twisted boundary con-
dition with specific handedness will have little effect on the
practical computation of a helicity modulus and its critical
behavior. Whether the system samples left-handed, right-
handed, or mixed helicity states to achieve the inversion, the
inversion is exactly equivalent to a physical twist of the spins
through an angle of 7 of either handedness, so the definition
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of helicity modulus per se as proportional to the free energy
response to imposing an actual twist on the spin system is
left intact by Eq. (3).

The same is not true for O(n>2) spin systems. Helicity
for spin dimension n>2 systems is very different in certain
respects from helicity in n=2 systems (whatever the under-
lying lattice dimensionality).

Consider an O(n=3) spin system. A boundary twist
through a given (by convention right-handed) twist angle
O < 7 now has to be referred to a specified axis of rotation
which may or may not be aligned with the nascent order
parameter of a finite lattice at its critical temperature. Indeed,
over time the order parameter direction itself will drift'3!# as
the lattice is sampled while in general the twist axis and
angle will remain fixed. This must be compared to an n=2
spin system where the “twist axis” can be thought of as being
fixed perpendicular to the plane in which the spins (and na-
scent order parameter) lie.

Still, this sort of twist is at least qualitatively similar to
that of O(2); the boundary twist still has a specific handed-
ness with respect to the twist axis and the energy of the
lattice will still be lowest when the overall twist is distrib-
uted as an average rotation of V¢,=0/L, which corresponds
to the smallest interlayer gradient that appropriately matches
the imposed boundary twist angle. One still expects the free
energy of a state with the larger interlayer gradients [V ¢,
=(0®-27)/L and higher multiples of 2] to be larger, with a
gap that makes quenching to or sampling the larger-angle
configurations less likely for ® <, at least below T..

Even here, though, there are differences as well. For ex-
ample, for n=3, spins that happen to be (nearly) aligned
with the twist axis do not change (much) as they are rotated
about it, where spins that happen to be perpendicular to the
twist axis can change a great deal. The distribution of the
energy changes associated with bonds between layers along
the twisted lattice dimension is thus very different—in par-
ticular the interlayer bond energies where one spin happens
to be aligned with the rotation axis do not change at all, a
result that is not possible in an O(2) lattice, where the rota-
tion axis is “perpendicular” to the spin plane and interlayer
bond energies always change by a nonzero amount.

This seems to be intuitively related to the additional free-
dom afforded by the extra spin dimension, which is sufficient
in other contexts to prevent e.g. the formation of Kosterlitz-
Thouless type!® (long-range and short-range order) phase
transitions for n=3 spins in two spatial dimension lattices.
The spins have more ways to reorient to accommodate either
the long- or short-angle interlayer spin gradient with only
small local energy differences between them. Although the
additional mixing thus expected is interesting as a qualitative
difference, this is the sort of smooth detail that one expects to
see reflected in the actual details of the computations of the
critical exponents and hence may not be a problem to the
theory.

The most important difference, however, is a group-
theoretic one and may be a problem to the theory. Antiperi-
odic inversion of a boundary layer is an improper
rotation—it is not in SO(3), the rotation group of the sphere.
It therefore cannot be related to any specific proper rotation
or twist about any axis in O(3) (or any odd-n) model. Only
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for even spin dimension—e.g., n=2—is inversion in SO(n)
and hence equivalent to a direct rotation of the boundary
layer spins. So the definition of helicity in Eq. (3) above is
technically incorrect for odd n>2 spin systems, specifically
n=3.

This is an extremely interesting observation. Helicity is
associated with small “infinitesimal” rotations V¢ succes-
sively and homogeneously applied to all the spins in any
given transverse layer, accumulating across the lattice to a
finite actual rotation of the boundary layer relative to the
starting point. Inversion in odd-n dimensions changes the
orientation of the coordinates and hence is not an acceptable
“helical” transformation.

There is also a topological element to the problem posed
by the use of inversion for rotation. The imposition of an
antiperiodic boundary condition (or for that matter a twisted
boundary condition) on a three-dimensional lattice of O(3)
spins effectively causes the lattice to have a nonzero fopo-
logical charge of either sign that we naively expect to be of
order L as it should be of the order of the average spin flux
fluctuation through a boundary surface with L? spins (con-
sider a binomial estimate of the variance of the total perpen-
dicular spin, for example, in a state without long-range order
where the average spin in any direction is zero).

Note that this topological charge is identically zero by
construction for spin systems with periodic boundary condi-
tions, as the net spin flux into the volume on (say) the left-
hand surface always flows out through the right-hand one.
From one point of view, then, the increase in free energy
associated with antiperiodic boundary conditions derives
from a computation of the scaled interaction energy of a
(topological) charge-charge interaction along the antiperiodic
direction and might not necessarily have any direct connec-
tion with the energy change that results from an actual twist
through an angle 7 with particular handedness. This is a very
interesting observation, as a number of studies have directly
investigated the O(3) model in particular for signs that topo-
logical charge plays an important role in the order-disorder
phase transition.”!!

This does not alter the primary results of FBJ or the many
derived Monte Carlo or algebraic results for the O(2) model,
but it is a point of some concern for O(n>2). At the very
least it is clear that utilizing antiperiodic boundary conditions
in definitions used to compute relations associated with ac-
tual helicity—involving an actual twist of definite handed-
ness across a lattice direction—is not a priori justified. One
of the greatest surprises of the work we present is that it
appears to work anyway.

In preliminary computations with an actual small twist of
definite handedness'® results were obtained could not be rec-
onciled with a purely quadratic form out to ® = 7r (which is
still a very small twist interlayer twist angle). Significant
(numerically resolvable) deviations were observed even for
angles ®=7/2, making it very difficult to accurately fit a
quadratic form to extract a reliable estimate of the helicity
modulus for finite-size scaling. This was a strong motivation
for an extended and careful consideration of the problem,
accompanied by very-high-precision computations (this
work), and a figure is presented below (Fig. 2) illustrating
the problem.
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III. ENTHALPIC HELICITY MODULUS

The definitions above are of no direct use in an impor-
tance sampling Monte Carlo calculation because one cannot
directly compute the free energy density F. However, the
enthalpy density in zero external field is just the average
internal energy per spin, E, and this quantity is trivial to
evaluate at very high precision. To facilitate a Monte Carlo
examination of helicity our first job is to define an equivalent
“helicity modulus” for the enthalpy Y;(7,L) and determine
its expected critical scaling (following the general form of
the FBJ derivation).

All the arguments used by FBJ to determine the
asymptotic (large L, small t=|T-T,|/T,) form of Y(T,L)
are still valid for Yg(T,L); one expects E to be an even
function of the twist gradient (for twists @ < of either
handedness) and one expects the critical scaling to be deter-
mined by comparing the leading-order terms in dimension-
less expansions of the enthalpy difference. Thus,

AE(®) = Y ATI(V4P, ®

where AE(O®) is the change in internal energy per spin
caused by twisting the boundary conditions through the
angle O < 7 with either handedness. From this obvious sub-
stitutions yield

2 2
Y4(T) = AE(®>. 9)

The basic scaling postulate for the singular part of the en-
thalpy density is that it have the form

E ~ 1°X(x) = 1°X(1%), (10)

where [=L/a— o (with a the lattice constant), X(x) (which
may depend on the twist angle ®) is a function of the single
variable x, and where for simplicity we assume a shifted
reduced temperature that scales to the true reduced tempera-
ture like i:t+l%.

Following the finite-size scaling postulate that finite-size
effects can only depend on the ratio L/ &(T),'7 we first obtain

0=1/v. (11)

If we insist that in the /[— o0 limit we must reproduce the
correct bulk scaling

E~1'"e, (12)
then equating the leading powers of 7 in X(x) yields
X(x) ~ Xoox' (13)

to leading order for any value of ® (although there clearly
must be different ® dependence in the higher-order terms).
Similarly, eliminating the / dependence yields

w:—(l—a)9=_(l—v_a). (14)

Subtracting the two leading-order terms to obtain the en-
thalpy difference, we can imagine that higher-order terms
combine to yield the form
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Xo(x) = Xo(x) =Y. x4+ (15)

and substituting

AE(®) = %()ZYE(T) ~I2Y(£) ~ 19V ™% ~ Y 17010702,
(16)
This requires that
-2=w-0¢, (17)
which can be rearranged into
$p=2v-1+a. (18)

Last we relate this back to the reduced temperature ¢ to
obtain

Yp(t) ~ e~ 17, (19)
with the critical exponent
vp=—¢=1-2v-a. (20)

This is the critical exponent we expect to measure in the
work below and can be contrasted with the free energy he-
licity exponent derived by FBJ (following the same proce-
dure as above, but with a limiting form of the free energy
density of >~ instead of +'~%):

vp=2-2v—a=1+vyg, (21)

where we can see that the only difference in the critical scal-
ing is the extra power of ¢ that appears in the proper helicity
modulus Y, which in turn comes from the different leading
order ¢ dependences in the first nonanalytic term of the un-
derlying free energy densities. This difference suffices to
make Yg(r) singular at =0 where Y(r) vanishes with a
nonanalytic cusp. In the end this is a further advantage in a
Monte Carlo calculation, as it is far easier to fit a leading-
order singularity than a small-exponent cusp with the inevi-
table confluent corrections, a problem that has plagued the
accurate computation of the critical exponent « from a direct
finite-size scaling fit of the (cusped) specific heat.

In the sections below we will review the numerical meth-
odology of our direct measurement of vy using finite-size
scaling theory.!” Following this we will present a discussion
of the results obtained from its application.

IV. COMPUTATION

Ignoring for the moment the fact that antiperiodic bound-
ary conditions are not equivalent to a helical twist of m, we
directly computed the helicity modulus from the FBJ expres-
sion (modified for the use of enthalpy rather than free en-

ergy)
212
YE(T(,’L) = (?)[Ea(TcaL) - Ep(TuL)] (22)

at the critical temperature. We also computed the helicity
modulus directly from its fundamental definition by comput-
ing E(O < 1) for various angles in the range [0, 7] and fit-
ting the results as best as possible to

PHYSICAL REVIEW B 74, 224413 (2006)

AE(®) = S A(/(Va). (23)

Both computations utilized a unique Monte Carlo han-
dling of the boundary conditions. To speed convergence and
maximize sampling efficiency, the Monte Carlo computation
of Eq. (22) was performed with a modification of the Wolff
cluster method'® for O(n) spin models that works for either
normal or inverted (antiperiodic) boundary conditions. A flip
plane is selected, a random spin is flipped, and an Ising-like
accept-reject decision is made along all connected bond di-
rections (one time only per bond) to determine whether or
not to flip the spin and include it in the flipped cluster. The
process is repeated for any flipped spins until all the cluster
stops growing (all boundary bonds have been tested). By
applying an inversion within the computation of energy dif-
ferences when considering a flip for a bond that crosses the
antiperiodic boundary, it was possible to directly and accu-
rately generate and sample equilibrium antiperiodic spin con-
figurations (effectively permitting flipped clusters to cor-
rectly grow across the antiperiodic boundary).

To compute Eq. (23) we used a modified heat-bath Monte
Carlo method where we instead applied a uniform rotational
twist of fixed angle ©® € [0, 77] to nearest-neighbor spins that
lie across the twisted boundary. At each boundary all spins
thus saw a uniform local environment, but one that smoothly
realized an actual Mobius twist across the twisted toroidal
direction. Both computations were carried out at the critical
temperature.

The critical temperature 7,.=1.44 298+0.000 02 used was
directly determined in this computation to be associated with
an apparent fixed point in the fourth-order complaint flow
(Binder parameter)!® at least up to L=96, the maximum lat-
tice size used in this computation. This leads to a critical
coupling of K.=0.693 01, in excellent agreement with earlier
results.'>1320-25 A]l Monte Carlo results are supported by
reliable error estimates determined using the methodology
described in Ref. 13.

We accumulated antiperiodic (a) and periodic (p) sample
data from which we obtained E, ,(T,,L) to a relative accu-
racy of 107> or better for L ranging from 8 to 96 (more than
a log decade). From these data we were able to compute
Y(T,,L) to very high precision using Eq. (22).

We  simultaneously  accumulated and evaluated
M, ,(T,,L) (the order parameter) to a relative accuracy of
107 or better. By also accumulating and evaluating the av-
erage moments of £, and M, we were able to compute most
of the thermodynamic quantities of interest and use finite-
size scaling to try to evaluate their associated static critical
exponent ratios: e.g., a/v or B/ v.

We were somewhat more lax in the precision demanded
of the heat-bath computation of the energy &’s resulting from
an actual twist angle © in the periodic boundary condition
across a toroidal direction for use in Eq. (23). This is because
(as is clear from the results portrayed below) this form can-
not be fit to a quadratic form except at very small ® < /2.
This leaves one with the uncomfortable problem that, even
for small ®, as one obtains ever higher precision by sam
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FIG. 1. logy-log;y plot of Y(r=0,L) and its best fit evaluated
using Eqs. (22) and (24) for lattices with L=8,10,12,16,20,
24,32,48,56,64,72,96.

pling for longer and longer times, the x> of a quadratic fit
gets worse.

While one can at least try to add correction terms to the fit
with reasonable forms to see if one can still extract estimates
for the (singular) critical exponent ratios, in the absence of
any theoretical guidance this makes the accuracy of any re-
sult at all obtained from these curves by means of such a
process questionable. Nevertheless, the curves themselves
are very interesting in what they teach us qualitatively about
the relationship between the actual helicity modulus (evalu-
ated from real twists of definite handedness) and the “inver-
sion” modulus determined using an antiperiodic boundary
twist.

V. RESULTS

For reasons mentioned above and analyzed in greater de-
tail below, the critical exponent vy was extracted by fitting
Y(T,,L) as evaluated from Eq. (22) [as opposed to Eq. (23)]

for various lattice sizes to the finite-size scaling form
Yp(T,,L) =~ Yo L'H" + Y\ L™+ -+, (24)

with nonlinear regression. Here we do have some theoretical
guidance as to a reasonable form for confluent corrections.
The second term is a confluent correction influenced prima-
rily by the high-precision low-L data in order to reliably fit
the asymptotic singular form; it smoothly vanishes at larger
L. The data and best fit are shown in Fig. 1. The best regres-
sion fit is

Y (T,.,L) = 0.4518L°4%7 _ (0.8296L72810 . ... = (25)

with x?=5.5. The relative precision of the points that are
being fit, obtained using an analysis of results from many
independent runs, is less than 0.3%.
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We fit E(T,,L) [which is the usual energy per spin com-
puted from a lattice with normal periodic boundary condi-
tions E,(T,,L)] directly:

E(T.L)=E,+ EL!™"+ -+
~-0.9896 + 1.7225L7 94 4 ... (26)

(with x*=18.5). The relative precision of the data fit is
0.001% or better. This is a remarkably good fit given the
extraordinary accuracy of the data and the fact that there are
no confluent correction terms used. The good fit without con-
fluent corrections is a reasonable indication that our estimate
for the critical temperature is at least not a bad one.

We fit the zero-field specific heat (evaluated from the val-
ues of (E),(E?),... accumulated during the periodic bound-
ary condition computations) to a cusp form

C(TL,L) =C,+ COL_“/V+ C]L_y v
~ 49511 +4.1559L 701991 +0.7242L7 1396 4 ...
(27)

(with x*=1.8), where the fit requires a confluent correction
and where relatively large energy susceptibility error esti-
mates (0.2%) were determined by a jackknife procedure.?
The larger error estimates are likely responsible for the rela-
tively small y2. It is worth noting that this is a very difficult
result to fit reliably in the sense that the answer obtained is
independent of the assumed cusp form and the number and
type of confluent correction terms.

Although the helicity modulus is computed in part from
E,(T.,L), it also involves the computation of E,(T,,L) (an
independent quantity) and hence these two results are inde-
pendent (in the specific sense that one is not linearly depen-
dent on the other). Similarly, Elz)(TC,L) (the enthalpy density
squared averaged over many Monte Carlo configurations)
and the derived specific heat is a quantity that is independent
of E,(T.,L) and Y(T,,L). In each of these quantities there is
unique information that measures the average energy per
spin, the additional energy per spin caused by a twist, and the
average size of fluctuations in the energy per spin, respec-
tively. The results of these three distinct results from the
computations can then be compared.

We also performed a direct computation of E(®,T,,L) [to
fit according to Eq. (23)] for a range of ©. Typical results are
presented in Fig. 2 for L=16 and 32. It is easy to see from
these figures that although the energy response is roughly
quadratic for small total twist angles ® <1, it deviates sig-
nificantly from quadratic behavior well before @ =1/2.

It is important to note that Vep=0O/L is a small angle
throughout the entire displayed range for both curves and
that (for a given value of ©) it is half the size for L=32 that
it is for L=16. Yet the curves appear to deviate from qua-
dratic form in about the same way at about the same angle ©
independent of L. It seems that O is the angle that must be
“small” for Eq. (23) to hold, not V¢, when both of them are
small enough that the spin-spin interaction energy is ex-
pected to have a dominant term quadratic in the angle in
between.
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FIG. 2. Direct computation of E(®,T.,L) for L=16 (triangles)
and L=32 (squares) at T,=1.44298. Quadratic fits of Eq. (23) to the
small-angle portions are given as dashed curves. The two associated
E,(T,,L) are given as a solid triangle and square on the same graph.
Note well that they lie precisely on the extrapolated quadratic
curves.

The quantity that is directly controlled by ® independent
of L is the free energy gap between F, and F; as described
above. When this gap is large, one expects to see no helical
mixing—the system will nearly always select configurations
that increment the average spin angle between planes in the
direction of the smaller in magnitude of ® and ®—-27. As
® — 17, this gap goes to zero (at T,) in the sense that inter-
mediate states of small free energy cost connect the two he-
licities. We therefore interpret the nonquadratic behavior as
evidence that the mixing of states of opposite handedness
occurs as described above, causing the free energy to be
reduced because of the higher entropy of the accessible states
or (if you prefer) because the additional degrees of freedom
afforded in the O(3) Goldstone modes allow the system to
find better ways of accommodating the imposed twist than
just cumulating interlayer helicity in a uniform way.

This figure also shows one of the greatest surprises of the
entire computation. We plot the energy E (T, L) [obtained to
use in Eq. (22)] above the twisted ® =77 point on each curve
(solid triangle and square). Note that this energy results from
forcing antiperiodic (not twisted) boundary conditions.

The result is extremely interesting. The energies corre-
sponding to antiperiodic boundary conditions appear to lie
exactly on the extrapolated quadratic fits to the energies as-
sociated with the small ® twists. As noted above, using an
antiperiodic boundary condition to evaluate the helicity
modulus is mathematically a mistake in O(n>2) where in-
version of the spin coordinates of all the boundary spins is
not equivalent to any rotation uniformly applied to all the
spins. It is not, in fact, a “helicity modulus™ at all in O(3). In
any event, its apparently location precisely on the extrapo-
lated quadratic helicity response curves is something that as
far as we know is not yet theoretically explained or pre-
dicted.
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FIG. 3. M(T,,L), and its best fit, presented on a log;o-log;o
scale. We fit the ten points L=16,20,24,32,48,56,64,72,96 to an
empirical form that includes an exponential confluent term to ex-
tract the asymptotic exponent ratio 8/v=0.5159+0.0005, although
the unfit points L=8,10,12 are also included in the figure.

Finally, we fit the order parameter data only for the range
L=16-96 to the empirical form

M(TL,L) = MoL_B/V+ Mle_L/LO 4 o
~ 1.0879L7071% £ 0.0225¢ 727366 4 ... (28)

(with x¥*=10.2). The fit data had a relative precision of better
than 0.01% (absolute errors around 1X 107> throughout).
The data and the best fit are displayed in Fig. 3. Note well
that on this scale the errors are all much thinner than the
width of a line.

Any attempt to fit all the data from L=8 to 96 with an
algebraic form with or without an exponential correction
term either failed outright (yielding a very large x?) or re-
quired that we fit only data for, e.g., L>32 to get a x> that
was only slightly large and which predicted more or less the
same value for B/v. There are clearly significant confluent
corrections required to be able to fit the data at all at this
level of precision.

This is directly evident from the length scale apparent in
the successful form above, which effectively compresses a
whole power series of correction terms into the exponential.
It directly demonstrates that there are corrections that are
significant compared to the precision of the data out to at
least L=32. The variation observed in all the different ways
we attempted to fit the data are reflected in the error we
assign to the best-fit estimate of B/v (effectively reflecting
our uncertainty in the best way to accommodate the correc-
tions) as the error in the fit itself is much smaller.

VI. ANALYSIS OF THE RESULTS

Dividing both sides of Eq. (20) by —v, we obtain from our
measurement the relation
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TABLE I. Independent pairs of hyperscaling-based estimates of
a and v for O(3) spins on a three-dimensional lattice.

Quantity a v Up

Y(T.,L) -0.1327 0.7109 0.7109

E(T,.,L) -0.1389 0.7130 (NA)

C(T,.,L) -0.1422 0.7141 (NA)
-«

—v/v=04067=2 - (29)

14

We now have three distinct numerical relations involving a
and v: one from the helicity modulus, one from the direct
scaling of the enthalpy density (internal energy per spin), and
one from the specific heat. Furthermore, the helicity-based
result is computed in a way that is independent of the direct
energy-based results (which are at least partly dependent on
one another, as the specific heat involves (E)?* as well as
(E?)).

We can therefore assume hyperscaling to be valid for each
result and compare the resulting values of « and v. If they
are consistent, we can conclude that hyperscaling is very
likely satisfied for this model. For example,

1
py=——=——"=0.7109=(d-2)v=vp. (30)

[Note that this equation makes an explicit connection to
FBJ’s observation that the helicity exponent vy (and the as-
sociated “helicity length”) may well be the correlation length
exponent (and correlation length) for this sort of model.]

The results of this comparison are shown in Table 1. The
exponents are in excellent agreement; from the variation ob-
served in this table and the observation that the result derived
from the direct fit of the energy data is likely to be the most
precise, one can assign a value of »=~0.713+0.003 and «
~—0.139£0.009 and conservatively conclude that hyperscal-
ing appears to be numerically satisfied by this model to
within about 1%. It is also worth observing that these values
for the exponents are close to but not in precise agreement
with the prediction of renormalization theory?’ of v
~(.705+0.003 for this model.

The last result of this computation to discuss is the critical
scaling of the order parameter. As noted, only an exponential
confluent correction (which effectively compresses a whole
power series of confluent terms) succeeded in reducing x? to
an acceptable value for the greater part of the log;, decade
being fit. This is not, actually, a complete surprise; it was
suggested to us some time ago that finite-size scaling fits
may need to be carried out over two decades of L values to
accurately accommodate confluent corrections in this
model.?8

Note well that the M data (like the E data) were extremely
precise—precise enough that one simply could not manage a
“sloppy” fit to an exponential-only form without going out to
L=32 to begin the fit, and even there the omission of the
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residual deviation resulting from the confluent exponential
bumps x? over the value it has for the whole range as given.

Based on this fit and observed variations from other at-
tempted fit forms and ranges, we assign the value B/v
=0.5158+0.0005 to this quantity. This is in excellent agree-
ment with the renormalization estimate’’ of B/v
~(.517+0.005. From the knowledge thus obtained of » and
B/v we find 8=0.368+0.001.

VII. CONCLUSIONS

The primary results of this work are the direct computa-
tion of the helicity exponent v, its application in the valida-
tion of hyperscaling leading to the conclusion vy=v, and the
computation of the nonhyperscaling exponent ratio [3/wv.
From these measurements and from scaling and hyperscaling
relations we can find the rest of the critical exponents for the
model.

These results are in reasonable agreement with the predic-
tions of renormalization, although we find v and « to be
slightly higher in magnitude than previous studies using
Monte Carlo or renormalization approaches. However, given
the consistency of our measurements using very different
methodologies and the very high precision of our data for
two of them we cannot easily force our fits into agreement
within their respective error estimates.

The computations presented herein also pose some new
puzzles and challenges for the future. In particular is the
surprising and unexpected behavior of the “antiperiodicity
modulus,” which one might well expect to be different from
the actual helicity modulus in an O(3) model where inversion
is an improper transformation across the lattice toroid, one
that cannot be accomplished by any continuous helical twist
of the spin field across the lattice. We find that the finite-size
scaling of the antiperiodicity modulus appears to precisely
correspond to the extrapolation of the small-0® results for the
actual helicity modulus. The helicity modulus (computed by
twisting the periodic boundary conditions through an actual
angle with a given helicity) exhibits an expected mixing and
spin alignment behavior that reduces the enthalpy cost of a
twist at ® = 7 from the expected and extrapolated small-V ¢
quadratic energy dependence by close to a factor of 2, even
though V¢ is still extremely small between any pair of
neighboring spins along the twisted dimension especially for
the larger lattice sizes.

This result is startling and appears as if it might have
significant implications in theories where a breaking of chiral
symmetry in a continuous isotropic model with spin dimen-
sion n>2 is physically important. It is also fortuitous, as it
permits us to evaluate vy to very high precision without hav-
ing to worry about fitting a function that is at best only
asymptotically quadratic in such a way that increasing the
precision of the data inevitably makes a quadratic fit worse
in terms of .

The antiperiodicity modulus appears to be an interesting
quantity in its own right. Just as periodic boundary condi-
tions constrain the total topological charge of the spin block
studied to be zero, imposing an antiperiodic inversion of the
boundary conditions across one lattice dimension constrains
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the total topological charge of the spin block to be nonzero.
The effective period of the lattice in the twisted and inverted
dimension becomes 2L, in alternating layers of opposite to-
pological charge sign, so that the energy increase can be
interpreted as due to the interaction of topological charge in
the model between blocks centers separated by a scale length
L—basically capacitance.

Holm and Janke® have published a convincing study that
shows that the O(3) transition is not associated with any sort
of divergence in hedgehog defect (topological charge) den-
sity, and both Kamal and Murthy'® and more recently Motru-
nich and Vishwanath'' have showed that an order-disorder
transition [with different critical exponents than the O(3)
model] is possible in constrained O(3) models with hedge-
hogs suppressed. Nevertheless, the remarkable position of
the antiperiodic and topological charge energy on the ex-
trapolated helicity energy curves suggests that there is a
close connection between the scaling of helicity and hedge-
hog topological charge-pair energies and the convincing
demonstration that vg = v for this model in turn connects
helicity and hence topological charge with the scaling length
of the system and hence the advent of order. This is a puzzle
worthy of further examination.

This work has therefore opened up a whole range of ques-
tions that will need to be addressed by future research. They
include the following.

(i) The effect of imposing antiperiodic (or twisted) bound-
ary conditions across two and three lattice dimensions, not
just one. Doing so might be expected to significantly change
the properties of the observed block-scale topological
charges. In particular, if antiperiodic conditions are imposed
on all three lattice dimensions, the ferromagnetic lattice-
scale block can support true hedgehog configurations, with
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outgoing spin flux on all eight faces, interacting with neigh-
boring blocks of the opposite topological charge. Loops of
spin flux also become possible.

(ii) Quantitative studies of topological charge (utilizing
the usual methods for determining the topological charge of
unit cubes of spins) at various lattice length scales in the
presence of a twisted or antiperiodic boundary conditions.

(iii) Extending the methods introduced in this study to
continuous models with different lattice dimension d and
spin dimension 7. In higher dimensions both the notion of a
topological charge and the use of, e.g., spinors instead of
spins (in association with rotations versus antiperiodic
boundary conditions) become potentially more interesting,
especially to field theorists.

(iv) Dynamical models. For example, computations in-
volving the preparation of a lattice with a twist of 7 with a
particular handedness across the lattice via a superimposed,
continuously varying spin field and its relaxation to a mixed
helicity state when the twisted field is suddenly set to zero or
preparing a lattice with a given initial distribution of topo-
logical charges and observing its relaxation.

As noted in the Introduction, this general problem is of
interest in many areas of physics, not just condensed matter.
The methodology used in this work represents an interesting
approach to studying the connection between helicity, topo-
logical charge, and the order-disorder phase transition in con-
tinuous spin models.
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