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A genetic algorithm (GA) can be used to fit highly nonlinear functional forms, such as empirical interatomic
potentials from a large ensemble of data. The performance of a GA for fitting such functional forms is
enhanced through an approach that is based on the use of a neural network (NN) to accelerate the computation
of the fitness function for the GA. Application of the new approach for fitting an ensemble of potentials
computed from ab initio calculations to a specified functional form (here, the Tersoff potential functional form
is used as an example) has shown that the computational efficiency achieved through the use of a NN can
reduce computational time by over two orders of magnitude. The potentials estimated from functions thus fitted
were within 0.1% of the actual potential values. Specifically, the mean squared error (MSE) on molecular
potentials was <10~ eV? for fitting Tersoff potentials, and <0.0025 eV? for fitting ab initio potential energies
of isolated, 5-atom silicon clusters. Furthermore, since the potential was fitted to a physically meaningful
Tersoff functional form, the resulting potential function appears to have the ability to extrapolate over a
reasonable range of the parameter space, and may have a better accuracy in estimating the forces compared to
that obtained from neural networks, which are often highly inaccurate when extrapolated. Hence, the method
can be useful for rendering various molecular dynamics (MD) simulations more tractable. It is also apparent,
based on the present investigation, that a Tersoff potential, albeit with different (GA parametrized) coefficients,

is adequate for representing the ab initio potentials of 5-atom Si clusters.

DOLI: 10.1103/PhysRevB.74.224102

I. INTRODUCTION

Many physical systems are inherently nonlinear. Effective
modeling of nonlinear behaviors in these systems depends
critically on fitting these highly nonlinear relationships using
accurate, real data. Data-driven fitting of these functional re-
lationships become extremely challenging, especially when
the relationships are nonconvex and multimodal, and/or
when the functional form has a combinatorial structure (Raff
et al."). The need for fitting such complex functional forms
becomes critical in various engineering simulation applica-
tions.

Computer simulation techniques play an important role in
investigations of various chemical, biological, and mechani-
cal processes at the atomistic level. The theoretical principles
underpinning the simulation models can be appropriately
modified by benchmarking the results of the simulations with
experimental observations. Thereafter, the simulations can be
used to study the system behavior under different conditions
for which experimental results are not readily available. The
simulation results can thus guide future experimental plans.
Therefore, computer simulations can complement both theo-
retical and experimental approaches. In conjunction with the
developments in computer technology, the use of molecular
dynamics (MD) and Monte Carlo (MC) simulations have
greatly extended the range of problems that can be studied.
Nowadays, simulation approaches are employed to study
chemical reaction dynamics (Raff and Thompson,? Rahaman
and Raff3* Kay and Raff,> Raff%). In engineering, such
simulations are used to study the behavior of a material un-
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der varying conditions in various processes such as machin-
ing, tension, indentation, and melting (Komanduri et al.,”!!
Agrawal et al.'?). These simulations can provide useful in-
sights into important mechanisms, such as phase transforma-
tion, dislocation dynamics which otherwise are not easily
discernable by other techniques.

Central to MD/MC simulations is the development of
potential-energy surfaces that describe the interactions
among atoms within a system. The potential surfaces should
lead to a realistic description of the interatomic interactions
to match the experimental observations. Recently, we have
conducted MD simulations of nanometric cutting of silicon
with a diamond tool (Komanduri ez al.®). We found the ma-
terial ahead of the tool in the workpiece to undergo signifi-
cant deformation. Under these conditions the atomic arrange-
ments will be far from equilibrium and empirical potentials
whose derivation is based on equilibrium conditions may not
be adequate to describe experimental observations. We have
also observed from these simulations that various clusters of
Si—from Si, to Siy are formed, with the majority being Sis
(Komanduri er al.® and Raff et al.'). Need, therefore, arises
for the development of accurate potentials of these clusters in
order to study their behavior further, which is the objective
of this investigation.

The usual approach for developing a potential is to deter-
mine a functional form motivated by physical intuition, and
adjust the parameters of the functional form to fit ab initio
potential values obtained for a set of atomic configurations
(Raff et al.,' Agrawal et al.'3) and/or some values of the
physical properties experimentally determined for the stated
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configurations (Agrawal et al.'?). The ab initio potential val-
ues are derived by solving Schrodinger’s equation (Pople et
al.,'* Raghavachari et al.,'> Raghavachari and Trucks,'® Mol-
ler and Plesset!”). In order to be useful for the purpose of
conducting MD studies, the fitted potential must not only
provide an accurate fit to the database, it must also accurately
interpolate between points in the database. In addition, it is
often highly desirable that the surface permit reasonably ac-
curate extrapolation to points that lie in regions of configu-
ration space outside the range of the database.

Parametrization of a typical interatomic potential func-
tional form (e.g., Tersoff'-2?) is difficult because the func-
tions tend to be nonlinear and combinatorial in both space
and time. The analytic vinyl bromide potential surface devel-
oped by Rahaman and Raff,>* which contained over 100
parameters, required some nine months of human effort to
achieve an accurate fit to a database comprising both experi-
mental and ab initio energies. The problem is exacerbated by
the fact that every time a given functional form is fitted to a
new system with a different chemical composition, the entire
fitting procedure must be repeated. For example, a Tersoff
potential fitted to the chemical and physical properties of
bulk silicon will have very different values for the surface
parameters than a Tersoff potential that is fitted to ab initio
electronic structure energies for a set of small silicon clus-
ters, Si,, where n is six or less. Similarly, a Brenner potential
(Brenner®?) with parameters fitted to the energies and prop-
erties of a carbon nanotube will not provide an adequate
surface for bulk silicon or Si, clusters. In each case, the
entire fitting procedure must be repeated.

It may be possible to use methods such as genetic algo-
rithms (GAs) and neural networks (NNs) to derive adequate
empirical potentials for various applications (Raff et al.' and
Hobday et al.**). If such methods can be made robust and
sufficiently fast, much of the labor associated with obtaining
analytic potential fits could be eliminated. Also, the range of
systems that can be effectively addressed using MD and/or
MC methods can be significantly extended.

Briefly, a genetic algorithm (GA) uses a stochastic global
search method that mimics the process of natural biological
evolution (Holland?). GAs operate on a population of poten-
tial solutions applying the principle of survival of the fittest
to generate progressively better approximations to a solution.
A new set of approximations is generated in each iteration
(also known as generation) of a GA through the process of
selecting individuals from the solution space according to
their fitness levels, and breeding them together using opera-
tors borrowed from natural genetics. This process leads to
the evolution of populations of individuals that have a higher
probability of being “fitter,” i.e., better approximations of the
specified potential values, than the individuals they were cre-
ated from, just as in natural adaptation.

The most time consuming part in one implemention of a
GA is often the evaluation of the objective or fitness func-
tion. The objective function O[P] is expressed as sum
squared error computed over a given large ensemble of data.
Consequently, the time required for evaluating the objective
function becomes an important factor. Since a GA is well
suited for implementing on parallel computers, the time re-
quired for evaluating the objective function can be reduced
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significantly by parallel processing. A better approach would
be to map out the objective function using several possible
solutions concurrently or beforehand to improve computa-
tional efficiency of the GA prior to its execution, and using
this information to implement the GA. This will obviate the
need for cumbersome direct evaluation of the objective func-
tion.

Neural networks may be best suited to map the functional
relationship between the objective function and the various
parameters of the specific functional form (Hagan et al.®).
This study presents an approach that combines the universal
function approximation capability of multilayer neural net-
works to accelerate a GA for fitting atomic system potentials.
The approach involves evaluating the objective function,
which for the present application is the mean squared error
(MSE) between the computed and model-estimated potential,
and training a multilayer neural network with decision vari-
ables as input and the objective function as output. This
trained neural network is then used as part of a GA for com-
puting the objective function. This approach has been found
to speed up a GA in general by eliminating redundant com-
putation of the objective function and by precomputing of-
fline relative to the GA. The results show that the set of
parameters obtained using the approach described in this pa-
per yield closer fits for Tersoff potential energies (MSE
<1.32X107°eV?) and ab initio potential energies (MSE
<0.0025 eV?) for isolated 5-atom silicon clusters. Thus, in
cases where the objective function is expressed as MSE over
a large number of data points, a NN can be a suitable means
for faster estimation of the objective function to accelerate
GA. It is also apparent, based on the present investigation,
that a Tersoff potential, albeit with different (GA param-
etrized) coefficients, is adequate for representing the ab initio
potentials of 5-atom Si clusters.

The organization of the paper is as follows: a brief back-
ground on the interatomic potentials and a brief review of
literature are presented in Sec. II; the effects of various pa-
rameters on the potential energy are presented in Sec. III;
this is followed by Sec. IV on the results and discussion; and
finally Sec. V presents the conclusions resulting from this
study.

II. BACKGROUND AND LITERATURE REVIEW
A. Interatomic potential functions for silicon

The most important part of the MD/MC simulation is the
development of the potential energy surfaces that can model
the system potentials sufficiently close to reality. Interatomic
potential functions are invariably used in MD simulations to
capture the total potential energy of the system. In recent
years, many empirical potentials for silicon, such as the
Stillinger-Weber potential (Stillinger and Weber?®), Tersoff
potential (Tersoff!*~22), Bolding-Andersen potential (Bolding
and Andersen®’), and Brenner potential (Brenner>’) were de-
veloped and applied to a number of different systems. Each
of the models for interatomic potentials differs in the degree
of sophistication, functional form, useful range of values to
suit a specific application. Not only are the surfaces for small
clusters difficult to model (Balamane et al.,?® Kaxiras®),
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even bulk materials, including crystalline and amorphous
phases, solid defects and liquid phases have not been pro-
vided with a transferable, single potential function. The usual
approach for developing empirical potentials is to arrive at a
parametrized functional form motivated by physical intu-
ition, and then to find a set of parameters by fitting to either
ab initio data and/or experimental observations for various
atomic structures. A covalent material presents an additional
challenge because the potential function needs to capture
complex quantum mechanical effects, such as chemical bond
formation, hybridization, metallization, charge transfer, bond
stretching, and bond bending. Despite a wide range of func-
tional forms and fitting strategies, most of the current empiri-
cal potential function parametrizations have been successful
in the regime for which they were parametrized, but have
shown a lack of transferability. The Rahaman vinyl bromide
potential (Rahaman and Raff>#) is a typical example.

The Tersoff potential, which is one of the commonly used
functional forms for modeling the interatomic interaction of
group IV semiconductor materials, such as silicon is used in
the present study. The functional form of Tersoff potential is
given by (Tersoff??)

V= E U= 12 Vij»
i 208
Uij=fc(rij)UR(rij) +biij(rij)]- (1)

where V is the total potential energy of the system. fx and f,
are repulsive and attractive pair potentials, respectively, and
fc is a cutoff function given by

frlry) = Aye i,

falry) == ByeHirs), (2)
1, r; <R
1 1 (ri'—R)
felry) = §+§cos[wm , R<r;<S§
O, rl]> S,

where r;; is the bond distance between atoms i and j, § is the
cutoff radius, R is the inner cutoff radius, and )\,»j:)\, and
;= p are potential parameters. The strength of each bond
depends upon the local environment. It is lowered when the
number of neighbors is relatively high. This dependence is
expressed by the parameter b;;

by = xij(1+BrgiH™"",

ij= > Seri) 0yg(6;4) (3)
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which can diminish the attractive force relative to the repul-
sive force. Here
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TABLE 1. Parameters of Tersoff Potential for Silicon [Tersoff
(Ref. 22)].

Tersoff Parameters Values
A (eV)x 103 1.8308
B (eV) X 10? 47118
N (A7 2.4799
w (A 1.7322
BX107° 1.1
n 0.787
X 10° 1.0039
d 16.217
h -0.59825
R (A) 2.7
S (A) 3.0

N NN Mty

ij 2 > Iu’ij - 2 . (4)

The term {;; defines the effective coordination number of
atoms taking into account the relative distance between two
neighbors (r;;,7;) and the bond angle 6,;. The function g(6)
has a minimum at i=cos(6). The parameter d determines
sensitivity of the potential to the angle and ¢ expresses the
strength of the angular effects. The parameters R and S are
not optimized but chosen so as to include first neighbors only
for several selected, high-symmetry structures, such as
graphite, diamond, as well as simple cubic and face centered
cubic lattice structures.

The parameter x;; strengthens or weakens heteropolar
bonds in multicomponent systems. x;=1, and x;;=x;;. Also,
w;=1. The potential was calibrated initially for silicon
(Tersoff'”) and subsequently for carbon (Tersoff?>?!). The
parameters chosen to fit theoretical and experimental data
were for e.g., cohesive energy, lattice constants, and bulk
modulus obtained from realistic and hypothetical configura-
tions. Table I lists the parameters of Tersoff potential for
silicon as specified in an earlier work (Tersoff??). These val-
ues are adequate for computing bulk parameters of silicon at
room temperature. However, they do not agree with the po-
tentials computed based on first-principle calculations at dif-
ferent temperatures and for isolated configurations. As a re-
sult, the application of the Tersoff potential with the
parameters given in Table I may lead to erroneous MD com-
putations.

Internal atomic coordinates are generally the most effi-
cient way to specify the potential energy [see Egs. (1)-(3)].
Internal coordinates are specified using bond distances, bond
angles, and dihedral (torsional) angles. Figure 1 shows vari-
ables involved in internal coordinates. The dihedral angle is
the angle between two planes passing through atoms i-j-k
and j-k-1, respectively. It is measured as the angle between
the vector normal to these planes. However, since the inter-
nal coordinates are highly coupled, it is convenient to solve
the equations of motion during MD simulation in the Carte-
sian coordinate system, and convert Cartesian coordinates to
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FIG. 1. Internal coordinates: (a) bond distance, (b) bond angle,
(c) dihedral angle, and (d) configuration of 5 silicon atoms.

corresponding internal coordinates after imposing certain
constraints [e.g., first neighbor represented as atom 2 in
Gaussian 03 software (Frisch er al.’%)].

B. Applications of NNs for GA acceleration

Although GA wuses physically meaningful functional
forms and possess excellent extrapolation capabilities, fitness
(or the objective) function evaluations are often a major
bottleneck in using GAs and other evolutionary algorithms
for optimization applications, including optimal parametriza-
tion of functional forms. Surrogate modeling approaches, in-
cluding the use of NNs, have been attempted to minimize the
computational efforts involved in fitness (objective) function
evaluations (Buche e al.,’! Yan and Minsker,’> Kim and
Khosla,*® Hacioglu,’* Hagan et al.%). These have been ap-
plied to address a variety of issues arising in aerospace ap-
plications from shape optimization to cost minimization. All
these approaches use NNs and/or other modeling approaches
as cheaper surrogates for costly simulations. It may be noted
that the literature on GAs is quite extensive, covering a wide
range of applications. In the following, due to constraints on
space, only a few examples are given to provide an appre-
ciation of the subject matter. Comprehensive reviews of ap-
plications GAs are available in the literature (see for e.g.,
Tang et al.,’® Back et al.’").

Yan and Minsker®? used a dynamic meta modeling ap-
proach in which artificial neural networks (ANN) and sup-
port vector machines (SVM) were embedded into a GA op-
timization framework to replace time consuming flow and
containment transport models. Data produced from early
generations of the GA are sampled to train the ANN and
SVM and the numerical models were periodically called to
dynamically update the ANN and SVM, allowing the meta
model to adapt to the area in which the GA was searching
and providing more accuracy.

Farritor and Zhang®® used a NN to evaluate the perfor-
mance of modular robots designed using genetic algorithms.
Candidate designs generated by human designers along with
randomly generated designs were used to train a NN fitness
function. Then, the GA evolves new designs that the human
designer might not even conceive, let alone come up with an
actual design.

Coit and Smith*+*° presented an optimization approach
using a GA to identify the preferred choice of components
and the optimal levels of redundancy for a reliability design
problem. For complex design problems, estimation of the
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reliability requires considerable effort. The approach was to
use a NN to estimate system reliability as a function of the
component reliabilities and the design configuration. In this
way, multiple estimates of system reliability were available
without solving a new probability model for each candidate
solution.

Burton and Vladimirova*' developed NN based adaptive
resonance theory (ART) called ARTMAP to control the clus-
ter creation process. The ART NN utilizes unsupervised
learning and clustering algorithms to recognize patterns. The
fitness of the individuals of the population is determined as a
function of the degree of similarity between clustered pat-
terns and the individual. Buche et al.3! developed a Gaussian
process model approach for fast surrogate evaluation of the
objective function. Their approach performed better than
other evolutionary optimization strategies for profile optimi-
zation of gas turbine and compressor blades of aircraft en-
gines.

In all the aforementioned applications, the nonlinearity of
the underlying real functional forms has necessitated accel-
eration using NNs and other surrogate models. In the present
context, in addition to the complexity involved in function
computation, the combinatorial nature of the objective func-
tion offers additional variables for NN acceleration. In fact,
the application of GA was almost intractable for parametri-
zation without acceleration as will become evident in Sec.
III. Therefore, although GAs have been applied for the deri-
vation of optimal atomic configurations (Smith er al.*?), the
likely computational overhead involved in repetitive deter-
mination of the objective function has prevented GAs from
being applied for parametrizing interatomic potentials. The
use of NN renders GAs attractive for such applications
where the repetitive computation of the objective function is
a major bottleneck.

III. PROBLEM DESCRIPTION AND APPROACH

Genetic algorithms (GAs) and other nonlinear functional
approximation routines based on a stochastic gradient search
require the specification and evaluation of an objective or
fitness function to determine the quality of fit. Problems in-
volving the repetitive evaluation of the objective function
(such as, mean squared error (MSE) in fitting a complicated
function) becomes computationally time consuming. This
study presents an approach based on using the function ap-
proximation capability of NNs for computation of the objec-
tive function. The method is applied for parameter determi-
nation of interatomic potential for silicon using the Tersoff
functional form (Tersoft'®-22).

The objective function O[P] was defined as the mean
squared error (MSE) between the potential energy calculated
using a set of parameters for a Tersoff functional form and
the actual energy values obtained from first-principle calcu-
lations for each of the N, configurations (x;), k=1..N, using
one of the N, set of parameters

N,

(V- V{[P])?
k=1

O[P]= — N (5)

c

where [P] is the set of parameter vector values for the chosen
potential function, N, is the number of configurations used,
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FIG. 2. (Color online) Variation of the objective function O[P] with (a) 8 and d (b) n and d and (c) ¢ and d, respectively, showing large

plateau regions.

\A/k is the potential computed from the chosen function with
parameter set at [P], Vk is the actual potential values to be
fitted, obtained here from Tersoff or ab initio calculations.

As shown in Fig. 2, the gradients of O[P] are steep for
small values of the parameters (B, d, and n). As the value of
the parameters increase, the gradient of the objective func-
tion decreases until it reaches a large plateau region marked
by near-zero gradients. Conventional gradient-based optimi-
zation methods tend to be inefficient for objective functions
of such form because gradients tend to be computationally
cumbersome to evaluate. Ill-conditioned numerical struc-
tures, slow convergence, and suboptimal solutions are known
to manifest whenever gradient search algorithms are em-
ployed for multivariable combinatorial optimization with
such objective functions.

GAs are more effective compared to traditional gradient-
based methods. Our approach to NN-accelerated GA is sum-
marized in Fig. 3. The approach involves off-line training of
a NN to capture the relationship between the parameter set
[P] and the objective function [O[P]], and using the NN es-
timates of [O[P]] as surrogates for GA optimization. The
entire procedure of parameter optimization is carried out in
multiple stages. All initial stages consist of two major com-
ponents, namely, off-line NN training and GA parametriza-
tion, as shown in Fig. 3. The procedure begins with the gen-
eration of an initial set of parameter vector values [P], and
computation of corresponding potential [V[P]] and hence,
the objective function as described in Eq. (4). A multilayer
NN is trained with potential energy parameters [P] as inputs
and corresponding objective function O[P] as the output.
Regularization and early stopping are used during training to
avoid overfitting the training data. Next, the GA is executed
based on NN estimates of O[P]. The GA consists of the
following steps:

(a) Initialization of population: A set of parameter vector
values [P] of the considered potential functional form
(Tersoff??) are generated within a specified range. The di-
mensionality of the parameter vector P was 9 corresponding
to the number of parameters used in the Tersoff potential.
The set [P] contained 50 such elements; i.e., N,=50. Each
parameter within a set was coded in a binary string of length
25.

(b) Generating a new set of parameter values [P] using
genetic operators: The objective function set [O[P]] corre-
sponding to a set of parameters generated [P], is evaluated

using a NN, trained off line. Genetic operators, such as
crossover and mutation (Holland?®) are used to arrive at a
new set of parameters for the Tersoff potential functional
form. The new set of parameters for Tersoff potential is se-
lected based on the fitness. In other words, the smaller the
value of O[P], the higher the probability for a parameter
vector value P to be selected. The GA terminates after the
maximum number of iterations are reached, or if the GA
solutions appear to have converged. If the fit at the end of the
phase is below a threshold level, subsequent phases consist-
ing of NN retraining and GA parametrization are undertaken.
However, the range set for the parameter vector P is reduced
and the length of binary string used to encode each of the
parameters is increased, for example, from 25 to 50 bits to
improve the resolution. Once the fit improves above a thresh-
old level, it is assumed that the parameter values lie in the
basin of the global minimum. A gradient based method is
used to determine the best fit.

IV. IMPLEMENTATION DETAILS AND RESULTS

First, we evaluated the approach for its ability to approxi-
mate actual Tersoff potential parameters. This evaluation was
necessary to benchmark the approximation capability of the
GA-NN approach. Next, we applied this approach to ap-
proximate ab initio potential values with a Tersoff functional
form.

A. Approximation of Tersoff potential
1. Neural network (NN) training for mean squared error (MSE)

A two-layered feedforward NN was trained for mean
squared error (MSE) (i.e., between the potential calculated
using Tersoff parameters and GA parameters) for N.=1000
configurations of 5-atom Si clusters. The NN consisted of 40
neurons in the hidden layer and one neuron in the output
layer. The input exemplar patterns for training the NN con-
sisted of 4000 arbitrarily chosen realizations of the nine-
dimensional parameter vector [P] of Tersoff functional form
and the corresponding [O[P]] obtained from Eq (5). Such a
network is commonly denoted by the notation (9-40-1). The
trained NN was tested using 500 element sets of [P] and
[O[P]]. Figures 4(a) and 4(b) show a comparison of NN out-
puts for the testing sets during the first and the fourth stages
of GA, respectively. The standard deviations of the actual

224102-5



BUKKAPATNAM et al.

GA optimization

Initialize population for GA:
Generate a set of coded parameters vector

PHYSICAL REVIEW B 74, 224102 (2006)

Neural network

v

Generate a set of parameter vector values

Gradient search to
find locally optimal
[P]

End

values [P].P € P [P] for the chosen potential function
for potential function (Tersoff) within the chosen range
[P]
v [P]
Evaluate the objective function Compute the potential [V]resulting from
| [O[P]] < the use of each element of [P] set using
determined using the trained NN Tersoft functional form for each of the
considered configuration (x)
[P :
lwmm
Operate on [P] using genetic
Operators: Selectlol?~ Crossover, and Evaluate the objective function [O]
Mutation 4
) S (eq (4))
to get new generation of [P]
[P, [O[P]]] [O[P]] [P]
\4
Train a multilayer neural network with
[P] as the input and [O[P]] as the
No. of output
generations <
Max
generations
P
P
Max no. stages
reached
or = Calculate new range of parameters
O[P] < threshold No

Preserve good solutions

FIG. 3. (Color online) Flowchart of the approach used for GA optimization.

outputs [O[P]] and those computed using a NN [O[P]] were
0.0636 eV? for Stage 1, and 0.0036 eV? for the fourth stage.

2. GA-search for optimal Tersoff parameters

The NN-estimated [O[P]] values were used to evaluate
the fitness of various input sets [P] during GA. The nine
parameters for Tersoff potential, namely, A, B, \, u, B, n, c,

d, and h (see Table I) were first encoded in a binary string.
During the initial stages 25 binary bits, and during the final
stages 50 bits were used to represent each variable. Optimi-
zation of parameters was carried out in four stages. During
each stage the range for the parameter set was narrowed to
improve the accuracy in successive stages. The crossover
and mutation rates were varied during each stage, as shown
in Figs. 5(a) and 5(b), respectively. The mutation rates were
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FIG. 4. (Color online) Comparison of the NN output with the
objective function O[P] for the testing set: (a) first stage and (b)
fourth stage, respectively.

gradually decreased during each stage from 0.92 to 0.12 us-
ing a functional form [1—k;(1+k,e™N)™'] where n is the
current iteration and number N is the total number of speci-
fied iterations, and k; and k, are constants chosen for each
stage to yield the mutation rate variation profiles shown in
Fig. 5(a). The crossover rate was varied from 0.9 in Stage I
to 0.62 in Stage IV as shown in Fig. 5(b). The mutation rate
affects the convergence of the final solution. It was found
that during the initial stages, a larger value for mutation rate
facilitates searching through a large parameter space, while a
smaller value for mutation rate towards the end facilitates
convergence to the optimal solution.

The convergence pattern of MSE between the GA param-
etrized Tersoff potential value and actual Tersoff potential
value taken over all the configurations is summarized in Fig.
6 and Table II. It was observed that during the initial stages
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FIG. 5. (Color online) (a) Variation of the mutation rate during
each stage with number of iterations. (b) Variation of the crossover
rate during each stage with the number of iterations.

of GA, the use of multipoint crossover provides a faster con-
vergence as opposed to single-point crossover (Bridges and
Goldberg®). This could be because multipoint crossover
tends to produce more variation among individuals during
successive iterations, which helps in narrowing down the
range of parameters during initial stages. On the other hand,
single-point crossover along with high resolution (number of
bits used in binary representation) helps to improve the ac-
curacy.

Figure 7 illustrates the closeness of potentials computed
based on GA-optimized parameters V[P](x) relative to those

Stages
I 11 111 v

log (O[P])

o© A o » ®
[

0 20 40 60 80 100
No. of iterations x 10°

FIG. 6. (Color online). Variation of MSE with the number of
iterations at various stages for parametrization of Tersoff potential.
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TABLE II. Variation of MSE at different stages of GA fitting of Tersoff potential.

Stage no. Stage | Stage 11 Stage III Stage IV Stage V
MSE 0.01  0.0019 4.72X10™* 545%X107° 432X107° 3.57X107° 253X107° 7.65X107° 143x10° 1.32%x10°°
(eV?)

obtained using original Tersoff parameters V(x). It isto be
noted that it took five stages to make the GA optimized Ter-
soff parameters values match the actual values of the Tersoff
potential given in Table I (Tersoff??). At this point the MSE
dropped below 107 eV2. Among all Tersoff parameters, the
potential appears to be most sensitive to variations in A and
B. Consequently, the GA was able to determine the near-
optimal settings of these values during the early stages itself.
Significant training efforts spanning multiple stages of GA
were needed to optimize the other, less sensitive parameters
(e.g., N and h). The advantage of using NN trained for MSE
is that it obviates the need to calculate Tersoff potential en-
ergy for each set of parameters and for each configuration.
The use of a NN has reduced the computational time from
~1 week without the NN to ~8 h with NN.

3. Approximation of ab initio energy using
Tersoff functional form

Next, we investigated the fitting of ab initio potentials of
S-atom Si clusters using a Tersoff functional form. We used
10 000 configurations of Sis clusters from a database estab-
lished from MD simulations of nanometric cutting of Si to
compute the target objective function for training and testing.
The configurations and their potentials were obtained after
performing MD simulations of nanometric cutting of a sili-
con workpiece using a single point cutting tool (+15° rake
angle and 10° clearance angle) at 1 A cutting depth, 54.3 A
cutting width, and 491.2 ms~! cutting speed [see Fig.
8(a)].""? A Tersoff potential with parameters corresponding to
bulk Si (Table I) was employed in the initial step of the
iterative MD simulation process. At every time step of the
MD simulations, the configurations of silicon clusters that
are present in front of the tool, in the chip, and within a few

VIPI(x)

10 -9.9 -9 -9.5 -9.3

7
V(x}

FIG. 7. Comparison of the potential computed using Tersoff
V(x) and GA optimized parameters V[ P](x). Energies are given in
eV.

unit cell distances in the workpiece underneath the tool are
stored. It was observed from an examination of a histogram
of atomic configurations of Si in the primary and secondary
deformation zones [see Fig. 8(b)] that out of about 39 000
configurations identified, some 57% of the Si atoms evolve
into clusters of five atoms. The histogram also shows that Si,
(20%) followed by Sic and Si, clusters (<10%) occur a
significant number of times in the deformation zones during
the machining of a Si workpiece. This observation has led us
to first focus on deriving the potentials of five atom Si clus-
ters as opposed to other topologies.

The database obtained from the cutting simulations was
augmented with 10 000 additional Sis configurations near
equilibrium. These configurations were obtained from the
bulk material by placing thermal energy corresponding to a
temperature of 300 K in the silicon workpiece and then fol-
lowing the vibrational motions of the lattice using MD with
the Tersoff empirical potential for bulk silicon. Subsequent to

»
»
»
v
»
»
v
»
»
-

100
so
e ]
]
w 60
=
e
5 40
2
2+
2 3 4 5 6 7 8 9 10
(b) Number of atoms in a cluster

FIG. 8. (Color online) (a) Snapshot of MD simulation of nano-
metric cutting of silicon showing atomic configuration of Si work-
piece and the diamond tool used. (b) Histogram showing the distri-
bution of various Si clusters in the primary and secondary
deformation zones ahead of the cutting tool in nanometric cutting as
shown in (a).
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FIG. 9. (a)—(i) Histograms of the number of configurations as a function of internal coordinates, (a)—(d) bond distance (r), (e)—(g) bond

angles (6), and (h)—(i) dihedral angle ().

the MD calculations, the energies and the force fields for
each of the 28 000 stored configurations are computed using
the density functional theory (DFT) with a 6-31G™" basis set
and the B3LYP procedure for incorporating correlation en-
ergy. Next, the 10 000 configurations needed for GA training
and testing were randomly selected from among the avail-
able configurations in the database.

The objective function was computed for every one of the
randomly generated 9000 parameter vector realizations, and
trained a two-layer NN to approximate the objective function
[O[P]] as described in Sec. IV A. Figures 9(a)-9(i) show
histogram plots of the number of configurations as a function
of nine internal coordinates used to calculate the ab initio
energies using Gaussian 03 software (Frisch et al.’°). The
standard deviation of the errors between the objective func-
tions was 0.00847 eV? during Stage 1 NN approximation
and 0.00358 eV? in the final stage (Stage IV) of NN approxi-

mation. Figures 10(a) and 10(b) show how the NN estimate
of O[P] compares with actual values for different settings of
[P]. The low values of the standard deviation, evident from
these two figures, indicate the closeness of the NN estimate
of O[P] to the actual O[P], whose computation is extremely
cumbersome. Next, the GA was trained for 5 stages, and the
NN was retrained at the end of Stages I through III. In the
final step, a Nelder-Mead simplex algorithm (Nelder and
Mead*) was used to arrive at the optimal set of parameters.
The specific GA parameters are used as follows:

(i) Stage I. 100 individuals, 15 bits to represent each
variable, 4 point crossover.

(2) Stage II: 50 individuals, 20 bits to represent each
variable, 2 point crossover

(3) Stage III: 50 individual, 50 bits to represent each
variable, 2 point crossover.
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FIG. 10. (Color online). Comparison of the NN output with the
objective function O[ P] for the testing set at (a) first and (b) fourth
stages, respectively.

(4) Stage IV: 25 individual, 75 bits to represent each
variable, single point crossover.

(5) Stage V: Nelder-Mead simplex method (does not use
genetic operators)

The variation of the best fitness function (O[P]) values at
the end of each stage is summarized in Fig. 11. Table III
summarizes the parameter values for Tersoff functional form
that seem to adequately fit the ab initio potentials of 5 atom
Si clusters. The MSE of the GA fit was reduced from
0.74 eV? to about 0.28 eV? during four stages of GA execu-
tion (see Fig. 11 and Table III). The final stage of Nelder-
Mead simplex reduced the errors by two orders of magnitude
to 0.0026 eV2. In contrast, the MSE resulting from the use of
a Nelder-Mead simplex method, instead of a GA, for fitting
has yielded a MSE of 0.28 eV? and those from the applica-
tion of a simplex method with Stage I GA results as starting

PHYSICAL REVIEW B 74, 224102 (2006)
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FIG. 11. (Color online) Variation of objective function O[P]
(here, MSE) at various stages of GA fitting of ab initio potentials to
Tersoff functional form.

points has yielded an average MSE of about 0.12 eV2. These
results suggest that it would be necessary to have the GA
converge to the best possible solution (leading to the identi-
fication of the correct valley containing the global minima)
prior to the application of a Nelder-Mead simplex (Nelder
and Mead**). We next tested the GA-parametrized Tersoff
functional form to fit the potentials of 28,200 configurations
(which included those not used in the NN for fitting the GA).
The results plotted in Fig. 12 show some dispersion around
the 45° line, corresponding to a standard deviation of
0.0507 eV. Most of the points (=90%) lie along the 45° line
(although in the figure we see mainly those points which are
outside the line) indicating that the GA-parametrized model
estimates the ab inito potentials accurately for a vast major-
ity of the configurations.

We next compared the extrapolation capability of the GA-
estimated potential function. Figure 13 shows that both NN
and GA optimized Tersoff potential fit ab initio energy very
well within a range of data that was used for the fitting. NN
fit is accurate for bond distances up to 3 A, whereas GA-
Tersoff is accurate up to 2.7 A. This can be attributed to the
fact that for GA-Tersoff, one starts with an assumed func-
tional form based on some physical intuition involved in the
bonding environment and then adjust parameters to fit ab
initio energy using the functional form. As a result, the ac-
curacy of the fit critically depends on the underlying func-
tional form used, whereas in the case of NN fitting, no func-
tional form is assumed and the accuracy of the fit depends on
the number of neurons used. It should be noted that NN fit is
good only over a range of data that was used for fitting, i.e.,
a NN fit is good only for interpolation and not for extrapo-
lation. An additional advantage of a GA-Tersoff method is
that it can be used for extrapolation. As seen in Fig. 13, for
bond distances <2.1 A, both GA-Tersoff and NN fit start
deviating from ab initio energy. While the energy predicted
by the NN fit remains almost constant, the energy predicted
by GA-Tersoff follows the trend of ab initio energy although
the magnitudes deviate somewhat from the ab initio energy.
For molecular dynamics/Monte Carlo simulations involving
nonequilibrium configurations, it is important that the fit be
reasonably accurate even for extrapolation. The loss of accu-
racy in GA-Tersoff extrapolations beyond 2.7 A may be at-
tributed to the fact that the Tersoff functional form in Eq. (1)
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TABLE III. Variation of mean square error (MSE) and Tersoff potential function parameter estimates at different stages of GA fitting of

ab initio energies.

MSE Stage 1 Stage 1I Stage III Stage IV Stage V
(eV?) 0.74552 0.71826 0.68913 0.6532 0.57253 0.4693 0.3331 0.28162 0.002567
AX103 1.8345 5.2328 9.7774 2.3203 2.3042 4.8184 5.2688 4.6293 3.5831
BX 107 4.3224 5.8889 1.2736 5.8423 1.3211 4.8441 4.2669 3.8348 4.1021
A 12.1868 17.5864 8.2376 10.3244 19.2320 3.2461 2.3431 2.2423 2.9402
M 2.7139 5.5381 8.38749 12.2139 2.3149 2.3429 1.2320 2.0831 1.5392
B 0.5875 0.2436 0.1335 0.2201 0.0087 0.0018 0.0003 0.0006 9.38E-05
7 0.18947 0.01201 0.31941 0.2349 0.7923 0.5121 0.6903 0.77428 0.66311
cX 10 3.2817 3.1344 2.7214 3.2899 1.1947 1.0265 1.03791 1.0335 1.0686
d 11.9426 31.6264 66.3297 54.2320 19.2322 14.3446 20.2361 22.1385 18.5568
h 0.1294 0.2957 0.21987 0.2342 -0.02923 —0.7038 -0.6613 —0.8343 —-0.8205

uses R=2.7 A as the inner cutoff on the bond distance, and it
may be possible that the functional form used to attenuate
the interaction effects beyond »> R may not adequately cap-
ture the actual atomic interactions in 5 atom Si clusters.

As stated earlier, the present study focuses on five-atom
clusters because the majority of Si clusters ahead of the tool
in a machining simulation experiment consisted of five at-
oms. Our future work will investigate the parametrization of
potential functions for other clusters so that one can have
accurate potential surfaces established for various MD simu-
lations of nanometric cutting, chemical mechanical polishing
of silicon, etc.

Although the Tersoff functional form with the parameters
given in Table III provides an excellent fit to the Sis ab initio
energies obtained from density functional theory (DFT), we
would not expect this potential to accurately represent the
energies for smaller or larger silicon clusters. The nature of
the bonding changes significantly when a silicon atom is
removed from an Sis cluster to form Si,. Therefore, we
would expect a correspondingly significant change in the po-
tential parameters required to describe smaller clusters. The
bonding changes are probably less significant as the size of
the cluster is increased. Consequently, we would expect the

-14.1

-14.3

145

VIP](x)(eV)

-14.7

-14.9

151 149 147 145 143 -14.1
V(x)(eV)

FIG. 12. (Color online) Comparison of the ab initio potential
computed using Gaussian 03 V(x) and GA-optimized parameters
for Tersoff potential V[P](x).

parameters for the Sis system to more accurately describe Sig
or Si; than Siy.

Also, it may be possible to develop a robust potential for
Si, (n>3) clusters by combining the present GA-NN
method with ab initio DFT energies to obtain the Tersoff
parameters for a series of clusters. Subsequently, these data
could be used to train a neural network to permit interpola-
tion of the parameter values for any given cluster size. As n
increases, we would expect the interpolated values to ap-
proach those for bulk silicon. We are currently investigating
this possibility.

V. CONCLUSIONS

A genetic algorithm (GA) approach is presented to fit
atomic potentials to a physically meaningful form. A GA-
based parametrization process requires a repetitive computa-
tion of the objective function, which in this case is expressed
as the mean squared error (MSE) taken over all configura-
tions of interest (here, about 28 000 configurations of 5-atom
Si clusters were used), between the potentials determined
from the ab initio calculations and those estimated using the
GA-selected parameter vector values. A NN is used to learn
the relationship connecting the parameter vector and the ob-

0 T T
1 1
Ed 1 1
; 1 ]
® 4] i i
> ! ab initio energy |
E' 6 : using G03 :
1
5 -8 A : GA optimized :
= Tersoff potential
s 10 \ . .
E 12 T NN fitting : /7
o 1 1
a 14 | b = 1 |
] 1
-16 t - +
1 1.5 2 25 3 3.5

Bond distance {A)

FIG. 13. (Color online) Variation of NN- and GA-Tersoff-
estimates of ab initio potential with bond distances compared
against the variation of actual ab initio potential.
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jective function. The NN thus trained provides surrogate es-
timates of the objective function, thereby obviating the need
to compute the objective function for every parameter value
selected during the GA fitting process. In fact, the use of a
NN is the key to reducing the overall computational time for
parametrization from a few weeks to a few hours. The GA
has been found to quickly establish the correct “range” of the
parameter values to optimize a nonlinear and perhaps com-
binatorial objective function. Since the objective function
has significant slope changes and long plateaus, a simplex
(Nelder-Mead) search is used during the final stage of the
parametrization process to ensure faster convergence to the
optimal [P] values. It has been shown that the approach can
correctly identify the parameters used to fit Tersoff potential
to within £0.0023 eV (corresponding to a ~95% confidence
limit) accuracy. The results also show that that it is possible
to fit ab initio potentials of 5-atom Si clusters to a Tersoff
functional form within +0.0507 eV accuracy. More impor-
tantly, the GA-parametrized fit to Tersoff functional form has

PHYSICAL REVIEW B 74, 224102 (2006)

excellent extrapolation capabilities compared to the use of
NNs.
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