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We study the nonanalytic behavior of the static spin susceptibility of two-dimensional fermions as a function
of temperature and magnetic field. For a generic Fermi liquid, �s�T ,H�=const+c1 max�T ,�B�H��, where c1 is
shown to be expressed via complicated combinations of the Landau parameters, rather than via the backscatter-
ing amplitude, contrary to the case of the specific heat. Near a ferromagnetic quantum critical point, the field
dependence acquires a universal form �s

−1�H�=const−c2�H�3/2, with c2�0. This behavior implies a first-order
transition into a ferromagnetic state. We establish a criterion for such a transition to win over the transition into
an incommensurate phase.
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The nonanalytic behavior of thermodynamic quantities of
a Fermi Liquid �FL� has attracted a substantial interest over
the last few years. The Landau Fermi-liquid theory states that
the specific heat coefficient ��T�=C�T� /T and uniform spin
susceptibility �s�T ,H� of an interacting fermionic system ap-
proach finite values at T ,H=0, as in a Fermi gas. However,
the temperature and magnetic field dependences of ��T ,H�
and �s�T ,H� turn out to be nonanalytic. In two dimensions
�2D�, both � and �s are linear rather than quadratic in T and
�H�.1 In addition, the nonuniform spin susceptibility �s�q�
depends on the momentum as �q� for q→0.2,3

Nonanalytic terms in � and �s arise due to a long-range
interaction between quasiparticles mediated by virtual
particle-hole pairs. A long-range interaction is present in a
Fermi liquid due to Landau damping at small momentum
transfers and dynamic Kohn anomaly at momentum transfers
near 2kF �the corresponding effective interactions in 2D are
��� /r and ���cos�2kFr� /r1/2, respectively�. The range of this
interaction is determined by the characteristic size of the
pair, Lph, which is large at small energy scales. To second
order in the bare interaction, the contribution to the free en-
ergy density from the interaction of two quasiparticles via a
single particle-hole pair can be estimated in 2D as �F
�u2T /Lph

2 , where u is the dimensionless coupling constant.
As Lph�vF /T by the uncertainty principle, �F�T3 and
��T��T. Likewise, at T=0 but in a finite field a characteris-
tic energy scale is the Zeeman splitting �B�H� and Lph
�vF /�B�H�. Hence �F� �H�3 and �s�H�� �H�.

A second-order calculation indeed shows3–5 that � and �s
do depend linearly on T and �H�. Moreover, the prefactors are
expressed only via two Fourier components of the bare in-
teraction �U�0� and U�2kF�� which, to this order, determine
the charge and spin components of the backscattering ampli-
tude fc,s��=	�, where � is the angle between the incoming
momenta �the notations are as in Ref. 4�. Specifically,
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where ���T ,H�=��T ,H�−��0,0�, ��s�T ,H�=�s�T ,H�
−�s�0,0�, ��s�q�=�s�q�−�s�0�, fc�	�= �m /	��U�0�
−U�2kF� /2�, fs�	�=−�m /2	�U�2kF�, ��0�=m	 /3, �s�0�
=�B

2m /	, EF=mvF
2 /2, �B is the Bohr magneton, and the

limiting forms of the scaling functions are S��0�=S��0�=1
and S��x�1�=1/3, S��x�1�=2x. �Regular renormalizations
of the effective mass and g factor are absorbed into ��0� and
�s�0�.� The second-order susceptibility increases with H and
q, indicating a tendency either to a metamagnetic–first-order
ferromagnetic transition or to a transition into a spiral state.
These tendencies signal a possible breakdown of the Hertz-
Millis scenario of the ferromagnetic quantum critical point
�QCP�.6

Experimentally, a linear T dependence of the specific heat
coefficient has been observed in thin films of 3He.7 A linear
increase of �s with magnetization �and thus H� has been
observed in a 2D GaAs heterostructure.8 Since none of these
experiments correspond to the weak-coupling limit, there is
obviously a need for a nonperturbative treatment of nonana-
lytic terms.

It has recently been shown4,9 that the second-order result
for ��T ,0� in Eq. �1� becomes exact once the weak-coupling
backscattering amplitudes fc,s�	� are replaced by the exact
ones. This implies that the O�T� term in � is determined
exclusively by 1D scattering events embedded into the 2D
space. In these events, fermions with almost opposite mo-
menta experience either a small or almost 2kF momentum
transfer. It has been conjectured in Ref. 4 that the nonana-
lytic part of the spin susceptibility can be generalized in the
same way—i.e., by replacing weak-coupling fs in Eq. �1� by
its exact value. The same result was obtained within the su-
persymmetric theory of the Fermi liquid10 and in the analysis
of the scattering amplitude in the Cooper channel, fs

C���.11

Since an extension of the second-order result for ��s hints at
far-reaching consequences for the ferromagnetic QCP, it is
important to establish a general form of �s�T ,H�.

In this Rapid Communication, we present a general analy-
sis of the nonanalytic behavior of the spin susceptibility in
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2D. We show that, in contrast to the specific heat case, higher
orders in the interaction are not absorbed into the renormal-
ization of fs�	� �equal to fs

C�	��, but give rise to extra
O�T ,H� terms, whose prefactors are given by infinite series
of the scattering amplitudes fs��� and fs

C��� at all angles.
That higher-order terms in fs

C��� are relevant was noticed in
Ref. 11. We show that higher-order terms in fs��� are also
present. These terms are more important than higher powers
of fs

C��� as the latter are logarithmically reduced at small T
and H. When the interaction is neither weak nor peaked in
some particular channel, the total prefactor of the O�T ,H�
term may, generally speaking, be of either sign. However, the
universality is restored near a ferromagnetic QCP, where the
n=0 partial component of fs��� diverges. We show that near
the QCP the inverse susceptibility �s

−1�T=0,H� behaves as
�−2−A�H�3/2, where � is the correlation length. This depen-
dence is dual to the �−2−B�q�3/2 behavior of the nonuniform
susceptibility.12 The signs of A and B are positive, so that the
nonanalytic terms destroy a continuous transition towards a
uniform ferromagnetic state, and depending on parameters,
the system undergoes either a second-order transition into a
spiral phase or a first-order transition into a ferromagnetic
state.

The temperature and magnetic field dependences of
��T ,H� and �s�T ,H� are most straightforwardly obtained by
evaluating the thermodynamic potential at finite T and H,
�T ,H�, and then differentiating it twice with respect to T or
H, respectively. To understand the difference between the
spin susceptibility and the specific heat, consider for a mo-
ment the case of a contact interaction: U�q�U. To second
order in U, the thermodynamic potential  is expressed via
the convolutions of the polarization bubbles � ��m ,q ,H�
�with opposite spin projections for H�0�. The polarization
bubble has a conventional form

�↑↓��m,q� = −
m

2	

1 −

��m�
���m − 2i�BH�2 + vF

2q2�
= −

m

2	
+ �dyn. �2�

For large momenta �vFq� ��m���B�H��, the dynamic part
�dyn behaves as ��m� /q. Consequently, the momentum inte-
gral �d2q�dyn

2 diverges logarithmically and is cut at q
=max���m� ,�B�H��. Because of the logarithm, the subse-
quent summation over frequencies yields a universal term
�T ,H��max�T3 , ��B�H��3�. More precisely, �T ,H�
�T3p��BH /T�, where p�x�1�=a+bx2+¯ and p�x�1�
��x�3. Accordingly, ���T� /��0����s�T� /�s�0��T and
��s�H�� �H�.

To second order, ���T� and ��s�T ,H� behave similarly.
The difference between the two quantities shows up at higher
orders in U. In the rest of the paper, we consider only scat-
tering in the particle-hole channel. As we have already men-
tioned, there are higher-order contributions from the Cooper
channel, but they are logarithmically small in a generic
Fermi liquid and nonsingular near a ferromagnetic instability.
A particle-hole contribution of order n contains integrals of

�n=�dyn
n +cn−1�dyn

n−1+¯, where cn are the constants. The
nonanalytic part of ��T� is solely related to the logarithmic
divergence of the momentum integral �d2q�dyn

2 � ln��m�, be-
cause only the logarithmic singularity ensures the nonana-
lytic result of the subsequent Matsubara sum:
T��m

2 ln��m�=const−O�T3�. The momentum integrals of
�dyn

k with k�2 are not logarithmically divergent, and the
subsequent frequency summation gives rise only to regular,
T2 ,T4 , . . . powers of T in ��T�. As a result, higher-order dia-
grams for ��T� only renormalize the bare interaction U into a
full backscattering amplitude. For �s�H�, the situation is
different—higher powers of �dyn do contribute additional
�H�3 terms to  and, hence, additional �H� terms to the sus-
ceptibility. Indeed, evaluating �0,H� to third order in U and
retaining only the contribution ��3,3��0,H� from �dyn

3 , we
obtain

��3,3��0,H� =
u3

6	2 Re �
0

EF

d�m�
0

�

dqq

�
�m

3

���m − 2i�BH�2 + vF
2q2�3/2 =

2

3	

u3

vF
2 �B

3 �H�3,

�3�

where u=mU / �2	�. The momentum and frequency integrals
in ��3,3� come from the region ��m��vFq��B�H�. This
implies that the U3�H�3 term in Eq. �3� appears by purely
dimensional reasons and does not require the q integral in 
to be logarithmically divergent.

We see that the �H� terms in ��s�H� coming from two and
three or more dynamic bubbles correspond to physically dis-
tinct processes. The distinction becomes important for a ge-
neric Fermi liquid. The contribution to ��s�H� from two dy-
namic bubbles, which starts at order U2, is generalized
beyond the weak-coupling limit by replacing the bare inter-
action by a fully renormalized static vertex. Using the same
computational procedure as in Ref. 9, we find that, similarly
to the specific heat, the exact result for this contribution is
expressed in terms of the spin part of the backscattering am-
plitude fs�	�:

��s
�2��H� → ��s

BS =
2

	vF
2 fs

2�	��B
3 �H� . �4�

The same result was obtained in Refs. 10 and 11. The loga-
rithmic divergence of the momentum integral of �dyn

2 is the
crucial element in the derivation of Eq. �4�, as the higher-
order corrections can be absorbed into static fs�	� only if
typical vFq are much larger than typical ��m�, given by
�B�H�.

On the other hand, contributions to ��s�H� from three and
more dynamic bubbles come from vFq���m� and are ex-
pressed via the convolutions of the partial harmonics of the
scattering amplitudes, which do not reduce to higher powers
of the backscattering amplitude. As an illustration, we con-
sider a generalization of the third-order contribution ��3,3�,
assuming that the spin component of the scattering amplitude
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has only two partial components: n=0, 1—i.e., fs���= fs,0

+cos �fs,1. Replacing each interaction vertex by fs���, we
obtain

��s
�3��H� → ��s

any =
4

	vF
2 �B

3 �H�

� �fs,0
3 − a1fs,0

2 fs,1 − a2fs,0fs,1
2 + a3fs,1

3 � , �5�

where a1=3�2 ln 2−1�, a2=3�3 ln 2−2�, and a3= �5/2
−3 ln 2�. This expression obviously does not reduce to the
cube of the backscattering amplitude, which in this approxi-
mation would be equal to fs�	�= fs,0− fs,1. Higher-order con-
tributions are given by progressively more complicated com-
binations of fs,0 and fs,1.

The total result for ��s is a sum of backscattering and
all-angle scattering contributions. Since fs�	� is equivalent to
the spin component of the particle-particle scattering ampli-
tude fs

C�	�,3,11 the repulsive interaction in the Cooper chan-
nel leads to a logarithmic reduction of fs�	�.10,11,13 For T
=0,H→0, fs�	��1/ ln�H� and therefore ��s

BS� �H� / ln2�H�.14

On the other hand, contributions to ��s from three and more
dynamic bubbles contain angular averages of fs���, which
are not affected by the Cooper singularity. Therefore, the �H�
terms from these contributions do not acquire additional
logarithms and win over the backscattering contribution for
T ,H→0 �and also over higher-order terms in fs

C���, which
vanish logarithmically at T ,H→0�. Note that for �fs,1 / fs,0 �
�1, the sign of �s

any in Eq. �5� is determined just by the sign
of fs,0: for negative fs,0 �corresponding to enhanced ferro-
magnetic fluctuations�, ��s decreases with H, whereas for
positive fs,0, ��s increases with H.

Next, we discuss the behavior of the spin susceptibility in
the vicinity of a ferromagnetic QCP, where fs,0 diverges,
while other components of fs remain finite. At any finite
distance from the QCP, the backscattering amplitude still
vanishes as 1/ ln max��B �H � ,T�. However, at large fs,0, this
behavior is confined to an exponentially small range of H
and T, which we will not consider below. Outside this range,
the backscattering amplitude diverges as fs,0, and the back-
scattering contribution ��s

BS�T ,H� diverges as fs,0
2 . All-angle

contributions, however, diverge even more strongly, and one
needs to sum up a full series of diagrams to obtain the be-
havior of ��s�T ,H� near the QCP. To do this, we assume, as
was done in Refs. 4 and 15, that the Eliashberg approxima-
tion is valid near the QCP because overdamped spin fluctua-
tions are slow compared to fermions. In the Eliashberg
theory, the field-dependent part of the thermodynamic poten-
tial is = �1/2	�T��m

�dqq ln �0
−1�q ,� ,H�, where

�0�q,�m,H� =
m

	

�B
2

� + a2q2 + �2	/m��dyn��m,q�
�6�

is the dynamic spin susceptibility without nonanalytic cor-
rections, �= �fs,0�−1, and a is the radius of the exchange inter-
action, required to be large �akF�1� for the Eliashberg
theory to work.16 �dyn differs from Eq. �2� in that �i� it is
built on full Green’s functions �containing self-energies� and
�ii� �B in the denominator is replaced by �B

* =�B /� �cf. Ref.
17�. To illustrate once again the difference between the spe-

cific heat and spin susceptibility, we set �=� in the denomi-
nator of Eq. �6� and neglect the self-energy renormalization
for a moment. Evaluating the derivatives of �T ,H� with
respect to T and H, we find that the prefactor of the T term in
the specific heat coefficient diverges,9 whereas the prefactor
of the �H� term in the spin susceptibility remains finite:
��s�H� / ��B

*�3= �2/	vF
2� �H�. This indicates dramatic cancel-

lations between diverging terms in the perturbation theory
for ��s�H�.18

A complete result for the susceptibility near the QCP is
obtained by including the self-energies when evaluating �dyn
in Eq. �6� �the vertex corrections are small; see Ref. 15�. The
self-energy near the QCP interpolates between �=��m away
from QCP and �=�0

1/3��m�2/3 near QCP, where �
=3/ �4kFa��� and �0=3�3EF / �4�kFa�4�.19,20 Using these ex-
pressions, we obtain for the inverse susceptibility

�s
−1�H,T = 0� � � −

8

3

�B
* �H�

vF/a
��KH
�B

* �H�ma2

�
� , �7�

where KH�0�=1 and KH�x�1�=1.25�x. The limit of x→�
describes the situation right at the QCP. Here, divergent �
cancels out from the answer and the H dependence of �s

−1

becomes �H�3/2. We emphasize that the exponent of 3 /2 is the
consequence of non-Fermi-liquid behavior, manifested by
the divergence of the “effective mass” �� /��m��m

−1/3.
The nonanalytic �H�3/2 dependence exists only at T→0. At

finite T, the field dependence of the spin susceptibility is
analytic: ��s�H2. However, the prefactor scales as 1 / ��T�
away from the QCP and as T−1/6 at the QCP. At H=0,
��s�T��T ln T.15,21

A complementary way to see the nonanalytic dependence
of the susceptibility on the magnetic field is to analyze the
thermodynamic potential itself. Viewed as a function of the
magnetization M = �m /	���B, where 2� is the difference of
the Fermi energies for spin-up and spin-down fermions, the
thermodynamic potential �T=0,�� contains a nonanalytic
���3 term away from criticality: na�0,��=−���3 /48	vF

2�.
Near the QCP, � diverges and the ���3 dependence is re-
placed by ���7/2, in agreement with the H3/2 field dependence
of the spin susceptibility. At finite T, the ���7/2 term evolves
into an analytic �4 one with a singular prefactor T−1/6.

We now study the consequences of the nonanalytic behav-
ior of �s�T ,H ,q�. First, we see from Eq. �7� that the spin
susceptibility diverges at some finite value of H, which im-
plies that a second-order ferromagnetic QCP is preempted by
the first-order one. This possibility was discussed in detail in
Ref. 22—our analysis differs from this work in that we in-
clude the fermionic self-energy and nonanalytic T depen-
dence of the susceptibility. Assuming that the first-order tran-
sition occurs near the QCP, where the nonanalytic term in
�T=0,�� is �7/2, we have

	

m
�T = 0,�� =

�

2
�2 −

���7/2

E3/2 + b2�4, �8�

with E=3.82EF / �kFa�4/3. Because of the nonanalytic term, 
has a minimum at finite �. The first-order transition occurs at
�H= �kFa /3.32�8 / �bEF�6 when =0 at this minimum. By an
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order of magnitude, b�1/EF. The first-order transition oc-
curs in the critical region ��H�1� for kFa�3.32�bEF�3/4.

The susceptibility at H=0 but finite q is given by

�s
−1�q� = � + a2�q2 − cq3/2kF

1/2� , �9�

where c�0.25.15 �s
−1�q� diverges at q=q0=0.035kF for �q

=0.42�10−3�akF�2. This signals a transition into an incom-
mensurate phase.

Which of the two instabilities occurs first depends on the
nonuniversal parameter �=�q /�H= �1.35bEF /akF�.6 For �
�1, the first instability is into the incommensurate phase; for

��1, the first-order transition occurs first �see Fig. 1�. Al-
though formally akF should be large, both situations are ac-
tually possible, particularly if bEF is a large number.

At finite T, the transition line has an S-shaped form �see
Fig. 1� because of the negative T dependence of �−1�T�.23

The tricritical point separating the second- and first-order
transitions results from the balance between the b2�4 term in
Eq. �8� and the �4 /T1/6 term which replaces the ���7/2 term at
finite T.

To summarize, in this paper we considered the tempera-
ture and magnetic field behavior of the spin susceptibility of
a 2D Fermi liquid, both away and near a ferromagnetic QCP.
We found that in a Fermi-liquid phase, ��s�T ,H�
�max�T , �H � ��, but the prefactor is not expressed solely in
terms of the backscattering amplitude, in contrast to the spe-
cific heat. At a ferromagnetic QCP, the magnetic field depen-
dence of �−1�T=0,H� becomes H3/2, with a universal, nega-
tive prefactor. This behavior favors a first-order transition to
ferromagnetism and competes with the q3/2 behavior of
�−1�T=H=0,q� which favors an incommensurate spin order-
ing.
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