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We analyze the enhancement of the superconducting critical temperature of superconducting/ferromagnetic
bilayers due to the appearance of localized superconducting states in the vicinity of magnetic domain walls in
the ferromagnet. We consider the case when the main mechanism of the superconductivity destruction via the
proximity effect is the exchange field. We demonstrate that the influence of the domain walls on the super-
conducting properties of the bilayer may be quite strong if the domain-wall thickness is of the order of the
superconducting coherence length.
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I. INTRODUCTION

The coexistence of singlet superconductivity and ferro-
magnetism is very improbable in bulk compounds but may
be easily achieved in artificially fabricated hybrid supercon-
ductor �S�–ferromagnet �F� structures.

There are two basic mechanisms responsible for the inter-
action of the superconducting order parameter with magnetic
moments in the ferromagnet: the electromagnetic mechanism
�interaction of Cooper pairs with the magnetic field induced
by magnetic moments� and the exchange interaction of mag-
netic moments with electrons in Cooper pairs. The second
mechanism enters into play due to the proximity effect, when
the Cooper pairs penetrate into the F layer and induce super-
conductivity there. In S/F bilayers it is possible to study the
interplay between superconductivity and magnetism in a
controlled manner, since we can change the relative strength
of the two competing orderings by varying the layer thick-
nesses and magnetic content of the F layers. Naturally, to
observe the influence of the ferromagnetism on the supercon-
ductivity, the thickness of the S layer must be small. This
influence is most pronounced if the S layer thickness is
smaller than the superconducting coherence length �s. Re-
cently, the observation of many interesting effects in S/F
systems became possible due to the great progress in the
preparation of high-quality hybrid F/S systems—see Refs.
1–3 for reviews.

In practice, the domains appear in ferromagnets and, near
the domain walls, a special situation occurs for the proximity
effect. For the purely orbital �electromagnetic� mechanism of
superconductivity destruction, the nucleation of the super-
conductivity in the presence of the domain structure has been
theoretically studied in Refs. 4 and 5 for the case of magnetic
film with perpendicular anisotropy. The conditions for ap-
pearance of superconductivity are more favorable near the
domain walls due to the partial compensation of the mag-
netic induction. Recently, the manifestation of such domain-
wall superconductivity �DWS� was revealed in experiment6

where a Nb film was deposited on top of single-crystal fer-
romagnetic BaFe12O19 covered with a thin Si buffer layer.

As the typical value of the exchange field in ferromagnets
h��100–1000�K exceeds by many times the superconduct-
ing critical temperature Tc0, the exchange mechanism pre-

vails over the orbital one in superconductivity destruction
when the electrical contact between S and F layers is good.
For the proximity effect mediated by the exchange interac-
tion, the Cooper pairs experience the exchange field aver-
aged over the superconducting coherence length. Naturally, it
will be smaller near the domain walls and we may expect
that superconductivity would be more robust near them. The
local increase of the critical temperature in the presence
of magnetic domains was observed experimentally in
Ni0.80Fe0.20/Nb bilayers �with Nb thickness around 20 nm�,7
and it was attributed to DWS formation.

In the present paper we study theoretically the conditions
for appearance of localized superconductivity near the do-
main wall, taking into account the exchange mechanism of
the proximity effect. In Sec. II, we demonstrate that, in the
case of a thin F layer and small domain wall thickness, the
problem is somewhat similar to that of the domain wall su-
perconductivity in ferromagnetic superconductors.8,9 For the
case when the superconducting coherence length �s exceeds
the DW thickness w, we expect a very strong local increase
of Tc �see Sec. III�. In Sec. IV, we obtain the analytical ex-
pression for the critical temperature of the DWS for the case
when the DW thickness w exceeds the superconducting co-
herence length �s. The Appendix presents an extension of
this result to arbitrary thickness of the F layers and transpar-
ency of the S/F interface. We discuss our results in Sec. V. In
particular, we predict the realization of the situation when
superconductivity appears only near the DW.

II. EQUATION FOR THE CRITICAL TEMPERATURE IN
THIN BILAYERS

We introduce the Usadel equations10 which are very con-
venient when dealing with S/F systems in the dirty limit,
with critical temperatures Tc and exchange fields h such that
Tc��1 and h��1, where � is the elastic scattering time.

Near the second-order transition into the superconducting
state, the Usadel equations can be linearized with respect to
the amplitude of the superconducting gap. In the S region,
the linearized Usadel equation is:

− Ds�
2 f̂ s + 2��� f̂ s = 2�s�r��̂z, �1�

where Ds is the diffusion constant in the superconductor and
�= �2n+1�	T is a Matsubara frequency at temperature T.
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�The notations are similar to the ones used in Ref. 2, except
for the factor i in front of �s.� Equation �1� relates the

anomalous Green’s function f ŝ, which is a matrix in spin
space, to the superconducting gap �s�x�; �̂�x,y,z� are Pauli
matrices in spin space. In the absence of a supercurrent, the
gap can be taken as real.

In the F region, an exchange field h f = �hf ,x ,hf ,y ,hf ,z� is
acting on the spins of conduction electrons and the linearized

Usadel equation for anomalous function f f̂ is

− Df�
2 f̂ f + 2��� f̂ f + is��hf ,x��̂x, f̂ f f̂ f� + hf ,y��̂y, f̂ f�

+ hf ,z��̂z, f̂ f�� = 0. �2�

Here, Df is the diffusion constant in the ferromagnet and we
used the abbreviation s�	sgn���.

In addition, the boundary conditions at the interfaces with

vacuum yield �zf ŝ�z=ds�=0 and �zf f̂�z=−df�=0, where ds

and df are the thicknesses of the S and F layers, respectively,
and z=0 defines the plane of the interface between the two
layers. We also consider that the S and F layers are separated
by a thin insulating tunnel barrier. Therefore, the boundary
conditions at the interface z=0 are11

�s�z f̂ s = � f�z f̂ f, f̂ s = f̂ f + 
B�s��z f̂ f�z=0, �3�

where �s and � f are the conductivities in the layers, and 
B is
related to the boundary resistance per unit area Rb through

B�s=Rb� f, where �s is the superconducting coherence
length.

The critical temperature T=Tc at the second-order transi-
tion is now obtained from the self-consistency equation for
the gap:

��r�ln
T

Tc0
+ 	T


�
���r�

���
− fs

11�r,��� = 0 �4�

�f11 is a matrix element of f̂�, where Tc0 is the bare transition
temperature of the S layer.

In the ferromagnet, the magnitude hf of the exchange field
h f is fixed. However, its orientation can rotate in the presence
of a magnetic domain wall structure. In the following, we
assume a one-dimensional domain wall structure, along the x
axis. In order to find the critical temperature of the bilayer in
the presence of a domain wall, we must find the x and z

dependence of the gap and the anomalous functions f ŝ and f f̂
which solve Eqs. �1�–�4�. The proximity effect can signifi-
cantly affect the transition temperature only when the thick-
ness of the S layer is comparable with the superconducting
coherence length �s=
Ds /2	Tc0. In order to get tractable
expressions, we will consider only the case ds��s. This re-

gime is also well achievable experimentally. Then, f̂ s and �s
are almost constant along the z axis. Therefore, we can av-
erage Eq. �1� over the thickness of the S layer, integrate the

term �z
2 f̂ , and make use of the boundary condition at the

interface with vacuum. Finally, we get the following equa-
tion at z=0:

− Ds�x
2 f̂ s +

Ds

ds
�z f̂ s + 2��� f̂ s = 2�s�̂z. �5�

The characteristic scale for the proximity effect in the F layer
is rather set by the coherence length � f =
Df /hf, where hf is
the typical amplitude of the exchange field in the ferromag-
net. In this section, we will address the case of a very thin F
layer: df �� f. Then, from Eq. �2� we can derive similarly the
Usadel equation averaged over the thickness df, at z=0:

− Df�x
2 f̂ f −

Df

df
�z f̂ f + 2��� f̂ f + is��hf ,x��̂x, f̂ f� + hf ,y��̂y, f̂ f�

+ hf ,z��̂z, f̂ f�� = 0. �6�

Let us note right now that the assumption of a very thin F
layer is quite hard to achieve experimentally, as we will dis-
cuss at the end of Sec. V. In the Appendix, we will consider
the case of arbitrary thickness for the F layer.

For simplicity, we also consider the case of low interface
resistance �
B→0� where the proximity effect is maximal. In

this regime, f̂ f�x�� f̂ s�x�	 f̂�x�. By proper linear combina-
tion of Eqs. �3�, �5�, and �6�, we can form a single equation

in f̂�x�:

− D�x
2 f̂ + 2��� f̂ + is��hx��̂x, f̂ f� + hy��̂y, f̂ f�

+ hz��̂z, f̂ f�� = 2��̂z, � =
�s

�s + � f
�s, �7�

where �s=�sds /Ds and � f =� fdf /Df. Therefore, the thin bi-
layer is described by the same equations as for a magnetic
superconductor,9 with the effective diffusion constant, ex-
change field, and BCS coupling constant

D =
Ds�s + Df� f

�s + � f
, h =

� f

�s + � f
h f, �̃ =

�s

�s + � f
� , �8�

respectively. An equation similar to Eq. �7� was derived for a
thin normal-metal/superconductor bilayer, in the absence of
exchange field �h=0� in Ref. 12. There, it was shown that the

reduction of the coupling constant �̃ leads to a rapid decrease
of the bilayer critical temperature. In the following, we do
not consider these effects. Rather, we dwell on the case when

�̃�� and the reduction of Tc is mainly due to the effective
exchange field h. This situation occurs at �s
� f. �When the
S and F layers have comparable diffusion constant and con-
ductivity, the renormalization factors in Eq. �8� have a simple
interpretation in terms of volume ratios. In particular, the
condition �s
� f results in ds
df.� Thus, D�Ds and h
��� f /�s�h f. Let us note that the amplitude of h is strongly
reduced compared to h f; eventually it is of the order of �s,
and thus it leads to the possible coexistence of magnetism
and superconductivity in the bilayer.

The phase diagram of magnetic superconductors with
constant exchange field was studied long ago.13 The second-
order transition line from the normal to the superconducting
state at the critical temperature T=Tc�h� is given by the
equation
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ln
T

Tc0
+ 2	T Re 


��0
� 1

�
−

1

� + ih
� = 0, �9�

where h is the amplitude of h. At zero temperature, the criti-
cal field is hc

�2�=�0 /2, where �0�1.76Tc0 is the supercon-
ducting gap. However, at T�T*�0.56Tc0, the transition into
the superconducting state is of the first order and the critical
field at zero temperature is rather hc=�0 /
2.

In the presence of a domain structure in the ferromagnet,
the average exchange field experienced by the electrons near
domain walls is smaller than in the domains. This may lead
to the enhancement of the superconducting critical tempera-
ture. On the basis of the Usadel equation �7� with the self-
consistency equation �4�, we consider now this problem in
the case of narrow domain walls in Sec. III and large domain
walls in Sec. IV.

III. NARROW DOMAIN WALL

In this section, we consider the case of thin domain walls
characterized by the domain wall thickness w��s. In Ref. 8,
the zero-temperature critical field was obtained in the context
of magnetic superconductors. Here, we revise the result and
obtain the phase diagram at finite temperature.

We model the exchange field h acting on the electrons
with a step function: hz�x�=h sgn�x�, hy =hz=0. The structure
of the Usadel equation �7� in spin space simplifies greatly
and we have

−
D

2
�x

2f11 + ���� + is�hz�x��f11 = � , �10�

while f12= f21=0 and f�
22=−f−�

11 . Its solution for a given � is

f11�x� =� dy G�x,y���y� , �11�

where G is the Green’s function associated with the homoge-
neous differential equation �10�; G is defined by

G�x,y� = �
e−�x

D�
�e�y +

� − �*

� + �*e−�y� for x � y � 0,

2

D�� + �*�
e−�xe�*y for x � 0 � y ,�

�12�

where �=
2����+ is�h� /D, while G�x ,y�=G�y ,x� and
G�x ,y�=G�−x ,−y�*.

We look for a symmetric solution ��−x�=��x�. Writing
the self-consistency equation �11� in Fourier space, we get
the equation defining the critical temperature T=Tcw for
DWS formation:

�ln
T

Tc0
+ 2	T Re 


��0

1

�
−

1

� + ih + Dp2/2��p

= 2T 

��0

� dk
h
D���2 + h2��
�2 + h2 − ���1/2

�h2 + �� + Dp2/2�2��h2 + �� + Dk2/2�2�
�k.

�13�

Close to Tc0, at h�Tc0, the critical temperature for the
transition into a uniform superconducting state can be ob-
tained analytically from Eq. �9�:

Tc0 − Tc�h�
Tc0

=
7��3�
4	2

h2

Tc0
2 −

31��5�
16	4

h4

Tc0
4 + ¯ . �14�

On the other hand, Eq. �13� for the DWS can be simplified:

�Tcw�h� − Tc�h�
Tc0

+
	

8

Dp2

Tc0
��p = A

h2

Tc0
2 
 D

	Tc0
� dk �k,

�15�

where A= �8
2−1��� 7
2

� / �8	3�. This equation is solved
straightforwardly and we get the increase of critical tempera-
ture near Tc0 due to the DWS:

Tcw�h� − Tc�h�
Tc0

� 8A2 h4

Tc0
4 . �16�

The corresponding shape of the order parameter near the
transition is given by

��x� � exp�− B
�x�
�s

Tc0 − Tcw�h�
Tc0

� , �17�

where B=16	
2A / �7��3��. Thus, near Tc0, the localized su-
perconductivity is characterized by exponential decay with-
out oscillation of the superconducting order parameter, with
its maximum at the domain wall position.

Away from Tc0, Eq. �13� does not contain any small pa-
rameter. Its structure is that of a linear integral equation
whose kernel is a superposition of separable terms. This form
of the kernel is known to be convenient for numerical calcu-
lation. As a result, we obtained the second-order critical line
at any temperature �see Fig. 1�. The critical line is signifi-
cantly increased compared to the critical line for the transi-
tion into a uniform superconducting state. In particular, at
zero temperature, the critical field for localized superconduc-
tivity at T=0 is hcw�1.33Tc0�0.76�0 and lies above the
critical field for the first-order transition into a uniform state,
hc�0.71�0. It is of interest to note that, if the effective ex-
change field in the bilayer is between hc and hcw, then the
special situation occurs when only DWS can be realized in

FIG. 1. Phase diagram. The straight line is the critical line
hc

�2��T� of the second-order transition into a uniform superconduct-
ing state. At T�T*=0.56Tc0, the transition into a uniform state at
hc�T� is of the first order �dashed line�. The critical line hcw�T�
corresponding to domain wall superconductivity is of the second
order �dotted line�.
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the system, but no superconductivity far away from the do-
main walls.

We also plot the self-consistent order parameter at differ-
ent temperatures in Fig. 2. In addition to the decay, it shows
small oscillations along the direction perpendicular to the
domain wall at low temperatures.

As it was pointed out in Sec. II, the transition into a uni-
form superconducting state happens to be of the first order at
T�T* in the bilayer. Therefore, one should also worry about
the possibility for a change of the transition order along the
critical line corresponding to DWS. We considered this pos-
sibility by solving the nonlinear Usadel equations perturba-
tively up to the third-order terms in the gap �. We found that
this equation corresponds to a saddle point of the free energy
density �per unit thickness of the bilayer and per unit length
of the magnetic domain wall� functional:

F = F2 + F4 + ¯ ,

F2 = �� dx����2 ln
T

Tc0
+ 2	T Re 


��0

���2

�
− �*f�

11� ,

F4 =
	T�

2
Re 


��0
� dx�D

2
��xf�

11�2 + �f�
11�� f̄�

11�2, �18�

where � is the density of states at the Fermi level in the

normal state, and f̄�
11= �f−�

11 �* where f�
11 is given by Eq. �11�.

At the second-order transition, the term F2, which is qua-
dratic in �, vanishes when Eq. �13� is satisfied. The phase
transition is stable provided that the term F4, which is quar-
tic in �, remains positive along the transition line. We
checked numerically that this was indeed the case. In particu-
lar, at T=0 and h close to hcw, we found

F2 = � ln
h

hcw
� dx���x��2

�2.87�
 D

2hcw
ln

h

hcw
��x = 0�2,

F4 = 0.26�
 D

2hcw

��x = 0�4

hcw
2 . �19�

Thus we found that the transition into DWS remains of
the second order at all temperatures.

IV. LARGE DOMAIN WALL

In this section, we consider the case of a large domain
wall with thickness w
�s. The domain wall can be de-
scribed with an exchange field h=h�cos � , sin � ,0�; the ro-
tation angle ��x� varies monotonically between ��−��=
−	 /2 and ����=	 /2. We find that the critical temperature at
DWS nucleation is given by a Schrödinger equation for a
particle in the presence of a potential well whose profile is
proportional to −��x��2. This result is not specific to the thin
bilayer considered in this section. In the Appendix, we ex-
tend it to bilayers with arbitrary thickness of the F layer and
arbitrary transparency of the S/F interface.

At the transition, the linearized Usadel equation �7� must
be solved, that is,

−
D

2
�x

2f11 + ���f11 − i
hs�

2
�e−i�f21 − e−i�f12� = � ,

−
D

2
�x

2f12 + ���f12 + ihs�e−i�f11 = 0,

−
D

2
�x

2f21 + ���f21 − ihs�ei�f11 = 0, �20�

while f22=−f11.
If the spatial dependence of � is neglected, the gap � is

uniform along the layer and the solutions are readily found:

f0
11 =

����
�2 + h2 , f0

12 =
i�hs�e−i�

�2 + h2 = − e−2i�f0
21, �21�

As a result, the critical temperature Tc into a uniform super-
conducting state naturally does not depend on � and is again
given by Eq. �9�.

Now, let us assume that � varies slowly. We solve the
Usadel equation �20� perturbatively by looking for a solution

f̂ � f̂0+ f̂1. In first approximation, f̂0 is still given by Eq. �21�,
where �, and, possibly, �, now slowly depend on x. The

correction f̂1 induced by their spatial dependence is deter-
mined by the set of equations

���f1
11 − i

hs�

2
�e−i�f1

21 − e−i�f1
12� =

D

2
�x

2f0
11,

���f1
12 + ihs�e−i�f1

11 =
D

2
�x

2f0
12,

���f1
21 − ihs�ei�f1

11 =
D

2
�x

2f0
21, �22�

By appropriate linear combination of these equations, one
finds that

FIG. 2. Self-consistent gap just below the second-order transi-
tion line hcw�T� into a localized domain wall superconducting state
at different temperatures T= �0,0.2,0.4,0.6,0.8�Tc0 �from narrow-
est to widest�.
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f11 �
���

�2 + h2� +
Dh2

2��2 + h2�2 ����2� +
D

2

�2 − h2

��2 + h2�2��.

�23�

Here, the primes stand for derivatives along x. Inserting this
solution in the self-consistency equation �4� we obtain the
equation for the gap,

−
1

2m
���x� + U�x���x� = E��x� , �24�

where

E = − ln
T

Tc
,

1

2m
= D	T 


��0

��2 − h2�
��2 + h2�2 ,

U�x� = − D	T����2 

��0

h2

��2 + h2�2 . �25�

Equation �24� is a linearized Ginzburg-Landau equation
for a magnetic superconductor in the presence of a domain
wall. It can be easily checked that the effective mass m is
always positive and U�x� is negative. Therefore, Eq. �24�
looks like a one-dimensional Schrödinger equation for a par-
ticle in a potential well U�x�. It is well known that a bound
state with E�0 always forms in such a potential. As a result,
the second-order transition into a localized superconducting
state always appears more favorable than that into a uniform
state.

Let us estimate now the magnitude of the critical tempera-
ture increase.

Close to Tc0, the spatial variation for � is set by the
temperature-dependent coherence length ��T�
=�s
Tc0 / �Tc0−T� which diverges at the transition. Therefore,
�s�w���T� and the potential well can be approximated by
a � potential: U�x��−�	Dh2 /48Tc0

3 w���x�, while 1 /2m
��	D /8Tc0�. Therefore we get the estimate

Tcw − Tc

Tc
�

	6

36
� h

2	Tc0
�4 �s

2

w2 �
�s

2

w2

�Tc0 − Tc�2

Tc0
2 . �26�

This increase is small in the ratio ��s /w�2, and another reduc-
tion factor comes from the smallness of the critical exchange
field h near Tc0 �see Eq. �14��.

At T→0, the second-order transition into a uniform state
occurs at the exchange field hc

�2�=�0 /2. On the other hand,
the effective mass in Eq. �24� diverges as 1/2m
��	D /T�e−h/T. The fact that m remains positive at finite
temperatures is related to the absence of instability toward
a modulated superconducting �Fulde-Ferrell-Larkin-
Ovchinnikov� state in magnetic superconductors in the pres-
ence of strong disorder, �Tc0�1.14 Due to its large inertia,
the particle now resides in the minimum of the potential well
�zero-point fluctuations can be neglected�: Umin=
−�	D /16hw2�. The corresponding increase in critical ex-
change field at T=0 is �hcw−hc

�2��=	D /16w2. This increase
is of the order of magnitude ���s /w�2hc

�2��hc
�2�. Actually, at

low temperature the transition into the superconducting state
in the uniform exchange field is first order. We may expect

that the domain wall superconductivity in this situation also
appears by a first-order transition.

At intermediate temperature, we may obtain the critical
temperature T=Tcw with a specific choice of the spatial de-
pendence of the rotation angle �. Assuming that ��x�
=2 arctan�tanh�� /2w��, we get15

ln
T

Tc
=

Tc0

8Tc

�s
2

w2F� h

2	Tc
� , �27�

where

F�u� = Re �1�Z��− 1 +
1 −
2 Re �i��Z� + u�1�Z��

u Re �1�Z�
�2

,

�28�

where � and �1 are digamma functions, and Z=1/2+ iu.
We should note, however, that the transition into a uni-

form superconducting state becomes of the first order at T
�T* and results in significant increase of the critical line
hc�T�. Most probably, such a change of the transition order
should also be considered for localized superconductivity.

V. DISCUSSION

A qualitative picture of the effect of domains walls on the
superconducting properties now emerges from our calcula-
tions.

First, the electrons of the Cooper pairs that travel across
the S/F interface experience the exchange field hf in the F
layer. This proximity effect results in an effective pair break-
ing that weakens the superconductivity in the S layer. As a
result, the critical temperature Tc of the bilayer gets sup-
pressed in comparison with the critical temperature Tc0 of the
bare S film: Tc0−Tc��s

−1. There, the pair-breaking time �s
can be estimated from Eq. �14�: at h�Tc0, �s

−1�h2 /Tc0,
where h is the effective exchange field that would act di-
rectly in the bare S layer to yield the same pair-breaking
effect due to hf in the bilayer. In particular, when the S/F
interface is transparent and F layer is thin, we found that h
�hfdf / �ds+df�, where df and ds are the thicknesses of F and
S layers, respectively. On the other hand, when h
Tc0, there
is no superconducting transition in the bilayer.

Second, in the vicinity of magnetic domain walls in the F
layer, this pair-breaking mechanism becomes less effective.
Therefore, localized superconductivity may appear with criti-
cal temperature Tcw�Tc. When the domain wall width w is
large in comparison with the superconducting coherence
length �s, the exchange field rotates by the angle ���s /w on
the scale of proximity effect. Therefore, the decrease of the
average exchange field close to the wall is estimated as h
−hav��2h. Correspondingly, the pair-breaking time is in-
creased by ��s /�s��2. In analogy with the theory of super-
conductivity at twinning-plane boundaries,16 one can esti-
mate the increase of Tc:

�T 	 Tcw − Tc �
�2

�s

w

��T�
. �29�

Here, the temperature-dependent correlation length ��T�
��s


Tc /�T is the spatial extension of the superconducting
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gap and it diverges close to the superconducting transition;
the pair breaking is only reduced on the small portion of
the gap corresponding to the width w of the domain wall.
On the end, the formula yields the estimate �T /Tc
���s /w�2 / ��sTc�2. Combining this result with the estimates
for �s given in the preceding paragraph, we finally retrieve
Eq. �26� qualitatively. This result holds when the width w is
much larger than �s. At smaller domain wall width, weaken-
ing of pair breaking effect works on the characteristic scale
�s of the proximity effect and w should be replaced by �s in
the estimate. Therefore, the large enhancement of Tcw, of the
order of Tc�, can be expected when w��s and h�Tc0.

In the present work, we confirmed quantitatively this es-
timate in a number of situations. In particular, we obtained
that, in the case of strong enhancement of Tcw �at w��s�, for
a thin F layer, the transition into the DWS state remains of
the second order, with critical line above the transition into a
uniform superconducting state of the second order at T
�T*=0.56Tc0, and of the first order at T�T*. We predicted
that only DWS could appear in bilayers with appropriate
parameters.

The above physical picture does not depend on the sam-
ple’s cleanness. However, the Usadel equations that we used
to make quantitative estimates hold only for very dirty fer-
romagnets with h��1. For cleaner systems, one should
solve the more difficult Eilenberger equations. We believe
the results will be qualitatively similar. On the other hand,
for ferromagnets with larger exchange field, the finite spin
polarization is not longer negligible and leads to the suppres-
sion of proximity effect. Therefore, we do not expect the
DWS formation by this mechanism.

Let us now come back to the assumption of a very thin F
layer that was taken in the calculations. Usually, the ex-
change field in a ferromagnet is much larger than the gap in
a superconductor. Therefore, the coherence length � f is much
smaller than �s �1–5 nm for the former, compared to
10–50 nm for the latter�. Therefore, the regime df �� f is
quite hard to achieve with real samples of diffusive ferro-
magnets. Extending the calculation for a thin F layer to ar-
bitrary thickness of the layer and arbitrary transparency
�characterized by 
B� of the interface is quite straightforward
when domain walls are large, as we show in the Appendix.
As is well known, the behavior of the critical temperature of
the transition into a uniform superconducting state is quite
rich in this case and may even oscillate as a function of the
parameters such as df or 
B. However, the physics of DWS
appears to be quite similar to the one derived for thin bilayer.
In particular, in the case of thick F layer �df 
� f =
Df /hf�,
the effective exchange field that would enter the above quali-
tative estimates would be h���s /ds�
hfTc0. Clearly, at �s


ds, as we assumed from the beginning, this field is much
larger than Tc0 and leads therefore to superconductivity sup-
pression. However, h is strongly reduced if the S/F interface
is opaque, which may lead to the F/S coexistence and to
DWS appearance, as studied in this work. Nevertheless, the
enhancement of Tc still is small by the factor �s /w�1 in the
situation described in the Appendix.

These considerations suggest two possible directions to
extend the range of existence of DWS. In the present work,
DWS was analyzed for S layers with thickness ds much

smaller than coherence length �s. On the other hand, DWS
should not appear when the superconductor is hardly affected
by proximity effect, at ds
�s. It would be of interest to
consider the intermediate case when ds and �s are of the same
order. This was studied for instance in the absence of mag-
netic domains in Ref. 17. Maybe a more important point
would be to address the case of DWS in S/F bilayers with
narrow domain walls and large thickness of the F layer.
However, both problems require considerably more numeri-
cal work, which goes beyond the scope of this paper.

A lot of attention has been devoted to the study of long-
range triplet proximity effect which develops in S/F struc-
tures when the direction of exchange field in the ferromagnet
varies spatially.2,18,19 In our calculation, such long range trip-
let component is also present, as it is clear from the Appen-
dix: in Eq. �A6�, the term 
0chq0z̃ in the direction transverse
to the bilayer is generated only because of the presence of
the domain wall, and it decays with typical length �T
�
Df /T
� f. However, 
0 does not enter f11 and, therefore,
is not important for the determination of the critical tempera-
ture of transition into DWS. In all the calculations we pre-
sented, there is no long-range triplet component in the direc-
tion transverse to the wall either: the typical length for the
superconducting gap is determined by the conventional
short-range proximity effect with decay length ��s. We
would like to emphasize also that the Tc enhancement due to
the appearance of DWS is maximized for narrow domain
walls �see Sec. III�, when the matrix elements of the anoma-
lous Green’s function that would give rise to a long-range
triplet component are exactly zero. Therefore, the physics of
DWS discussed here is not directly related to such phenom-
ena.

This observation is in agreement with Ref. 18 where a
calculation of the critical temperature of S/F bilayers in the
presence of spiral magnetic order in the F layer was pre-
sented. There also the long-range triplet component was
found not to contribute to the result. On the other hand, the
long-range triplet component may be important for other
properties such as density of states in the ferromagnetic layer
with domain structure deposited on top of a bulk supercon-
ducting substrate.19

We would like also to emphasize that our calculations
differ from the study of S/F bilayers in the presence of spiral
magnetic order in the F layer.18 These works can be inter-
preted as considerations on magnetic domain structure only
in as much as the width of the domains L and the width of
the walls w are identical. A consequence is that the supercon-
ducting gap is spatially uniform along the bilayer in Ref. 18.
In contrast, our theory really shows that, in the more realistic
case when w�L, truly localized superconducting states can
appear. In addition, consideration of the effect of spiral mag-
netic order corresponding to ��x�=Qx in Eqs. �24� and �25�,
where Q is the wave vector of the spiral, can be immediately
calculated from the Schrödinger-like equation �24�, at least
when Q�s�1. Critical temperature enhancement due to spi-
ral magnetic order and corresponding to a uniform gap ��x�
follows straightforwardly from the observation that ���x�
=Q, which enters Eq. �25�, is constant.

The influence of magnetic domain walls on the supercon-
ducting properties of S/F bilayers was considered in other
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contexts. The enhancement of the Andreev subgap current at
low temperature was predicted in Refs. 22 and 23. The criti-
cal magnetization for spontaneous vortex nucleation was de-
termined in Ref. 24.

In conclusion, we analyzed in this work the enhancement
of the superconducting critical temperature of
superconducting/ferromagnetic bilayers due to the appear-
ance of localized superconducting states in the vicinity of
magnetic domain walls in the ferromagnet. We considered
the case when the main mechanism of the superconductivity
destruction via the proximity effect is the exchange field. We
demonstrated that the influence of the domain walls on the
superconducting properties of S layer may be quite strong if
the domain wall thickness is of the order of the supercon-
ducting coherence length.

We interpreted qualitatively and quantitatively the ampli-
tude of this effect, and we pointed out the special case when
parameters of the bilayer are such that only localized super-
conductivity may form in these systems.

For a magnetic film with perpendicular anisotropy, the
orbital effect provides an additional mechanism for domain
wall superconductivity4 and it may be easily taken into ac-
count. On the other hand for a film with easy plane magnetic
anisotropy the domain wall will be a source of magnetic field
in the adjacent S layer and locally weakens the
superconductivity.20 This mechanism will also depend on the
precise structure of the magnetic domain wall �Bloch wall in
thick ferromagnets, Néel wall in thin ferromagnets�. The role
of the orbital mechanism in the domain wall superconductiv-
ity may be important only if the magnetic induction is com-
parable with the upper critical field of the superconducting
film. As we emphasized in the Introduction, this is usually
not the case when the contact between S and F layers is
good. We completely disregarded the orbital mechanism in
the present work.

The domain wall superconductivity in S/F bilayers opens
an interesting way to manipulate the superconducting prop-
erties through the domain structure. In particular the motion
of the domain wall in the F layer may be accompanied by the
displacement of the narrow superconducting region in the S
layer.
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APPENDIX: THICK F LAYER

As mentioned previously, hf is usually large in ferromag-
nets. Therefore the condition of thin F layer, df �� f, is hardly
reached. We would like to extend the results of the previous
section to the more realistic situation of a finite size F layer.
The difficulty is that the set of differential equations �1�–�4�
to be solved are now two dimensional. We managed to solve
it for the case of a large domain wall only. In the F layer, we
parametrize the exchange field rotation with a slowly varying

angle ��x� such that h f =hf�cos � , sin � ,0�. The linearized
Usadel equations �2� in the F layer are

−
Df

2
�f11 + ���f11 − i

hfs�

2
�e−i�f21 − e−i�f12� = 0,

−
Df

2
�f12 + ���f12 + ihfs�e−i�f11 = 0,

−
Df

2
�f21 + ���f21 − ihfs�ei�f11 = 0. �A1�

where �=�x
2+�z

2, while f22=−f11. When the spatial depen-
dence of � is neglected, the general form of the solutions
which satisfy the boundary condition at the F/vacuum inter-
face is

f0
11 = F+ cosh q+z̃ + F− cosh q−z̃ ,

f0
12 = s�e−i��F0 cosh q0z̃ + F+ cosh q+z̃ − F− cosh q−z̃� ,

f0
21 = − s�ei��− F0 cosh q0z̃ + F+ cosh q+z̃ − F− cosh q−z̃� ,

�A2�

where z̃=z+df, q0=
2��� /Df, and q±=
2�±ihf + ���� /Df.
We determine now the amplitudes of the eigenmodes F0

and F±. For this, we first determine f11 and �zf
11 at z=0 in

the F layer. Making use of the boundary conditions �3�, we
can now insert them in the Usadel equation �5� in the S layer.
We proceed similarly for f12 and f21. In the end, we get from
�5� three equations which determine the amplitudes we are
looking for. We find F0=0, while

F± =
�

2�±
, �± = ���C± + �q± sinh q±df , �A3�

where C±=coshq±df +
B�sq±sinhq±df and �=Ds� f /2ds�s.

Inserting Eqs. �A2� and �A3� into �3� to determine f̂ s, and
then inserting fs

11 in the self-consistency equation �4�, we get
the equation defining the critical temperature T=Tc�h� for a
uniform superconducting state:

0 = ln
T

Tc0
+ 2	T Re 


��0
� 1

���
−

1

��� + �+
� ,

�+ =
�q+

coth q+df + 
B�sq+
. �A4�

This result is the same as Eq. �47� of Ref. 1. Whether the
transition is of the second order �as described by Eq. �A4�� or
of the first order was considered in Ref. 21.

Let us now consider the effect of a domain wall. As in

Sec. IV, we will look for a solution f̂ � f̂0+ f̂1. In leading
order, the spatial dependence of � and the gap � is ignored,

and f̂0 is still given by Eqs. �A2� and �A3�. The correction f̂1
accounts for the slow variations of � and � along the x axis;
it is determined by the set of equations:

−
Df

2
�z

2f1
11 + ���f1

11 − i
hfs�

2
�e−i�f1

21 − e−i�f1
12� =

Df

2
�x

2f0
11,
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−
Df

2
�z

2f1
12 + ���f1

12 + ihfs�e−i�f1
11 =

Df

2
�x

2f0
12,

−
Df

2
�z

2f1
21 + ���f1

21 − ihfs�ei�f1
11 =

Df

2
�x

2f0
21. �A5�

Ignoring the x dependence of the right-hand side of the
above differential equations, we can find the exact

z-dependent function f̂1 which solves them. We obtain

f11 = 

a=±

�cosh qaz̃� �

2�a
+ a

iDf��2�

16hf�a
+ 
a�

− z̃ sinh qaz̃

�� −
1

2
��2�

4�aqa
� ,

f12,21 = ± s�e�i��±
0 cosh q0z̃ + 

a=±

�� a�

2�a
+ a
a

−
iDf��2�

16hf�a
±

Df�2���� + ����
4hf�a

�cosh qaz̃

− az̃ sinh qaz̃

�� −
1

2
��2�

4�aqa
�� , �A6�

where the integration constants 
0 and 
± still remain to be
determined. For this purpose, we insert Eq. �A6� into Eq. �3�
in order to get f̂ s and �z f̂ s. Inserting them in Eq. �5�, we thus
obtain a set of three equations which allow us to determine
them. In particular, we find


± = ±
iDf��2�

16hf�±
+

�±

4q±�±
2��� −

1

2
��2��

+
Ds

4
�C±

�±
2 �� �

i��2�

�±
Im

C±

�±
� �A7�

where �±= ���S±+��sinhq±df +dfq±coshq±df� and S±

=dfsinhq±df +
B�s�sinhq±df +dfq±coshq±df�.
Finally, we can insert Eqs. �A7� into �A6�, and then into

�3�, in order to obtain f11 in the S layer. Then, we insert it in
the self-consistency equation �4�. At the end, we find that the

superconducting gap at the transition into the DWS state is
still determined by the Schrödinger equation �24�, with ef-
fective coefficients

E = − ln
T

Tc
,

1

2m
= 	T Re 


��0
�Ds

�+
2 +

��sinh 2q+df + 2q+df�
2q+�+

2 �
U�x� = − 	T����2 


��0
�Ds�Im

1

�+
�2

− Re
��sinh 2q+df + 2q+df�

4q+�+
2 −

Df

2hf
Im

1

�+
� .

�A8�

where �+= ���+�+.
In the limit of a thin F layer �q+df →0� and large trans-

parency of the S/F interface �
B→0�, we note that �+

��q+
2df ��� f /�s�hf, and it is easily checked that the above

formulas for 1 /2m and U�x� reduce to Eq. �25� from Sec. II,
when � f ��s.

For large F films and transparent S/F interface, we find
that the critical temperature is given by Eq. �A4�, where �+
= �1+ i�h and h=�
hf /Df: �+ can be interpreted as a combi-
nation of both exchange field and spin-flip terms with equal
weight. In this case, it is known that the transition into a
uniform state is of the second order.21 The coefficients of Eq.
�A8� also simplify to the form

E = − ln
T

Tc
,

1

2m
= 	TDs Re 


��0

1

�� + �1 + i�h�2 ,

U�x� = − 	TDs����2 

��0

�Im
1

� + �1 + i�h�
2

. �A9�

Let us note that the effective exchange field and spin-flip
parameter scale is h���s /ds�
hfTc0 if the S and F layers
have comparable diffusion constants and conductivities.
When ds��s, as we assumed from the beginning, this leads
to h
Tc0, and therefore to complete superconductivity sup-
pression. However, we expect that our results hold qualita-
tively in the more general case �s�ds when superconductiv-
ity is not completely suppressed.
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