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Crossed Andreev reflection in multiterminal structures in the diffusive regime is addressed within the
quasiclassical Keldysh-Usadel formalism. The elastic cotunneling and crossed Andreev reflection of quasipar-
ticles give nonlocal currents and voltages �depending on the actual biasing of the devices� by virtue of the
induced proximity effect in the normal-metal electrodes. The magnitude of the nonlocal processes is found to
scale with the square of the barrier transparency and to decay exponentially with interface spacing. Nonlocal
cotunneling and crossed Andreev conductances are found to contribute equally to the nonlocal current, which
is of relevance to the use of normal-metal–superconducting heterostructures as sources of entanglement.
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I. INTRODUCTION

In standard Andreev reflection at a single normal-metal–
superconductor interface an electronlike quasiparticle in the
normal metal can be transformed into a holelike quasiparticle
of opposite momentum.1 When two normal-metal �N� elec-
trodes or ferromagnets �F� are attached to a superconductor
�S� at a distance from each other of the order of the coher-
ence length, two additional nonlocal processes are possible.
During elastic co-tunneling �EC�, an electron is transferred
from one electrode to the other, while for crossed Andreev
reflection �CAR� an electron in one of the electrodes is trans-
formed into a hole in the other electrode.2,3

Bell-inequality experiments, quantum computation, and
teleportation of quantum states require quantum objects that
are entangled. Cooper pairs in superconductors are spin sin-
glets and are therefore suitable sources of entanglement.
Crossed Andreev reflection is a promising possibility for the
creation of locally separated entangled electrons.4–8

Nonlocal transport properties have been seen experimen-
tally in NS �Refs. 9 and 10� and FS heterostructures.11,12 The
microscopic origin of the effects of EC and CAR, as well as
possible ways in which these can be used for the production
of locally separated entangled quasiparticles, remain to be
understood theoretically.

Recently, theoretical studies of CAR have been performed
for various types of junctions.13–19 Modeling of nonlocal ef-
fects by means of perturbation theory using an effective tun-
nel Hamiltonian13,17 has indeed provided EC and CAR, the
signal being, however, vanishingly small �of the order of the
fourth power in interface transparency�. Consequent pioneer-
ing efforts to include disorder14,19 and weak localization16

have found enhanced effects, but still not to the level of
experimental observations, so that the question as to the mi-
croscopic origin of CAR still remains open.

In this paper, we provide insight into the underlying mi-
croscopic mechanism of CAR by studying nonlocal transport
by means of quasiclassical kinetic theory. We present a
mechanism in which CAR exists by virtue of the proximity
induced superconducting correlations in the electrodes, for
arbitrary barrier transparency. The proximity effect is the es-
sential ingredient in our model, giving a large contribution to
CAR, of second order in transparency, in contrast to the non-

local effects of tunnel Hamiltonian models. We show how
CAR relates to the competing process of co-tunneling. For
ballistic transport, Andreev reflection is understood most
straightforwardly, but we have modeled the additionally
challenging case of diffusive transport, as experimentally of-
ten is the case. Our model is of relevance to the future design
of experiments that are based on Andreev entanglers.

II. QUASICLASSICAL MODEL

The most generic model system to study nonlocal effects
in superconducting structures is a three-terminal configura-
tion consisting of a quasi-one-dimensional �1D� supercon-
ducting wire of length d, attached to normal reservoirs N1,2
and a superconducting reservoir S which can be indepen-
dently biased, see Fig. 1. This model is an extension to the
earlier approach by Volkov et al.20 that was used to calculate
nonequilibrium transport properties of two-terminal N�NS
contacts. The electrodes N1,2 are weakly coupled to the wire,
while the reservoir S is in good electrical contact with the
wire so that their electric potentials are equal. Morten et al.19

addressed in their circuit model the role of the latter coupling
strength between superconductor S and wire. They found
nonvanishing nonlocal effects, but only in the case of weak
coupling. In the case of zero resistance between wire and S
�strong coupling�, the circuit results coincide with the tunnel
Hamiltonian results of a vanishing nonlocal signal. However,
in the experiments often no barrier is present between wire
and superconductor. Hence here we study the regime of good
electrical contact and equal potentials between S and the
wire.

We assume that transport is diffusive �scattering length
being smaller than other length scales� so that the quasiclas-
sical kinetic theory in the dirty limit can be applied. The
Keldysh-Usadel diffusion equation for the Green’s function,
in Keldysh-Nambu space, in the absence of time dependen-
cies, magnetic field, and inelastic self-energy terms, can be
written as

− �D � �Ğ � Ğ� = �iE�̆3 + �̆,Ğ� , �1�

where �̆3= � �̂3 0
0 �̂3

�, �̂3= � 1 0
0 −1

�,
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Ğ = �ĜR ĜK

0 ĜA
�, �̆ = ��̂ 0

0 �̂
�, �̂ = � 0 �

�* 0
� ,

E is the energy measured from the chemical potential, and D
is the diffusion constant. The current is given by

I =
1

2eRN
� dETr��̂3�ĜR � ĜK + ĜK � ĜA�� , �2�

where RN is the normal-state resistance.
The quasiclassical modeling of the diffusive transport

through such a NSN structure can be splitted in solving the
retarded and Keldysh parts of Eq. �1�, respectively.

A. Proximity effect

In order to calculate the retarded part of the Green’s func-

tion ĜR, it is convenient to use the standard

�-parametrization, ĜR�x�= �̂3 cos ��x�+ �̂2 sin ��x�. The func-
tion ��x� is a measure of the superconducting correlations at
a given point within the structure and � satisfies the Usadel
equation21

D �2

�x2��x� + 2iE sin ��x� = 0. �3�

At the NS interfaces at x= ±d /2, the function ��x� satis-
fies the following boundary conditions:22

�B�N
��N

�x
= ± sin��S − �N�, x = ± d/2, �4�

��N
��N

�x
= �S

��S

�x
, x = ± d/2, �5�

where �N,S=�DN,S /2	Tc are the coherence lengths and DN,S
are the diffusion coefficients in N and S, respectively. The
proximity effect parameters � and �B are defined as �B
=RB /
N�N and �=
S�S /
N�N, where RB is the interface resis-
tance and 
N,S are the resistivities of the N and S metals.
These parameters have a simple physical meaning:22 � is a
measure of the strength of the proximity effect between the S
and N metals, whereas �B describes the effect of the interface
transparency. From here on, �B�1 is assumed, correspond-
ing to a small barrier transparency.

Solutions to the proximity effect problem in diffusive
junctions have been extensively discussed in various
regimes.23,24 Generally, a minigap exists in N, of the order of
the Thouless energy. In the considered case of bulk N �dN

��N�, the minigap vanishes. The quasiparticle density of
states is given by Re G=Re�cos �� and the pair density of
states is defined as Re F=Re�sin ��. It is straightforward to
solve the Usadel equation �3� with the boundary conditions
�4� and �5� numerically. The calculated densities of states
Re GN and Re FN at the N side of an NS interface are shown
in Fig. 2. It is seen that the quasiparticle spectrum in N is
gapless while strong superconducting correlations exist at
low E, described by Re FN. As will be shown below, the
existence of a nonzero Re FN�E� at the NS interface is an
essential ingredient to our solution of the nonlocal conduc-
tance in a diffusive NSN structure.

B. Distribution functions

The Keldysh part of Eq. �1� provides the distribution of

quasiparticles over energy. ĜK can be parametrized as ĜK

= ĜRf̂ − f̂ ĜA, where the distribution function f̂ can be split

into parts that are, respectively, odd and even in energy, f̂

FIG. 1. �a� Schematic representation of the double-barrier NSN
structure, which is voltage biased accross the first interface. An
incoming electron from the left normal-metal electrode can undergo
three different processes that contribute to the current: Andreev re-
flection �AR�, elastic cotunneling �EC�, and crossed Andreev reflec-
tion �CAR�. The depicted spectral currents that result from these
processes are the main result of this paper. �b� Results have been
obtained from a one-dimensional Keldysh-Usadel quasiclassical
Green’s-function calculation of the depicted structure.

FIG. 2. Calculated density of states �Re GN, dashed line� and
pair amplitude �Re FN, solid line� as induced by a superconductor
into a normal metal, with �B=5, �=0.1, and dN��N. The functions
are plotted for the N side of the interface, as indicated.
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= fL1̂+ fT�̂3. The kinetic equations for the longitudinal �fL�
and transverse �fT� distribution functions have the form24

��DT � fT� + Im IS � fL = 2fT� , �6�

��DL � fL� + Im IS � fT = 0, �7�

where DT= �Re G�2+ �Re F�2, DL= �Re G�2− �Im F�2, and �
is the gap inside the superconductor. fT and fL determine the
quasiparticle and energy flow as can be derived24 from Eq.
�3�, giving, respectively,

Iqp =
1

2eRN
� dEDT�E� � fT�E� , �8�

IL =
1

2eRN
� dEDL�E� � fL�E� . �9�

The spectral supercurrent is given by Im IS

= 1
8 Tr��̂3�ĜR� ĜR− ĜA� ĜA��=Im FR Re FR��, where � is

the superconducting phase. We consider the regime when
superconductivity in the S wire is not influenced by the nor-
mal contacts N1,2, which is realized when �
1 �large
normal-state resistivity of N metal compared to that of S�.23

Then, the product Im FS
R Re FS

R in S is nonzero only at a
narrow energy range near �. Since we are interested only in
the energy range E��, this allows us to neglect the terms
with Im IS� Im FS

R Re FS
R in the kinetic equations �6� and �7�

at these energies, and the equations for fT and fL decouple.
The equation for fT in the wire, consequently, becomes

DT
�2fT

�x2 = 2fT� , �10�

with the boundary conditions at the NS interfaces given by25

DT�B
�

�x
fT = ± Re F Re FN�fT − fTNi� �11�

at x= ±d /2, where fTN�±d /2� are the transverse distribution
functions in the normal reservoirs.

Note that if the assumption �
1 is violated, the density
of states Re G in the wire becomes finite at subgap energies.
Then, the term Re F Re FN in the above boundary condition
will be substituted by Re F Re FN+Re G Re GN. However,
this will not lead to any qualitative changes in our results and
the physical mechanism for the crossed Andreev transport
remains the same in this case.

Because of the small barrier transparency, the potential
mainly drops at the interfaces and we can assume the electric
potential of the S reservoir and the wire to be zero, and the
normal electrodes N1,2 to be in equilibrium with the poten-
tials V1,2, respectively. Then, the distribution functions in
N1,2 are

fTi,Li =
1

2
tanh�E + eVi

2kBT
� �

1

2
tanh�E − eVi

2kBT
� .

The kinetic equation has the solution fT=Aex/�+Be−x/� where
the coherence length � is given by �=�DT /2�, which de-
scribes the conversion of quasiparticle current into supercur-

rent. This supercurrent is extracted by the S reservoir at x
=0.

III. RESULTS AND DISCUSSION

Solving Eq. �10� with the boundary conditions, Eq. �11�,
the solution of fT in the case of two symmetric NS interfaces
is given by

A = N
fT1e−d/2���B − N� + fT2ed/2���B + N�

e−d/���B − N�2 − ed/���B + N�2 ,

B = N
fT1ed/2���B + N� + fT2e−d/2���B − N�

e−d/���B − N�2 − ed/���B + N�2 , �12�

where N=Re F Re FN.
The bias condition provides the final equation from which

the distribution functions and currents are derived. The first
interface is biased with a voltage Vbias, from which fT1 is then
known. Two bias conditions for the second interface are con-
sidered. �a� Iqp=0: For a zero total current through the sec-
ond interface, i.e., an open connection, or an ideal voltmeter,
the nonlocally induced voltage has to be found self-
consistently from Eq. �12� and the additional boundary con-
dition,

Iqp = �
−�

�

DT
�

�x
fTdE = 0.

�b� VS=VN2
: Under the alternative bias condition of zero po-

tential difference across the second interface, fT2=0 and Eq.
�12� directly provides the solution for fT in the supercon-
ductor.

Note that it is essential to our approach that Re FN is
nonzero at subgap energies. When these proximity induced

FIG. 3. Spectral quasiparticle current at zero temperature ac-
cross the second interface under a voltage bias of the first interface,
Vbias=0.3�, and a zero total current across the second interface as
sketched. The superconducting interlayer thickness d=0.3�, and
�B=5. Inset: The response of the induced nonlocal voltage across
the second interface �which is the measured quantity of Ref. 9� as
function of the applied voltage bias across the first interface.
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correlations are neglected, the quasiparticle current Iqp and
the nonlocal effects vanish, coinciding with the results from
previous tunnel Hamiltonian13,17 and circuit theory19 models.

The resulting spectral quasiparticle currents across the
second interface are shown in Figs. 3 and 4, for a thin super-
conductor of d=0.3� embedded symmetrically between two
tunnel barriers with �B=5. In the case of bias condition �a�, a
nonlocal voltage Vnl is induced in the unbiased normal-metal
electrode, see Fig. 3, as was experimentally observed.9 Vnl is
the source of a local Andreev reflection process at the second
interface, as characterized by the low-energy peak in Iqp�E�.
In Fig. 1, also Iqp�E� across the first interface is shown, to
illustrate the different quasiparticle tunneling and reflection
processes. A negative current corresponds to a flow of elec-
trons in the positive direction. Iqp�E� at the second interface,
outside the spectral region of Andreev reflection �	E	�Vnl� is
physically caused by the two nonlocal processes of elastic
co-tunneling �EC� and crossed Andreev reflection �CAR�.
The reverse backflow process of EC and CAR from the right
to the left electrode results in a suppression of Iqp�E� at the
first interface for 	E	�Vnl.

In bias situation �b�, only the nonlocal currents are con-
tained in Iqp�E�, see Fig. 4. The magnitude of the nonlocal
currents scales exponentially with d /� �see solution Eq. �12�
and Fig. 4�, as expected from the fact that a Cooper pair has
size � and that nonlocal effects exist by virtue of the coupling
to the superconducting condensate. Thus the Thouless scale
is not relevant to our model. The nonlocal currents and volt-

age scale with �B
−2, which provides a much larger effect than

was found from the tunnel Hamiltonian approach �fourth
power in transparency�.13,17

In the linear-response regime �low temperature and low
voltage�, it was shown recently by Morten et al.19 that

�IL,qp

�Vbias
= GEC�eVbias� ± GCAR�eVbias� , �13�

where GEC and GCAR are defined as the nonlocal conduc-
tances for EC and CAR, respectively. From the fact that
DL=0 in the superconductor at subgap voltage, and Eq. �9�,
it follows that IL=0, and GEC=−GCAR. This means that the
nonlocal quasiparticle current, Iqp�E�=−�GEC−GCAR�fT1, as
shown in Fig. 4, is carried by the EC and CAR processes
equally, i.e., IEC= ICAR= Iqp�E� /2. The CAR hole in the sec-
ond electrode can therefore be thought of as moving in the
negative direction, while the EC electron moves in the posi-
tive direction �see Fig. 1�.

A treatment of the nonlocal processes in terms of elec-
trons and holes can be derived from the respective electron
and hole distribution functions, fe and fh, that are given by24

fh,e= �1± fL− fT� /2, when also fL is treated self-consistently.
The sign and magnitudes of the modeled nonlocal effects

are of use for the interpretation of recent experiments,9,11,12

although many aspects of the experiment related to the ge-
ometry are not covered by our model. The obtained equal
contribution of EC and CAR to nonlocal currents in NSN
structures indicates that additional quasiparticle manipula-
tions are necessary before the device can be considered as a
useful source of entangled particles. Creating a nonequilib-
rium distribution in the electrodes �for example, by energy-
filtering in a Fabry-Perot structure� in this respect would be
beneficial.

IV. CONCLUSION

In summary, within the assumptions of quasiclassical
Keldysh-Usadel theory, we find that nonlocal EC and CAR
effects exist in a diffusive quasi-1D wire by virtue of the
proximity effect. We have found that CAR and EC have the
same sign in their contribution to the nonlocal spectral qua-
siparticle current and nonlocal voltage. CAR and EC scale
with the square of the barrier transparency, providing large
nonlocal effects, of the order of experimentally observed
magnitude.
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FIG. 4. Nonlocal spectral quasiparticle current at zero tempera-
ture across the second interface under a voltage bias of the first
interface, Vbias=0.3�, and a zero voltage bias of the second inter-
face as sketched. �B=5 and d=0.3� �solid line�, d=� �dashed line�,
d=3� �dotted line�. Inset: The response of the total nonlocal current
across the second interface as function of the applied voltage bias
across the first interface, for �B=5 and d=0.3�.
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