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This work presents a comprehensive analysis of the homogenization method recently used by Torrent et al.
�Phys. Rev. Lett. 96, 204302 �2006�� to get the effective parameters of two-dimensional clusters of rigid
cylinders in air. Here, the method is developed by studying the scattering of sound by clusters of fluid cylinders
embedded in a nonviscous fluid or gas. This general problem is studied in the long wavelength limit �homog-
enization� by multiple scattering theory. Asymptotic relations are derived and employed to formulate a method
of homogenization based on the scattering properties of the cluster. Exact formulas for the effective parameters
�i.e., effective sound speed and effective density� are obtained as a function of the location of each cylinder and
the physical parameters �density and speed of sound� of cylinders and the embedded medium. Results for
several fluid-fluid composite systems are reported. The case of rigid �infinite density� cylinders in air is deeply
analyzed, showing results for ordered and disordered lattices. It is concluded that the method provides a tool of
designing acoustic metamaterials with prefixed refractive properties.
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I. INTRODUCTION

Phononic crystals, which are composites made of inhomo-
geneous distributions of some elastic materials periodically
embedded in a matrix with different elastic properties, are
widely studied from the late 1990s boosted by some experi-
mental works.1–3 Their potential applications like, for ex-
ample, filters or noise barriers, are based on the existence of
elastic band gaps, a range of frequencies where wave propa-
gation is forbidden.1,2 However, a recent work by Cervera
et al.4 showed that its properties in the low frequency region
�well below the band gap� can be used to fabricate acoustic
lenses, a result that opened a new field of applications for
PCs, like refractive devices.5–8 Then, newly acoustic interfer-
ometers were characterized9 and further theoretical
works10,11 supported the experimental findings. Moreover,
homogenization theories applied to the determination of the
effective parameters of PCs have been recently
published,12–16 though homogenization of heterogeneous me-
dium has been previously studied by using statistical
approaches.17

Several models have been applied to determine the effec-
tive parameters of the resulting homogenized medium �i.e.,
its effective sound speed cef f and effective density �ef f� at
large wavelengths. The more simple consists of assuming
that parameters of a mixture of materials should be their
volume average, but it does not work neither to fit cef f �Ref.
4� nor to approach �ef f.

16 A heuristic model was introduced
in Ref. 4 to obtain cef f that works at low filling fractions of
sonic scatterers. Later, more exact theories have been devel-
oped to obtain reliable results in the full range of filling
fractions. For example, a plane wave expansion was used by
Krokhin et al.12 to obtain cef f for an infinite periodic system.
More recently, Mey and co-workers15 used the previously
developed average T-matrix approach �ATA�17 to demon-
strate that Berryman’s expression for �ef f can be successfully
applied to get the experimentally measured cef f. Finally, the
last work on this topic has successfully solved the problem

of homogenization of finite clusters made of rigid cylinders
in air by using exact multiple scattering theory, obtaining
simultaneously �ef f and cef f.

16 Additionally, that work estab-
lished a lower limit of the cluster size from which the ho-
mogenization approach is valid. Finally, it is interesting to
note that, by using the coherent-potential-approximation
�CPA� method, Hu and Chan14 studying the refraction of
water waves by cylinder arrays derived expressions for �ef f
and cef f analogous to the ones found by Torrent et al.16 In an
analogous problem, in the field of electromagnetic wave
propagation, Bush and Sokoulis developed the so-called
“energy-density CPA,”18 and they particularly proved that,
for example, the frequency-independent long-wavelength di-
electric constant reduces to the expression given by the well-
known Maxwell-Garnett theory. It is expected that a similar
“energy-density CPA” applied to acoustic systems will con-
verge in the long-wavelength limit to the expressions re-
ported here.

In this work a comprehensive report of the method em-
ployed in Ref. 16 to obtain the effective parameters of two-
dimensional �2D� clusters of rigid cylinders in air is pre-
sented. Here, the method is developed for the general case of
fluid cylinders, with some density �cyl and sound speed ccyl,
embedded in a background made of a nonviscous fluid or gas
with parameters �b and cb. The method uses the multiple
scattering theory �MST�9,19–21 to characterize the homogeni-
zation of arbitrary 2D clusters consisting of periodic or non-
periodic arrays of cylinders. The property of MST, which
considers each scatterer individually, has allowed us to ob-
tain analytical expressions in the general case of cylinders
with arbitrary sections forming structures with arbitrary ex-
ternal shape. Numerical results have been obtained for sev-
eral fluid-fluid systems �air columns in water, water columns
in air, mercury columns in water, and water columns in mer-
cury�, and for a case of practical interest, the one consisting
of periodic arrays of circular rigid rods ��cyl=�� in air
��b=�air�. Moreover, this work also reports results showing
how the effective parameters of the cluster change when po-
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sitional or structural disorder exists in the lattice. Though
disordering in the lattice has been previously studied for both
phononic9,10,22 and photonic23–26 crystals, the main emphasis
of those works was to analyze the effects of disordering at
wavelengths comparable to the lattice parameter.

The paper is organized as follows. In Sec. II MST will be
briefly summarized and the concept of effective T matrix is
introduced. In Sec. III the homogenization conditions are
explained, showing that the method is an improvement of the
ATA method.17 The effective parameters will be obtained in
Sec. IV for a general fluid-fluid composite. Numerical results
are reported and discussed for several fluid-fluid composite
systems and for the case of infinite-density cylinders in air,
which is a good approximation to actual structures using
solid cylinders made of huge-density materials. It will be
shown that the method allows one to calculate the effective
parameters of a finite-size sonic crystal and to determine
even its effective shape. In Sec. V the method is applied to
the case of disordered lattices of cylinders, which in practice
is the most common situation. Finally, in Sec. VI a summary
of the work is presented.

II. MULTIPLE SCATTERING THEORY

A. Scattering coefficients

Consider a cluster of N parallel cylinders with an arbitrary

section located at positions R� � ��=1,2 , . . . ,N�, and embed-
ded in a background �b�. Let us also consider that an external
sound field �Pext� with temporal dependence e−i�t impinges
the cluster. At any arbitrary point �r ,�� of the 2D space, the
external field can be expanded as a linear combination of
Bessel functions Jq:

Pext�r,�� = �
q

Aq
extJq�kr�eiq�, �1�

where k=� /cb.
The total scattered field will be given by the sum of the

scattered fields by each �-cylinder, P�
scat:

Pscat�r,�� = �
�=1

N

P�
scat�r,�� = �

�=1

N

�
q=−�

�

�A��qHq�kr��eiq��,

�2�

where Hq is the qth order Hankel function of first kind, and
�r� ,��� are the polar coordinates with the origin translated to

the center of the �-cylinder, i.e., r��=r�−R� �, as shown in Fig.
1. �A��q are the coefficients to be determined.

The total field that impinges the � cylinder can be ex-
pressed by

P��r�,��� = �
s=−�

�

�B��sJs�kr��eiq��, �3�

these coefficients are related with the �A��q by means of the
T matrix formalism27

�A��q = �
s

�T��qs�B��s �4�

�T��qs being the elements of T�, the T matrix of the
�-cylinder.

The field impinging over the �-cylinder �see Eq. �3�� can
be expressed as a sum of the external field �see Eq. �1�� and
the fields scattered by all the cylinders, P�

scat, except �. After
an easy manipulation it is possible to find the relationship
between B� and A� coefficients for ���:

�B��q = �
s

As
extJs−q�kR��ei�s−q�	�

+ �
���

�A��sHq−s�kr���ei�s−q����. �5�

Now, by multiplying this equation by �T��rq and summing
for all q we get

�A��r − �
s

�
�

�G���rs�A��s = �S��r, �6�

where

�G���rs = �
q

�1 − 
����T��rqHq−s�kr���ei�s−q���� �7�

and

�S��r = �
s

�
q

�T��rqJs−q�kR��ei�s−q�	�As
ext. �8�

By truncating the angular momenta �s��qmax and �r��qmax,
Eq. �6� is in matrix form MA=S, where the M matrix is a
square matrix of dimension N�2qmax+1��N�2qmax+1�, and

S=TJ̃Aext is a column matrix of dimension N�2qmax+1�.
The elements of M are

�M���rs = 
rs
�� − �G���sr. �9�

The inversion of this matrix gives the solution we are look-
ing for; i.e., A=M−1S.

FIG. 1. System of coordinates and definition of variables em-
ployed in the expressions of multiple scattering theory.
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�A��r = �
�=1

N

�
s

�M��
−1 �rs�S��s. �10�

Thus the solution for a given cluster is a function of po-
sitions and properties of each cylinder, and of the external
field. Let us stress that for the cases reported here the maxi-
mum value qmax employed is 5.

B. Effective T matrix

By using Graf’s theorem28 the Hankel functions of Eq. �2�
can be translated to the origin of coordinates, then the total
scattered field at a given point outside the cluster can be cast
in the following expression:

Pscat�r,�� = �
p

Ap
SCHp�kr�eip�; r 
 R�

+ , �11�

where R�
+ stands for the greater of R�, and

Ap
SC � �

�
�

q

�A��qJp−q�kR��ei�q−p�	�. �12�

Here, Ap
SC defines the coefficients of a single cylinder �SC�

that has the same scattering properties of the cluster. Then,
the total scattered field can be expressed as the scattered field
by only one cylinder �of arbitrary shape� located at the ori-
gin. The relation between As

SC and Aext will define the T ma-
trix of this hypothetical cylinder. To obtain this effective T
matrix, Eq. �10� is inserted in equation above, then

Ap
SC = �

�,�
�
q,r

�M��
−1 �qr�S��rJp−q�kR��ei�q−p�	�. �13�

Let us introduce matrix J whose matrix elements are defined
by

�J��pq = Jp−q�kR��ei�q−p�	�. �14�

After an easy manipulation it is possible to write ASC

�Tef fAext, where Teff���=JM−1TJ̃. Matrix J̃ is the com-
plex conjugate of the transpose of J. The dependence in �
has been introduced in order to stress the frequency depen-
dence of all these matrices. The elements of the defined ef-
fective T matrix are

Tps
eff = �

�,�
�
r,q,t

�J��pq�M��
−1 �qr�T��rt�J��st

* . �15�

III. HOMOGENIZATION

Here, the cluster of cylinders will be treated as a big
single cylinder. In other words, it is expected that for long
wavelengths, the cluster will behave like a homogeneous cyl-
inder if cylinders forming the cluster are regularly distrib-
uted. The goal is to determine the parameters of this effective
homogeneous cylinder; that is, its effective external shape,
speed of sound, and density.

To determine these parameters, the pressure scattered by
the cluster is compared with the pressure scattered by a
single effective cylinder, and it is imposed that, for k
→0��→��, it is not possible to distinguish between the

cluster and the homogeneous cylinder. Mathematically it can
be expressed as

lim
k→0

Pscat�r,�;k� − Pcyl
scat�r,�;k�

Pscat�r,�;k�
= 0. �16�

Here, Pscat stands for the scattered pressure by the cluster and
Pcyl

scat stands for the scattered pressure by the effective cylin-
der.

Note that Eq. �16� defines the effective cylinder by means
of the relative difference of the scattered pressure, and this
difference must hold independently of the incident field and
must be true for every �r ,��. For r
R�

+ this equation can be
expressed as

lim
k→0

�
q

�Aq
SC − Aq

cyl�Hq�kr�eiq�

�
q

Aq
scHq�kr�eiq�

= 0, �17�

where it is assumed that the scattered pressure by the cylin-
der is defined with the coefficients Acyl. After using the T
matrix formalism

lim
k→0

�
q

�
s

�Tqs
ef f − Tqs

cyl�As
extHq�kr�eiq�

�
q

�
s

Tqs
ef fAs

extHq�kr�eiq�
= 0. �18�

The theory must be independent of the coefficients As
ext, so

it is possible to assume that all them are zero except one,
separating then the above equation into 2smax+1 equations.
For these equations to be true independently of the polar
coordinates, the following relations must be satisfied:

lim
k→0

Tqs
ef f − Tqs

cyl

Tqs
ef f = 0. �19�

It can be shown �see Appendix� that elements Tsq for both

the cluster and the single cylinder go to zero as �T̂sqkn, n
being a positive integer bigger than zero that depends on s

and q, and T̂sq are the k-independent coefficients of the lower
order term in the k-expansion of the corresponding T-matrix
elements.

Therefore the homogenization conditions become

T̂sq
eff = T̂sq

cyl ∀ s,q . �20�

These equations form a set of s�q equations for the un-
known parameters of the uniform effective cylinder. How-
ever, in the present work the shape of the effective cylinder
will be proposed and, then, the effective parameters to deter-
mine will be only �ef f and cef f.

IV. EFFECTIVE PARAMETERS

In this section the diagonal terms of T̂sq �see Appendix�
are used to determine the effective parameters of the homog-
enized cluster. Calculations are reported for the case of hex-
agonal arrays of infinite density cylinders, a problem that
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fairly approaches, for example, the real case of solid cylin-
ders embedded in air.

A. The isotropic term and the bulk modulus

To get the exact expression of T̂00
eff �isotropic term�, we

notice that in Eq. �A20� when p=0 also q=0, and besides, if
s=0 implies that r runs to 1, −1, and 0, then

T̂00
eff = �

r=±1,0
�
�,�

�Ĵ��00�M̂��
−1 �0rT̂rr�Ĵ��0r

* . �21�

From Eq. �A16�, it is clear that

�
s

M
o

0sM̂sr
−1 = M̂0r

−1 = 
0rI . �22�

Also, taking into account that �Ĵ��00=1, the isotropic term
becomes

T̂00
eff = �

�,�

��T̂00 = NT̂00, �23�

where N is the number of cylinder and T00 the isotropic term
of the cylinder from which the cluster is made of. This result
is independent of the shape of the cluster.

In Ref. 27 it is shown that for a cylinder of arbitrary

shape, the isotropic element T̂00
cyl is given by

T̂00
cyl =

iAcyl

4 	 1

�̄cylc̄cyl
2 − 1
 . �24�

Hereafter, an overline over a variable will be used to denote
the corresponding quantity normalized to that of the back-
ground material b; for example, �̄�� /�b and c̄�c /cb.

If T̂00 is the term of a circular cylinder �see Eq. �A3a�� of
radius Ra, speed of sound ccyl=ca, and density �cyl=�a, then

it is expected that T̂00
cyl be the isotropic term of an arbitrarily

shaped cylinder with area Aef f, speed of sound cef f, and den-
sity �ef f. In other words, it is possible to write Eq. �A16� as

iAef f

4 	 1

�̄ef fc̄ef f
2 − 1
 = N

i�Ra
2

4 	 1

�̄ac̄a
2 − 1
 . �25�

By introducing the filling fraction f as the fraction of volume
occupied by the N cylinders inside the area Aef f defined by
the homogenized cluster,

f �
N�Ra

2

Aef f
, �26�

and by using the bulk modulus B=�c2, Eq. �25� can be cast
in the form

1

Bef f
=

f

Ba
+

1 − f

Bb
. �27�

This equation recovers the well-known Wood’s law29 for the
bulk modulus.

B. �eff and ceff

Up to now the method has been employed to clusters with
arbitrary external shape. Hereafter, the analysis is focused to

circular shaped clusters, so that the elements T̂sq
cyl in Eqs.

�A3a� and �A3b� will give the corresponding elements T̂sq
ef f

by making the appropriated replacements; i.e., Rcyl=Ref f,
ccyl=cef f, and �cyl=�ef f.

The isotropic term has been previously used to determine
Bef f, the next diagonal term in the power expansion is used
below to determine �ef f.

From Eqs. �20� and �A3b�:

T̂11
ef f =

i�Ref f
2

4

�̄ef f − 1

�̄ef f + 1
. �28�

This term can be also obtained from Eq. �A20�, which for
q=r=1,

T̂11
eff = T̂11�

�,�
�M̂��

−1 �11. �29�

The definition of f �see Eq. �26�� allows one to merge the last
two equations in

�̄a − 1

�̄a + 1

f

�
=

�̄ef f − 1

�̄ef f + 1
, �30�

where the factor � is defined by

1

�
�

1

N
�
�,�

�M̂��
−1 �11. �31�

Solving for �ef f, the result in absolute units is

�ef f =
�a�� + f� + �b�� − f�
�a�� − f� + �b�� + f�

�b. �32�

Now, cef f can be easily obtained from this equation and
from Eq. �27� throughout the definition of bulk modulus,

1

cef f
2 = � f

�aca
2 +

1 − f

�bcb
2 ��a�� + f� + �b�� − f�

�a�� − f� + �b�� + f�
�b. �33�

Note that �ef f and cef f depend not only on f but also on the
internal structure of the cluster throughout the � factor. This
factor only depends of the relative positions of the cylinders
in the cluster and of the properties of these cylinders �its
section and material composition�. As it is shown later, this
factor � can be used to calculate the effective parameters for
both ordered and disordered lattices.

Numerical simulations have been performed for a case
consisting of 151 fluid cylinders embedded in nonviscous
fluid or gas of different acoustic parameters. The cylinders
are arranged in a hexagonal lattice with lattice parameter a.
Besides, the cylinders form a cluster whose external shape is
nearly circular. Since the filling fraction of the hexagonal
lattice is fhex= 2�


3
� Ra

a
�2

, results have been obtained under the
assumption that the effective radius of the cluster in the ho-
mogenization limit is determined by the condition of filling
fraction conservation. In other words, f = fhex, and therefore

Ref f =
N
3

2�
a . �34�

Figure 2 shows the effective parameters calculated for the
following systems: water �W� cylinders in air ��W /�air=769,
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cW /cair=5.15�, air cylinders in water ��air /�W=0.001,
cair /cW=0.19�, mercury �Hg� cylinders in water ��Hg/�W
=13.16, cHg/cW=0.947�, and water cylinders in mercury
��W /�Hg=0.076, cW /cHg=1.056�. Results in Fig. 2 show that
these systems can be classified in two groups. The first group
corresponds to systems in which the scatterers have acoustic
impedance larger than that of the background like, for ex-
ample, the case of water cylinders in air. In the second group
the opposite occurs; i.e., the background has larger acoustic
impedance than the scatterers. For the first group the behav-
ior of cef f and �ef f is similar to the case previously reported
for rigid cylinders in air:4,12 the effective sound speed de-
creases and the effective density increases with increasing
filling fraction. The behavior of �ef f can also be reproduced
by using the simplified approach of Berryman;17 who devel-
oped an analytical expression that corresponds to that in Eq.
�32� for �=1. Note that the effective parameters correspond-
ing to the close-packing �CP� condition �fhex

CP =0.906� do not
converge to those of the fluid inside the cylinders. This is
because the close-packing condition does not imply a full
filling of the available space by the circular cylinders; only
cylinders with a square section will accomplish such conver-
gence property.30 For the systems of the second group �scat-
terers of lower density than the background� the behavior of
cef f is similar to the one reported for the 3D system consist-
ing of air bubbles in water;31,32 the sound speed starts de-
creasing for increasing �low� filling fractions but after some
critical value it raises and increases with increasing volume
fraction. The reader is addressed to Refs. 31 and 32 for a
discussion of this phenomenon.

The fluid-fluid systems studied above are obviously very
difficult �even impossible� to construct. Therefore from here
onwards we will analyze a composite system consisting of

cylinders made of an impenetrable fluid surrounded by air.
This case represents actual systems where �cyl /�b�1; for
example, solid cylinders made of steel, aluminum, or wood
embedded in air accomplish fairly well such a condition and
can be simulated by the equations obtained under that ap-
proach ��cyl=��. Let us point out that results obtained under
the rigidity condition could be different from those obtained
under the alternative simplification condition: fluid cylinders
with extremely low sound velocity �ccyl→0� or solid cylin-
ders with velocities, longitudinal and transversal, both very
small. Homogenization of clusters made of solid �elastic�
cylinders is a interesting problem that is out of the scope of
the present work, the corresponding results will be published
elsewhere.

Under the simplified assumption of �a��, it is possible
to obtain the following expressions:

Bef f =
Bb

1 − f
, �35a�

�ef f =
� + f

� − f
�b, �35b�

cef f =
� − f

1 − f

cb


� + f
. �35c�

For low f , the contribution to M̂ of matrix Ĝ can be ne-

glected. Then, matrix M̂ is simply the identity, so that

�M̂��
−1 �11�
��, and, moreover, �=1. Finally, Bef f remains

the same but not �ef f and cef f that now are

�ef f =
1 + f

1 − f
�b, �36a�

cef f =
cb


1 + f
. �36b�

At this point it is interesting to stress that Eq. �36a� recovers
the Berryman’s effective density17 and Eq. �36b� recovers the
heuristic model reported in Ref. 4 for cef f. Moreover, these
expressions have also been found in studying the refraction
of water waves by the CPA method.14

Continuous lines in Figs. 2�a� and 2�b� represent the ef-
fective parameters calculated by using Eqs. �35b� and �35c�.
The result for cef f fairly agrees with that calculated in Ref. 12
for an infinite medium by a plane wave expansion method.
The red dotted lines in those figures define the approximated
values for cef f and �ef f given by Eqs. �36a� and �36b�. As it is
shown, the approximated model is valid over a wide range of
filling fractions.

The symbols in Fig. 2 represent the parameters experi-
mentally determined in Ref. 16 by using 151 wooden cylin-
ders in air. The validity of our homogenization approach is
confirmed by the measurements, which established a lower-
ing of the effective sound speed and an increasing of the
effective density for the cluster analyzed. Of course, further
experimental work should be performed in order to support
the theoretical predictions in the full range of f .

FIG. 2. �Color online� Effective acoustic parameters �relative to
the embedded medium� for a cluster made of 151 cylinders of air in
water �red continuous lines�, water in air �blue dashed lines�, mer-
cury in water �green dotted lines�, and water in mercury �black
dashed-dotted lines�.
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In summary, our homogenization theory �Eqs. �35�� pre-
dicts for the case of infinite-density cylinders in a fluid �Fig.
3� that c̄ef f increases and �̄ef f decreases for increasing filling
fraction. Moreover, when f increases, the graphs show that
the parameters of the cluster converge to those of the cylin-
ders. For this case in which the cylinders are considered rigid
�infinite density� the speed of sound goes to zero because the
sound cannot propagate inside the cylinder.

C. Effective radius

In the previous section, the simulations were performed
under the simplified assumption that the radius of the ho-
mogenized cluster is determined by the condition of filling
fraction conservation. For the cluster studied �N=151� that
condition gives Ref f =6.452a, which fairly agrees with the
physical dimensions of the cluster. Here, we analyzed the
error associated to such an assumption by using the proper-
ties of the T matrix.

Effectively, the accuracy of Ref f can be studied by calcu-
lating the ratio between diagonal terms of the T matrix. In
fact, from Eq. �A3b�

T̂q+1q+1
cyl

T̂qq
cyl

=
1

4q�q + 1�
Rcyl

2 ; q � 0. �37�

It is expected that the same identity be satisfied for the ef-
fective matrix resulting from the homogenized cluster �see
Eq. �A20��. Since it is impossible to get an exactly circular
cluster, different values for the effective radius will be ob-
tained for different values of q. Then, the variations observed

in Ref f will provide an account of how the cluster is different
from a circular shape.

In Fig. 4�a� the values of Ref f obtained for four different
values of q have been plotted. It is shown that deviations
from the imposed value �horizontal line� occur, but these
variations are not very important. The relevance of these
variations can be better understood if we represent a com-
parison of the associated filling fractions. On the one hand,
for a given q, the value Ref f�q� given by Eq. �A20� is em-
ployed in calculating the filling fraction fq of the lattice, then

fq = N� Ra

Ref f�q�
�2

. �38�

On the other hand, the theoretical assumed filling fraction is
defined as usual, f theo= fhex. The relative error err�%�=100
� �f theo− fq� / f theo, is shown in Fig. 4�b�. Notice that the error
is always smaller than 2.5%, which supports the validity of
Eq. �34� to determine the effective radius of a homogenized
cluster with external circular shape.

V. DISORDERED LATTICES

When disorder is introduced in a lattice of sonic or elastic
scatterers many interesting phenomena might appear. Per-
haps the more fundamental is related with the problem of
localization. Acoustic localization has been predicted in
sound propagation through liquid media containing air-filled
bubbles.33 More recently, widening of phononic band gaps
has been found in certain disordered phononic systems due
to strong Anderson localization.34

FIG. 3. �Color online� Effective acoustic parameters relative to
the embedded medium calculated �blue continuous lines� for a ho-
mogenized cluster of 151 rigid cylinders. The red-dotted lines rep-
resent the values obtained by using the approach in Eqs. �36a� and
�36b�. The black dots with error bars define the data reported in Ref.
30.

FIG. 4. �Color online� �a� Effective radius plotted as a function
of the filling fraction calculated from Eq. �37� for four different q
values. The horizontal line defines the value given by Eq. �34�. �b�
Relative error of the theoretically assumed filling fraction, com-
pared with the ones obtained from the T matrix �see Eq. �37�� for
four different q values.
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The purpose of this section is to study how cef f and �ef f
change when the condition of ideal cluster is released. First,
the possibility of having cylinders put at positions different
to the ones of the hexagonal lattice �positional disorder� is
analyzed. Second, cylinders with different radii are consid-
ered �structural disorder� in order to show their implications
over the effective parameters.

A. Positional disorder

Equations �35b� and �35c� give �ef f and cef f as a function
of f and �. The last parameter can be calculated for any
arbitrary structure, ordered or not. Then, it is possible to
study, for example, the homogenization of clusters of cylin-
ders with positional disorder inside a certain region and to
determine its effective parameters by calculating the corre-
sponding value �.

In Fig. 5 the effective acoustic parameters for the homog-
enization of 151 cylinders with equal radii put inside an
imaginary circle have been calculated for two different cases
of positional disorder. We first studied the “weakly disor-
dered” case, which corresponds to puting the cylinders at
random inside each one of the 151 hexagonal unit cells de-
fined inside the circle. In other words, every cylinder in the
ordered lattice is randomly moved inside the unit cell. The
resulting effective parameters are represented by blue con-
tinuous lines in Fig. 5 and compared with the perfectly or-
dered case, which is given by the black dotted lines. Notice
that no appreciable difference appears between them be-
cause, in fact, both distributions of cylinders are equivalent
on the average.

The second case studied corresponds to the “fully disor-
dered” case; that is, inside the imaginary circle �the one de-
fined by the ideal cluster� all the cylinders have been put at
random. The red dashed lines in Fig. 5 define the results
obtained after averaging over ten different configurations.
The amount of configurations employed is enough to guar-
antee that the standard deviation is lower than 10% even in
the case of large filling fractions. Now, it is shown that de-
viations from the ideal case appear even at small filling frac-
tions. The simulations predict effective parameters such that
cef f ��ef f� is always smaller �greater� than that of the corre-
sponding ideal cluster. Note that for large filling fraction, the
parameters of the disordered case do not converge to those of
the ideal one though the touching of cylinders is achieved.
The explanation for that disagreement is simple: the structure
of voids between touching cylinders is different in the two
configurations.

B. Structural disorder

The case of a cluster made of cylinders that are different
can be easily treated by taking into account that the diagonal
terms are now

T̂00
ef f = �

�

�T̃��00, �39�

T̂11
ef f = �

�,�
�M̂��

−1 �11�T̂��11. �40�

When the cluster is made of several i-types of cylinders
equally distributed, the partial filling fraction f i can be de-
fined as

f i � Ni� Ri

Ref f
�2

, �41�

where Ni is the total number of cylinders of material i and
radius Ri. The following expressions are easily obtained for
the effective parameters

1

Bef f
=

1 − f

Bb
+ �

i

f i

Bi
, �42�

�ef f =

1 + �
i

f i
�i − �b

�i + �b

1 − �
i

f i
�i − �b

�i + �b

�b, �43�

where Bi and �i are, respectively, the bulk modulus and den-
sity of cylinders made of material i. The effective speed of
sound could be obtained from the previous expressions as
usual �see Sec. IV�. The results above for B were also ob-
tained in Ref. 17 for a 3D case, where cylinders are replaced
by spheres.

In the most general case, when all the cylinders are dif-
ferent, if the homogenized cluster is still considered as ho-
mogeneous and isotropic, its corresponding effective param-
eters are given by

FIG. 5. �Color online� Effective acoustic parameters �relative to
the embedded medium� defining a homogenized cluster of 151 rigid
cylinders with positional disorder. The blue continuous lines define
results corresponding to the “weakly disordered” case �see text�.
The red dashed lines corresspond to the case randomly disordered.
The parameters of the perfectly ordered case �black dotted lines�
also appear for comparison purposes.
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1

Bef f
=

1 + �

Bb
, �44�

�ef f =
1 + �

1 − �
�b, �45�

where

� = −
i4

�Ref f
2 T̂11

ef f , �46�

� = −
i4

�Ref f
2 T̂00

ef f . �47�

These expressions have been used to study the case of a
cluster made of 151 rigid cylinders having different radii.
The radii of the cylinders are considered to follow a normal
distribution centered in a certain radius R0, which defines the
filling fraction in the x-axis. The function that defines the
distribution of cylinders’ radii for a given R0 is

P�R� =
1

�
2�
e−�R − R0�2/2�2

. �48�

Results have been obtained for three different values of the
variance �. This value has been defined assuming that there
is a relative error 
 in the radius of the cylinder and that
R0
�3�2.

Results for 
=0.1, 0.2, and 0.4 are shown in Fig. 6 and
compared with the case of an ideal cluster of identical cyl-
inders �
=0�. All the curves are obtained after averaging

parameters of ten different configurations of cylinders. It can
be concluded that structural disorder produces effective pa-
rameters that deviate from those obtained in clusters of iden-
tical cylinders only for large filling fractions.

VI. SUMMARY

Multiple scattering theory is used to develop a method
allowing to study clusters of fluid cylinders in the homogeni-
zation limit. Exact formulas for the effective parameters have
been found as a function of the individual properties and
positions of the cylinders that form the cluster. Afterward,
the formulas have been applied to obtain the effective param-
eters for several circular clusters of 151 fluid/gas cylinders in
a different fluid/gas background. The case of a cluster of
rigid cylinders in air has been deeply analyzed obtaining that
the resulting effective speed of sound is in agreement with
previous theories12 based on a plane wave expansion. More-
over, the effective density found also agrees with value ob-
tained by using statistical theories of the T-matrix.17 Also,
approximated expressions of the exact formulas valid at low
fraction of volume occupied by scatterers have been ob-
tained. The method has also been applied to study disorder-
ing effects in the lattice, showing that the effective param-
eters deviated from that of the ordered lattice only for large
filling fractions. It can be concluded that the method here
reported is a useful tool to design acoustic metamaterials
with prefixed acoustic parameters, which can be used to fab-
ricate refractive devices or new structures able to demon-
strate fundamental properties of composite fluids like acous-
tic Bloch oscillations.35
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APPENDIX: LOWER ORDER ELEMENTS
OF THE K-EXPANSION OF THE T MATRIX

For a cylinder of circular section, radius Rcyl, speed of
sound ccyl, and density �cyl, the T matrix is diagonal and its
elements are given by20

Tsq = −
�qJq��kRcyl� − Jq�kRcyl�

�qHq��kRcyl� − Hq�kRcyl�

sq, �A1�

where

�q � �̄cylv̄cyl
Jq�kRcyl/v̄cyl�
Jq��kRcyl/v̄cyl�

, �A2�

and c̄cyl=ccyl /cb, �̄cyl=�cyl /�b. By using the power expansion
of Hankel and Bessel functions for small arguments, is easy
to show that the lower order terms of this matrix are

FIG. 6. �Color online� Effective parameters of a homogenized
cluster of 151 rigid cylinders enclosed in a circle of radius Ref f

=6.452a. The values are calculated under the assumption that the
lattice of cylinders has structural disorder �see Sec. V B�. Three
different degrees of disorder have been considered. The ideal case is
represented by the lines 
=0.
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lim
k→0

T00 �
i�Rcyl

2

4 	 1

�̄cylv̄cyl
2 − 1
k2 + ��k4� , �A3a�

lim
k→0

Tsq �
i�Rcyl

2�q�

4�q�

1

��q� − 1�!�q�!
�̄cyl − 1

�̄cyl + 1
k2�q�
sq + ��k2�q�+2� .

�A3b�

The k-independent factors of lower terms in the power ex-

pansion define the T̂sq elements:

T̂00 � lim
k→0

T00

k2 , �A4�

T̂sq � lim
k→0

Tsq

k2�q� . �A5�

For the effective T matrix defined in Eq. �15�, lower order
terms are obtained from the dominant terms of each of the
three matrices which form it. The power expansion of the
matrix �J��pq becomes

�J��pq � �Ĵ��pqk�p−q�, �A6�

where

�Ĵ��pq =
�p−q

p−q

�p − q�!	R�

2

�p−q�

ei�q−p�	� �A7�

and

�n
m = � 1 if n � 0

�− 1�m if n � 0.
� �A8�

Though the case of clusters having cylinders with differ-
ent radii are possible to deal with �see Sec. V B�, hereafter all
the cylinders are considered identical and with circular sec-
tion. Therefore the matrix �T��rt=Trr
rt and, consequently, in
Eq. �15� the addition �t�T��rt�J��st

* =Trr�J��sr
* . The corre-

sponding assymtotic form is

Trr�J��sr
* � T̂rr�Ĵ��sr

* k2�r�+2
r0�2−r�. �A9�

In the expression above, we used that Trr� T̂rrk
2�r�+2
r0.

The asymptotic form of matrix �M��
−1 �qr is more complex

because there is not an explicit form for this matrix, but one
can be obtained from its properties

�
r

Mqr
−1Mrs = 
qsI , �A10�

�
r

MqrMrs
−1 = 
qsI . �A11�

In the relationships above, the greek subindexes have been
omitted because they are not relevant in the discussion that
follows.

The lowest order term in the k-expansion of the M matrix
is

Mrs = 
rsI − Ĝrsk
2�r�+2
r0−�r−s� �A12�

where

�Ĝ���rs = T̂rr�r−s
r−s��r − s� − 1�!

1

i�
	 2

r��

�r−s�

�ei�s−r�����1 − 
rs��1 − 
��� . �A13�

The 
rs appears because when r=s, the asymptotic form of
the G matrix has a factor of the form �Ik2 ln k, which is
lower than the factor I. With this definition, multiplyng both
equations by k�s�−�q� and defining a new matrix

M̂qr
−1 � Mqr

−1k−�q�+�r�. �A14�

Equations �A10� and �A11� take the form

�
r

M̂qr
−1�
rsI − Ĝrsk

�r�+�s�+2
r0−�r−s�� = 
qsI , �A15a�

�
r

�
qrI − Ĝqrk
�q�+�r�+2
q0−�q−r��M̂rs

−1 = 
qsI . �A15b�

In these equations the power of k is always bigger than or
equal to zero. Therefore, when k→0 all terms disappear ex-
cept those that have k raised to zero. The inverse of the
following matrix

M
o

qs = �
qsI − Ĝqs if qs � 0 ∧ q � 0


qsI if qs 
 0 ∨ q = 0
� �A16�

is M̂qr
−1. Note that both M̊qs and M̂qr

−1 are independent of k and
then

Mqr
−1 = M̂qr

−1k�q�−�r� �A17�

is the lower order term of the k-expansion of M−1.
Finally, the effective T matrix is

Tps
eff = �

�,�
�
r,q

�Ĵ��pq�M̂��
−1 �qrT̂rr�Ĵ�sr

* k�p−q�k�q�−�r�k2�r�+2
r0+�s−r�.

�A18�
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The lower order terms of this equation will be those such that
�p−q�+ �q�= �p� and �r�+ �s−r�+2
r0= �s�+2
s0. These condi-
tions binds the possible values which can take r and q in the

definition of T̂ps. These values define, respectively, the sets
R and Q, and therefore

Tps
eff = T̂ps

effk�p�+�s�+2
s0 �A19�

where

T̂ps
eff = �

r,q�R,Q
�
�,�

�Ĵ��pq�M̂��
−1 �qrT̂rr�Ĵ�sr

* . �A20�
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