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Domelike magnetic-flux-density distributions previously have been observed experimentally and analyzed
theoretically in superconducting films with edges, such as in strips and thin plates. Such flux domes have been
explained as arising from a combination of strong geometric barriers and weak bulk pinning. In this paper we
predict that, even in films with bulk pinning, flux domes also occur when vortices and antivortices are
produced far from the film edges underneath current-carrying wires, coils, or permanent magnets placed above
the film. Vortex-antivortex pairs penetrating through the film are generated when the magnetic field parallel to
the surface exceeds Hc1+Kc, where Hc1 is the lower critical field and Kc= jcd is the critical sheet-current
density �the product of the bulk critical current density jc and the film thickness d�. The vortices and antivor-
tices move in opposite directions to locations where they join others to create separated vortex and antivortex
flux domes. We consider a simple arrangement of a pair of current-carrying wires carrying current I0 in
opposite directions and calculate the magnetic-field and current-density distributions as a function of I0 both in
the bulk-pinning-free case �Kc=0� and in the presence of bulk pinning, characterized by a field-independent
critical sheet-current density �Kc�0�.
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I. INTRODUCTION

The hysteretic penetration of magnetic flux into a super-
conductor has long been a subject of experimental and theo-
retical interest. One phenomenon that has often been ob-
served in flat samples in an increasing perpendicular applied
magnetic field is a domelike magnetic-flux-density distribu-
tion centered in the middle of the sample, surrounded by
superconducting flux-free zones. This phenomenon has been
investigated experimentally and interpreted theoretically in
both type-I superconductors1–9 and weak-pinning type-II
superconductors.10–20 In these previous investigations, the
flux domes have been explained as arising from an energy
barrier of geometric origin at the edge of the sample. Once
this barrier is overcome, flux tubes or vortices escape from
the edge and are driven to the middle by Meissner screening
currents, which flow on the sample’s surface.

In this paper we show that energy barriers at the sample
edges are not essential for the formation of flux domes, and
we suggest a simple geometry for which we predict that
separated flux domes will be generated. We consider an ini-
tially magnetic-flux-free superconducting film. Above the
film is a pair of wires carrying increasing equal currents in
opposite directions. Because of the screening currents in-
duced in the superconducting film, the resulting net magnetic
field is parallel to the top surface of the film. Vortices nucle-
ate when the maximum local field parallel to the top surface
exceeds the lower critical field Hc1. In the absence of bulk
pinning, the nucleated vortices penetrate immediately to the
bottom surface, where the central vortex segments annihilate
with their images and split into vortices �each carrying mag-
netic flux �0=h /2e up through the film� and antivortices
�carrying an equal amount of magnetic flux down through
the film�. The screening currents in the film then drive the
vortices and antivortices in opposite directions until they

come to rest and form separated flux domes �domelike
magnetic-flux-density distributions produced by arrays of
vortices and antivortices�, in which the sheet-current density
is zero, surrounded by flux-free zones, which carry a finite
sheet-current density. As the current increases, we predict
that the domes expand and approach each other. When the
current carried by the wires is large enough, the film is com-
pletely filled with vortices and antivortices, the sheet current
is everywhere zero, and the magnetic field distribution is just
that produced by the current-carrying wires alone.

We also analyze the behavior of films with bulk pinning,
characterized by a finite bulk critical current density jc. Al-
though the resulting behavior is a little more complicated, we
predict that the magnetic field produced by the current-
carrying wires still can produce vortex and antivortex flux
domes that are surrounded by flux-free zones. Within the flux
domes, the magnitude of the sheet-current density is equal to
Kc= jcd �where d is the film thickness�, but in the flux-free
zone between the two flux domes, the magnitude of the
sheet-current density exceeds Kc, which is the reason that no
vortices or antivortices can remain in this region. As the bulk
pinning increases, we find that the space between the vortex
and antivortex domes shrinks to zero. All the above predicted
phenomena should be easily observable using imaging tech-
niques such as magneto-optical detection or scanning mi-
croscopy using miniature Hall probes or SQUIDs.

To investigate these effects in an easily calculable geom-
etry, we consider in Sec. II a simple model in which the local
magnetic fields are produced by a pair of infinitely long
straight wires. The resulting two-dimensional geometry al-
lows us to calculate all the magnetic-field and sheet-current
distributions analytically. In Sec. II A we discuss the
Meissner-state response of the film before any penetration of
vortices into the film, and in Sec. II B we discuss the distri-
butions produced by vortices and antivortices that have pen-
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etrated through the film thickness. We then present the
magnetic-field and sheet-current distributions associated with
the flux domes, both in the absence of bulk pinning �Sec.
II C� and in the presence of weak �Sec. II D� and strong �Sec.
II E� bulk pinning. In Sec. III we summarize our results,
discuss the generality of the predicted effects in more easily
realizable experimental configurations, consider similar phe-
nomena in type-I superconductors, and discuss possible ex-
tensions of this work. Calculations of screening effects in the
Meissner state are presented in Appendix A, and derivations
of the complex field and complex potential are given in Ap-
pendix B.

II. SUPERCONDUCTING FILMS AND LINEAR WIRES

We consider a simple geometry in which vortex and anti-
vortex flux domes are produced far from the film edges. For
simplicity we consider an infinite type-II superconducting
film and a pair of infinitely long current-carrying wires, as
shown in Fig. 1. A wire, carrying current I1= I0 parallel to the
z axis, is situated at �x ,y�= �0,y1�, where y1�0. The return
current I2=−I0 is carried by a second wire at �x ,y�= �0,y2�,
where y2�y1. The wire radius rw is assumed to be much
smaller than either y1 or the wire separation y2−y1. A super-
conducting film, infinitely extended in the xz plane, is situ-
ated at −d /2�y�d /2, where the film thickness d is larger
than the London penetration depth � and d�y1. As dis-
cussed in Appendix A, these conditions guarantee that when
the film is in the Meissner state, the magnetic field below the
film is negligibly small.

Flux pinning in the film is characterized by the critical
current density jc, which is assumed to be constant �indepen-
dent of magnetic field�, as in Bean’s critical state model,21

and isotropic �independent of vortex direction�. However, the
relevant physical quantity here is the critical sheet-current
density Kc= jcd. Since we are interested in the case for which
d�y1, in the following we ignore the finite thickness of the
film, as this simplification allows us to obtain simple analytic
expressions for the magnetic-field and current-density distri-
butions.

We introduce the complex field H���=Hy�x ,y�
+ iHx�x ,y�, which is an analytic function of �=x+ iy except
for poles at �=�1= iy1 and �=�2= iy2 and a branch cut at
y=0. The Biot-Savart law for the complex field is given by

H��� = H0��� +
1

2�
�

−�

+�

du
Kz�u�
� − u

, �1�

where

H0��� =
I0

2�

1

� − iy1
−

I0

2�

1

� − iy2
, �2�

is the complex field arising from the pair of wires alone �see
Fig. 1� and Kz�x� is the sheet current in the film. The com-
plex potential describing the field generated by the wires
alone, defined by G0���=�0

�H0����d��, is

G0��� =
I0

�
ln�1 + i�/y1

1 + i�/y2
� , �3�

and the contour lines of the real part of G0��� correspond to
the magnetic field lines of H0���. At the upper ��=x+ i	� and
lower ��=x− i	� surfaces of the superconducting film �where
we take 	=d /2 to be a positive infinitessimal, since d�y1,�
the perpendicular and parallel magnetic fields Hy�x ,0�
=Re H�x± i	� and Hx�x , ±	�=Im H�x± i	� are obtained from
Eq. �1� as

Hy�x,0� = H0y�x,0� +
P

2�
�

−�

+�

du
Kz�u�
x − u

, �4�

Hx�x, ± 	� = H0x�x,0� 
 Kz�x�/2, �5�

where H0y�x ,0�=Re H0�x�, H0x�x ,0�=Im H0�x�, and P de-
notes the principal value integral. The complex potential is
defined by G���=�i	

� H����d��, and the contour lines of the
real part of G��� correspond to the magnetic field lines of
H���.

A. Meissner-state response

We first consider the magnetic-field distribution when the
film is in the �vortex-free� Meissner state and wires 1 and 2
carry dc currents I1= I0�0 and I2=−I0�0 after monotoni-
cally increasing in magnitude from zero. As discussed in
Appendix A, when the current I0 is small and the thickness d
is larger than �, the magnetic field is practically zero below
the film, where y=Im ��0. The field distribution above
the film can be obtained by adding to H0��� and G0��� the
contributions HI��� and GI��� due to image wires at �=−�1

=−iy1 and �=−�2=−iy2 carrying currents −I0 and +I0,
respectively,

HI��� = −
I0

2�

1

� + iy1
+

I0

2�

1

� + iy2
, �6�

GI��� =
I0

�
ln�1 − i�/y2

1 − i�/y1
� . �7�

The resulting complex field HM���=H0���+HI��� is

HM��� = �i
I0

�
� y1

�2 + y1
2 −

y2

�2 + y2
2� for Im � � 0,

0 for Im � � 0.
�

�8�

The subscript M is a reminder that this field describes the
Meissner-state response to the applied field given in Eq. �2�.
Note that

FIG. 1. Wire 1 at �x ,y�= �0,y1� carries current I1= I0 in the z
direction and wire 2 at �x ,y�= �0,y2� carries current I2=−I0 above
an infinite type-II superconducting film in the xz plane.
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HMx�x,	� =
I0

�
� y1

x2 + y1
2 −

y2

x2 + y2
2� . �9�

As is usual using the method of images, HMx�x ,	�
=2H0x�x ,0�=2 Im H0�x� 	see Eq. �2�
. The corresponding
complex potential GM���=�i	

� HM����d�� for Im ��0 is given
by

GM��� = i
I0

�
�arctan� �

y1
� − arctan� �

y2
�� . �10�

We may take GM���=0 for Im ��0. The perpendicular mag-
netic field and sheet-current density are thus given by
HMy�x ,0�=0 and

KMz�x� = −
I0

�
� y1

x2 + y1
2 −

y2

x2 + y2
2� . �11�

The net current induced in the superconducting film is
�−�

+�KMz�x�dx=0, as expected.
The maximum magnetic field parallel to the top surface of

the film is

HMx�0,	� =
I0

�
� 1

y1
−

1

y2
� , �12�

and the maximum magnitude of the sheet-current density is


KMz�0�
 =
I0

�
� 1

y1
−

1

y2
� . �13�

We now define two critical currents as follows. Let Ic1
denote the value of I0 at which HMx�0,	� in Eq. �12� reaches
the lower critical field Hc1,

Ic1 =
�Hc1y1y2

y2 − y1
, �14�

and let Ic0 denote the value of I0 at which 
KMz�0�
 in Eq.
�13� reaches the critical sheet-current density Kc,

Ic0 =
�Kcy1y2

y2 − y1
. �15�

Both of these critical currents play important roles in deter-
mining the details of how magnetic flux penetrates through
the film. In the following sections we discuss in turn the
cases for which Kc=0 �Ic0=0� and Kc�0 �Ic0�0�.

B. Vortex-generated fields and currents

Consider a periodic one-dimensional array of vortices in
the yz plane, closely spaced along the z direction, carrying
magnetic flux �� per unit length in the y direction up
through the film. Ignoring spatial variation on the scale of the
London penetration depth � or the intervortex spacing, the
magnetic field in the space y�0 �y�0� appears as if pro-
duced by a line of positive �negative� magnetic monopoles,
points radially outward �inward� from the line, has only x
and y components, and depends only upon x and y. At a
distance r=�x2+y2 from the line, the magnitude of the mag-
netic field is h=�� /�0�r. Expressing this result in terms of

a complex magnetic field Hv���=Hvy�x ,y�+ iHvx�x ,y� and
extending it to a distribution of vortices or antivortices gen-
erating a magnetic field Hvy�x ,0� in the plane of the film, we
see that the vortex-generated complex magnetic field can be
expressed as

Hv��� = ±
i

�
�

−�

+�

du
Hvy�x,0�

� − u
, �16�

where �=x+ iy and the upper �lower� sign in Eq. �16� holds
for y�0 �y�0�. The corresponding vortex-generated sheet-
current density Kvz�x�=Hvx�x− i	�−Hvx�x+ i	� is

Kvz�x� = −
P

�
�

−�

+�

du
2Hvy�x,0�

x − u
, �17�

while the Biot-Savart law yields another relation between
Kvz�x� and Hvy�x ,0�:

2Hvy�x,0� =
P

�
�

−�

+�

du
Kvz�u�
x − u

. �18�

In the following sections, the complex field can always be
regarded as a linear superposition of the Meissner-state and
vortex-generated complex fields H���=HM���+Hv��� �see
Fig. 2�. The complex potential G���=�i	

� H����d�� can be
written as G���=GM���+Gv���. Similarly, the sheet-current
density can always be expressed as Kz�x�=KMz�x�+Kvz�x�.

C. Flux domes in the absence of bulk pinning

In bulk-pinning-free films �Kc=0�, the first vortex enters
the film at x=0, where the maximum magnetic field at the
top surface is equal to the lower critical field Hc1.22 This
occurs at the current I0= Ic1, given in Eq. �14� �see Fig. 3�.
An initially tiny vortex loop expands in radius, and a portion
of the loop is driven to the bottom of the film surface, where
it annihilates, resulting in a separated vortex-antivortex pair.
The vortex �antivortex� carries magnetic flux �0 in the
+y �−y� direction, where �0=h /2e is the superconducting
flux quantum. Responding to the Lorentz force KMz�x��0, the
vortex moves in the x direction until it comes to rest at the
point x=x0=�y1y2, where KMz�x� 
 0, as can be seen from

FIG. 2. Contour plot of the real part of the complex potential
GM�x+ iy� vs x and y for y1=1 and y2=2. The contours correspond
to magnetic field lines of the complex field HM�x+ iy� describing
the Meissner-state response of the superconducting film to currents
in the wires shown in Fig. 1. The contours near the wires at �
= iy1 and �= iy2 are nearly circular.
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Eq. �11� and Fig. 3. The antivortex moves in the opposite
direction and comes to rest at the point x=−x0.

For increasing values of I0 in the range Ic1� I0�2Ic1, the
magnetic field distribution perpendicular to the film can be
characterized as having a positive vortex-generated magnetic
flux dome in the region b�x�a, where 0�b�x0�a, and a
negative antivortex-generated flux dome in the region −a
�x�−b. The complex magnetic field H���=HM���+Hv���
is given in Eq. �B13� but with Kc=0. Subtracting the
Meissner-state complex field HM���, we obtain the following
expression for the vortex-generated complex magnetic field

Hv��� =
I0

2�
� y1	
i + ����/s1


�2 + y1
2 −

y2	
i + ����/s2

�2 + y2

2 � ,

�19�

where sj =��a2+yj
2��b2+yj

2�, and the upper �lower� sign
holds when �=x+ iy is in the upper �lower� half plane. Writ-
ing ����=�1�x ,y�+ i�2�x ,y�, we find that �1�x ,y� is an
odd function of x and an even function of y 	�1�x ,y�
=−�1�−x ,y�=�1�x ,−y�
, while �2�x ,y� is an even
function of x and an odd function of y 	�2�x ,y�=�2�−x ,y�
=−�2�x ,−y�
. Thus Hvy�x ,y� is an odd function of x but an
even function of y, while Hvx�x ,y� is an odd function of y but
an even function of x. Just above �below� the real axis

��x ± i	� =�±i�̃�x� , 
x
 � b or 
x
 � a ,

�̃�x� , b � 
x
 � a ,
�20�

where

�̃�x� = �
��a2 − x2��b2 − x2� , 
x
 � b ,

sgn�x���a2 − x2��x2 − b2� , b � 
x
 � a ,

− ��x2 − a2��x2 − b2� , 
x
 � a .

�21�

From Eq. �19� we obtain the following values of Hvy�x ,0�,
Hvx�x ,	�=−Hvx�x ,−	�, and Kvz�x�=Hvx�x ,−	�−Hvx�x ,	�:

Hvy�x,0� = �0, 
x
 � b or 
x
 � a ,

I0

2�
� y1

s1�x2 + y1
2�

−
y2

s2�x2 + y2
2�� b � 
x
 � a ,

�22�

Hvx�x,	� =�−
I0

2�
� y1	1 − �̃�x�/s1


x2 + y1
2 −

y2	1 − �̃�x�/s2

x2 + y2

2 � , 
x
 � b or 
x
 � a ,

−
I0

2�
� y1

x2 + y1
2 −

y2

x2 + y2
2� , b � 
x
 � a , � �23�

Kvz�x� =� I0

�
� y1	1 − �̃�x�/s1


x2 + y1
2 −

y2	1 − �̃�x�/s2

x2 + y2

2 � , 
x
 � b or 
x
 � a ,

I0

�
� y1

x2 + y1
2 −

y2

x2 + y2
2� , b � 
x
 � a , � �24�

As discussed in Appendix B, the requirement that �−�
+�Kz�x�dx=0 leads to the condition that ab=x0

2=y1y2 when there is no
bulk pinning. A second condition relating a, b and I0 follows from the requirement that Hx�0,	�=HMx�0,	�+Hvx�0,	�=Hc1,
which yields

FIG. 3. Parallel magnetic field HMx�x ,	� /Hc1 vs x �solid curve�
in the Meissner state at the top surface of the superconducting film
when I0= Ic1, HMx�0,	�=Hc1, y1=1, and y2=2. The dashed curve
shows the corresponding sheet-current density KMz�x� /Hc1 vs x.
Note that KMz�0�=−Hc1.
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I0 = � 2

1 + y1y2�s1 + s2�/s1s2
�Ic1. �25�

Combining these two conditions and eliminating a, we ob-
tain the following connection between I0 and b,

I0 = � 2

1 + b�y1 + y2�/��y1
2 + b2��y2

2 + b2�
�Ic1. �26�

When I0= Ic1, a=b=x0=�y1y2. As I0 increases above Ic1, b
decreases monotonically, as shown in Fig. 4 and the lower
solid curve in Fig. 11. In the limit as I0→2Ic1, we see that
b→0, such that a=y1y2 /b→�. For I0�2Ic1, the magnetic-
flux-filled region extends from −� to +�, Kz�x�=0, and
H���=H0��� everywhere, since the superconducting film is
then completely incapable of screening the magnetic field
produced by the two wires.

Figures 5 and 6 show plots of Hy�x ,0�=Hvy�x ,0� and
Kz�x� vs x for several values of I0 in the range Ic1� I0

�2Ic1. Figure 7 shows plots of Hx�0, ±	�=HMx�0, ±	�
+Hvx�0, ±	� vs I0. For 0� I0� Ic1, we have Hx�0,	�
=HMx�0,	�=Hc1I0 / Ic1 and Hx�0,−	�=HMx�0,−	�=0. For
Ic1� I0�2Ic1, we have Hx�0,	�=HMx�0,	�+Hvx�0,	�=Hc1

and Hx�0,−	�=Hvx�0,−	�=Hc1�I0 / Ic1−1�, where HMx�0,	�
=Hc1I0 / Ic1 and Hvx�0, ±	�= ±Hc1�1− I0 / Ic1�. When I0=2Ic1,
Hx�0, ±	�=Hc1. For I0� Ic1, Hx�0, ±	�=H0x�0,0�=Hc1I0 /
2Ic1, and in addition Hx�x , ±	�=HMx�x , ±	�+Hvx�x , ±	�
=H0x�x ,0� for all x. The macroscopic magnetic-field distri-
bution is then the same as it would be if the superconducting
film were absent.

Figure 8 shows a plot of −Kz�0� vs I0, where Kz�0�
=Hx�0,−	�−Hx�0,	�. For 0� I0� Ic1, −Kz�0�=Hc1I0 / Ic1, and
for Ic1� I0�2Ic1, −Kz�0�=Hc1�2− I0 / Ic1�. For I0�2Ic1,
Kz�x�=0 for all x, i.e., everywhere in the film.

The vortex-generated complex potential Gv���=G���
−GM��� 	see Eqs. �10� and �B14�
 in the absence of bulk
pinning is

Gv��� =
I0

2�
	gv��,y1� − gv��,y2�
 , �27�

where

gv��,y� = 
 i arctan��/y�



i

asy
	a2y2E��,k� + y2�b2 + y2�F��,k�

− �a2 + y2��b2 + y2����,− b2/y2,k�
 , �28�

s = ��a2 + y2��b2 + y2� , �29�

FIG. 4. Plot of the vortex dome’s left boundary b vs I0 / Ic1 for
the bulk-pinning-free case, where b is in units of x0=�y1y2, for
Ic1� I0�2Ic1 and y1 /y2=0.01, 0.03, 0.1, 0.3, and 1 �bottom to top�.
The right boundary of the vortex dome is at a=x0

2 /b.

FIG. 5. The perpendicular magnetic field Hy�x ,0� /Hc1

=Hvy�x ,0� /Hc1 vs x exhibits vortex and antivortex flux domes at
b� 
x 
 �a in the absence of bulk pinning. With y1=1, y2=2, and
x0=�y1y2=1.414, when I0=1.001Ic1, tiny domes are centered at
±x0. As I0 increases, the domes become taller and wider, as shown
for I0=1.026Ic1 when b=1 �dotted�, I0=1.212Ic1 when b=0.5 �short
dash�, and I0=2Ic1 when b=0 and a=� �long dash�. For I0�2Ic1,
the superconducting film is no longer capable of screening, Kz�x�
=0 everywhere, and Hy�x ,0�=H0y�x ,0� 	Eq. �2�
.

FIG. 6. Sheet-current density Kz�x� /Hc1 vs x in the absence of
bulk pinning for y1=1, y2=2, and x0=�y1y2=1.414. When I0= Ic1,
Kz�x� �solid� is equal to KMz�x�, shown in Fig. 3. With increasing I0,
regions of Kz�x�=0 develop underneath the vortex and antivortex
domes at b� 
x 
 �a, beginning at x= ±x0. Shown are results for
I0=1.026Ic1 when b=1 �dotted� and I0=1.212Ic1 when b=0.5
�dashed�. For I0�2Ic1, the superconducting film is no longer ca-
pable of screening, and Kz�x�=0 everywhere.

FIG. 7. Parallel magnetic fields at x=0 at the top and bottom
surfaces Hx�0,	� and Hx�0,−	� vs I0 in the absence of bulk pinning
�see text�. The bold dashed line is H0x�0,0�=Hc1I0 /2Ic1 	Eq. �2�
.
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� = arcsin��/b� , �30�

k = b/a , �31�

where E, K, and � are incomplete elliptic integrals and the
upper �lower� signs hold in the upper �lower� half � plane.
Shown in Fig. 9 is a contour plot of the real part of
Gv�x+ iy�. These contours correspond to the magnetic field
lines of the vortex-generated magnetic field. The magnetic
field flows in a generally counterclockwise direction, carried
by vortices in the region b�x�a up through the film and by
antivortices in the region −a�x�−b back down through the
film. A contour plot of the real part of G�x+ iy�=GM�x+ iy�
+Gv�x+ iy� would also show the magnetic field lines gener-
ated by the two wires, as in Fig. 2.

D. Flux domes in the presence of weak bulk pinning

In superconducting films in which bulk pinning is present
and is characterized by a field-independent critical sheet-
current density Kc= jcd�0, the first vortex enters the film at
x=0, when the maximum parallel magnetic field at the top
surface HMx�0,	� 	Eq. �12�
 is equal to the lower critical field
Hc1.22 As in Sec. II C, this again occurs at the current

I0= Ic1, given in Eq. �14�. According to critical-state
theory,23,24 this vortex advances toward the bottom surface
at the leading edge of a curving flux front of nearly parallel
vortices of thickness dp= 	HMx�0,	�−Hc1
 / jc, and it reaches
the bottom surface when dp=d, i.e., when HMx�0,	�
=Hc1+Kc or I0= Ic1+ Ic0 	see Eqs. �12�, �14�, and �15�
. The
positive end of the first vortex is then at x=xp and its nega-
tive end is at x=−xp, where xp is the solution of HMx�xp ,	�
=Hc1 	see Eq. �9�
. It can be shown that xp�d when d�y1

except when Kc�Hc1.
Once the first vortex reaches the bottom surface, the por-

tion at x�0 annihilates with its image, and the vortex di-
vides into two halves. The half in the region x�0, which we
call a vortex, carries magnetic flux �0 up from the bottom to
the top surface, and the half in the region x�0, which we
call an antivortex, carries magnetic flux �0 down from the
top to the bottom surface. Since HMx�0,−	�=0 and
HMx�0,	�=Hc1+Kc at I0= Ic1+ Ic0, the sheet-current density is
initially KMz�0�=−Hc1−Kc. Because 
KMz�0� 
 �Kc, the vor-
tex separates from the rest of the flux front and is driven in
the x direction by the Lorentz force KMz�x��0 until it comes
to rest at x=xc, where 
KMz�xc� 
 =Kc 	see Eq. �11�
 and the
Lorentz force is balanced by the pinning force. Similarly, the
antivortex moves in the opposite direction and comes to rest
at the point x=−xc. As we will show below, 0�xc�x0

=�y1y2 when Kc�0 �see Fig. 10�.
For increasing values of I0 in the range Ic1+ Ic0� I0

�2Ic1+ Ic0, the magnetic field distribution perpendicular to
the film can be characterized as having a positive vortex-
generated magnetic flux dome in the region b�x�a, where
0�b�xc�a, and a negative antivortex-generated flux dome
in the region −a�x�−b. The complex magnetic field
H���=HM���+Hv��� is given by Eq. �B13�. Subtracting the
Meissner-state complex field HM���, we obtain the following
expression for the vortex-generated complex magnetic field

Hv��� =
I0

2�
� y1	
i + ����/s1


�2 + y1
2 −

y2	
i + ����/s2

�2 + y2

2 � ± iKc/2,

�32�

FIG. 8. The magnitude of the sheet-current density at the origin
−Kz�0�=Hx�0,	�−Hx�0,−	� vs I0 in the absence of bulk pinning
�see Fig. 7�.

FIG. 9. Contour plot of the real part of the vortex-generated
complex potential in the absence of bulk pinning 	Eq. �27�

Gv�x+ iy� vs x and y for y1=1, y2=2, a=2, and b=1, as for the
dotted curves in Figs. 5 and 6. The contours correspond to magnetic
field lines of the vortex-generated complex field Hv�x+ iy� given in
Eq. �19�.

FIG. 10. Plot of x̃c=xc /x0 vs Kc /Hc1 in the presence of bulk
pinning, where xc is the position of the first entering vortex when
I0 just exceeds Ic1+ Ic0 and x0=�y1y2. Curves are shown for
y1 /y2=0.01, 0.03, 0.1, 0.3, and 1 �bottom to top�.
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where sj =��a2+yj
2��b2+yj

2�, and the upper �lower� sign holds when �=x+ iy is in the upper �lower� half plane. Following a
procedure similar to that used in Sec. II C, we obtain the following values of Hvy�x ,0�, Hvx�x ,	�=−Hvx�x ,−	�, and Kvz�x�
=Hvx�x ,−	�−Hvx�x ,	�:

Hvy�x,0� = �0, 
x
 � b or 
x
 � a ,

I0

2�
� y1

s1�x2 + y1
2�

−
y2

s2�x2 + y2
2���̃�x� , b � 
x
 � a ,

�33�

Hvx�x,	� =�−
I0

2�
� y1	1 − �̃�x�/s1


x2 + y1
2 −

y2	1 − �̃�x�/s2

x2 + y2

2 � + Kc/2, 
x
 � b or 
x
 � a ,

−
I0

2�
� y1

x2 + y1
2 −

y2

x2 + y2
2� + Kc/2, b � 
x
 � a , � �34�

Kvz�x� =� I0

�
� y1	1 − �̃�x�/s1


x2 + y1
2 −

y2	1 − �̃�x�/s2

x2 + y2

2 � − Kc, 
x
 � b or 
x
 � a ,

I0

�
� y1

x2 + y1
2 −

y2

x2 + y2
2� − Kc, b � 
x
 � a . � �35�

For Ic1+ Ic0� I0�2Ic1+ Ic0, the requirement that
�−�

+�Kz�x�dx=0 leads to Eq. �B24�. A second condition on a,
b, and I0 follows from the requirement that Hx�0,	�=Hc1

+Kc, which from Eq. �B13� yields

Hx�0,	� =
I0

2�
� �1 + ab/s1�

y1
−

�1 + ab/s2�
y2

� +
Kc

2
= Hc1 + Kc.

�36�

Elimination of I0 between Eqs. �B24� and �36� yields the
equation

y1y2�y1s2 − y2s1�
�y2 − y1�s1s2 + ab�y2s2 − y1s1�

=
Kc/2Hc1

1 + Kc/2Hc1
. �37�

Numerical solutions of Eqs. �36� and �37� yield a and b as a
function of I0 for any given value of Kc. As discussed above,

when I0 just exceeds Ic1+ Ic0, the first vortex �antivortex�
comes to rest at xc �−xc�. The equation determining the value
of x̃c=xc /x0=xc /�y1y2 can be obtained from Eq. �B24� by
setting a=b=xc and making use of Eqs. �14� and �15�:

�1 − x̃c
2�

�x̃c
2 + y1/y2��x̃c

2 + y2/y1�
=

Kc/Hc1

1 + Kc/Hc1
. �38�

Figure 10 shows plots of x̃c vs Kc /Hc1 for various values of
y1 /y2, obtained by numerically solving Eq. �38�. Note
that for each case x̃c=1 when Kc=0, and x̃c→0 when
Kc /Hc1→�. For Kc /Hc1�1,

x̃c � 1/��1 + y1/y2 + y2/y1��Kc/Hc1� . �39�

FIG. 11. Plots of a �upper curves�, the right boundary of the
vortex dome, and b �lower curves�, the left boundary, vs I0 / Ic1 for
y1=1 and y2=2: Kc=0 �solid curves separated by the dot at a=b
=xc=1.414�, Kc=Hc1 /2 �dotted curves and dot at xc=0.827�, Kc

=Hc1 �short-dashed curves and dot at xc=0.651�, and Kc=2Hc1

�long-dashed curves and dot at xc=0.493�. Note that b=0 when
I0 / Ic1�2+Kc /Hc1.

FIG. 12. When I0� Ic1+ Ic0, the perpendicular magnetic field
Hy�x ,0� /Hc1=Hvy�x ,0� /Hc1 vs x initially exhibits separated vortex
and antivortex flux domes at b� 
x 
 �a even in the presence of
bulk pinning, as shown here for Kc=Hc1 /2, y1=1, y2=2, and xc

=0.827. When I0 is just above Ic1+ Ic0=1.5Ic1, tiny domes are cen-
tered at ±xc. As I0 increases, the domes become taller and wider, as
shown for I0=1.545Ic1 when b=0.600 and a=1.077 �dotted curves�,
I0=1.683Ic1 when b=0.400 and a=1.337 �short-dashed curves�,
I0=1.966Ic1 when b=0.200 and a=1.630 �medium-dashed curves�,
and I0=2Ic1+ Ic0=2.5Ic1 when b=0 and a=1.933 �long-dashed
curves�.
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Numerical solutions for a and b when Ic1+ Ic0� I0�2Ic1
+ Ic0 are shown by the dotted curves in Fig. 11 for the case
that y1=1, y2=2, x0=�2, and Kc=Hc1 /2, such that Ic0
= Ic1 /2. Note that a=b=xc=0.585x0=0.827 at I0= Ic1+ Ic0
when vortex penetration first occurs. From Eqs. �36�, �14�,
and �15�, we see that b=0 when I0=2Ic1+ Ic0. When I0
�2Ic1+ Ic0, b remains equal to zero, and the value of a must
be obtained from Eq. �B25�. Figure 11 also shows similar
plots of a and b for Kc=Hc1 and Kc=2Hc1. Figures 12 and 13
show plots of Hy�x ,0�=Hvy�x ,0� and Kz�x� vs x for several
values of I0 in the range Ic1+ Ic0� I0�2Ic1+ Ic0.

Figure 14 shows plots of Hx�0, ±	�=HMx�0, ±	�
+Hvx�0, ±	� vs I0. For 0� I0� Ic1+ Ic0, we have Hx�0,	�
=HMx�0,	�=Hc1I0 / Ic1 and Hx�0,−	�=HMx�0,−	�=0. For
Ic1+ Ic0� I0�2Ic1+ Ic0, we have Hx�0,	�=HMx�0,	�
+Hvx�0,	�=Hc1+Kc and Hx�0,−	�=Hvx�0,−	�, where
HMx�0,	�=Hc1I0 / Ic1 and Hvx�0, ±	�= 
Hc1�I0− Ic1− Ic0� / Ic1.
When I0=2Ic1+ Ic0, Hx�0,	�=Hc1+Kc and Hx�0,−	�=Hc1.
For I0�2Ic1+ Ic0, Hx�0, ±	�=H0x�0,0�±Kc /2=Hc1I0 /
2Ic1±Kc /2.

Figure 15 shows a plot of −Kz�0� vs I0, where Kz�0�
=Hx�0,−	�−Hx�0,	�. For 0� I0� Ic1+ Ic0, −Kz�0�= �Hc1

+Kc�I0 / �Ic1+ Ic0�, and for Ic1+ Ic0� I0�2Ic1+ Ic0, −Kz�0�
=Kc+Hc1�2Ic1+ Ic0− I0� / Ic1. For I0�2Ic1+ Ic0, −Kz�0�=Kc.

The vortex-generated complex potential Gv���=G���
−GM��� 	see Eqs. �10� and �B14�
 in the presence of weak
bulk pinning �0�Kc�Hc1� is, when Ic1� I0� Ic2, such that
0�b�a,

Gv��� =
I0

2�
	gv��,y1� − gv��,y2�
 ± i

Kc

2
� , �40�

where gv�� ,y� is given in Eq. �28�. Shown in Fig. 16 is a
contour plot of the real part of Gv�x+ iy�. These contours
correspond to the magnetic field lines of the vortex-
generated magnetic field. The magnetic field flows in a gen-
erally counterclockwise direction, carried by vortices in the
region b�x�a up through the film and by antivortices in
the region −a�x�−b back down through the film. A con-
tour plot of the real part of G�x+ iy�=GM�x+ iy�+Gv�x+ iy�
would also show the magnetic field lines generated by the
two wires, as in Fig. 2.

When I0�2Ic1+ Ic0, the gap between the vortex dome and
the antivortex dome is closed �b=0�, and the magnetic-field
distribution thus can be characterized as a dome of vortices

FIG. 13. Sheet-current density Kz�x ,0� /Hc1 vs x in the presence
of bulk pinning, shown here for Kc=Hc1 /2, y1=1, y2=2, and xc

=0.827. When I0= Ic1+ Ic0, Kz�x� �solid� is equal to KMz�x�, shown
in Fig. 3. With increasing I0, regions of Kz�x�=−Kc develop under-
neath the vortex and antivortex domes at b� 
x 
 �a, beginning at
x= ±xc, while 
Kz�x� 
 �Kc in the vortex-free region −b�x�b.
Shown are results for I0=1.545Ic1 when b=0.600 and a=1.077
�dotted curves�, I0=1.683Ic1 when b=0.400 and a=1.337 �short-
dashed curves�, I0=1.966Ic1 when b=0.200 and a=1.630 �medium-
dashed curves�, and I0=2Ic1+ Ic0=2.500Ic1 when b=0 and a
=1.933 �long-dashed curves�. For I0�2Ic1+ Ic0, Kz�x�=−Kc in the
region −a�x�a and 
Kz�x� 
 �Kc outside this region.

FIG. 14. Parallel magnetic fields at x=0 at the top and bottom
surfaces Hx�0,	� and Hx�0,−	� vs I0 in the presence of bulk pin-
ning, shown here for Kc=Hc1 /2, such that Ic1+ Ic0=1.5Ic1 and
2Ic1+ Ic0=2.5Ic1 �see text�. The bold dashed line is H0x�0,0�
=Hc1I0 /2Ic1 	Eq. �2�
.

FIG. 15. Magnitude of the sheet-current density at the origin
−Kz�0�=Hx�0,	�−Hx�0,−	� vs I0 in the presence of weak bulk pin-
ning, shown here for Kc=Hc1 /2, such that Ic2=2Ic1− Ic0=1.5Ic1 �see
Fig. 14�.

FIG. 16. Contour plot of the real part of the vortex-generated
complex potential in the presence of weak bulk pinning 	Eq. �40�

Gv�x+ iy� vs x and y for y1=1, y2=2, Kc=Hc1 /2, I0=1.683Ic1, a
=1.337, and b=0.4, as for the short-dashed curves in Figs. 12 and
13. The contours correspond to magnetic field lines of the vortex-
generated complex field Hv�x+ iy� given in Eq. �32�.
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in the region 0�x�a carrying magnetic flux up through the
film and an adjacent dome of antivortices in the region −a
�x�0 carrying an equal amount of magnetic flux back
down through the film. The outer boundaries of these domes
�±a� depend upon the values of I0 and Kc, and the magnetic-
field and sheet-current-density distributions can be calculated
as follows. The complex magnetic field H���=HM���
+Hv��� is as given in Eq. �B13�, except that b=0 and ����,
s1, and s2 are now given by Eqs. �B19�–�B21�. Similarly, the
vortex-generated complex magnetic field Hv��� is as given in
Eq. �32�, and Hvy�x ,0�, Hvx�x ,	�=−Hvx�x ,−	�, and Kvz�x�
=Hvx�x ,−	�−Hvx�x ,	� are as given in Eqs. �33�–�35�, except
that now just above or below the real axis,

��x ± i	� =��̃�x� , 0 � 
x
 � a ,

±i�̃�x� , 
x
 � a ,
�41�

where

�̃�x� = �x�a2 − x2, 0 � 
x
 � a ,

− 
x
�x2 − a2, 
x
 � a .
�42�

For given values of I0 and Kc the value of a in the above
equations is determined by Eq. �B25�, which follows from
the requirement that �−�

+�Kz�x�dx=0, and by Eq. �36� �but
with b=0�, which follows from the requirement that
Hx�0,	�=Hc1+Kc. Numerical solutions for a obtained in this
way are shown in Fig. 11 vs I0 / Ic1 for I0�2Ic1+ Ic0 �where
b=0� for the case of y1=1 and y2=2. Figures 17 and 18 show
plots of Hy�x ,0�=Hvy�x ,0� and Kz�x� vs x for several values
of I0�2Ic1+ Ic0 when Kc=Hc1 /2.

When I0�2Ic1+ Ic0, such that a�0 and b=0, the vortex-
generated complex potential Gv���=G���−GM��� 	see Eqs.
�10�, �B14�, and �B22�
 in the presence of bulk pinning is

Gv��� =
I0

2�
	gv��,y1� − gv��,y2�
 ± i

Kc

2
� , �43�

where

gv��,y� = 
 i arctan��/y� +�a2 − �2

a2 + y2 −
a

�a2 + y2

− arctanh�a2 − �2

a2 + y2 + arctanh
a

�a2 + y2
, �44�

and the upper �lower� signs hold in the upper �lower� half �
plane. Shown in Fig. 19 is a contour plot of the real part of
Gv�x+ iy�. These contours correspond to the magnetic field
lines of the vortex-generated magnetic field. The magnetic
field flows in a generally counterclockwise direction, carried
by vortices in the region 0�x�a up through the film and by
antivortices in the region −a�x�0 back down through the
film. A contour plot of the real part of G�x+ iy�=GM�x+ iy�
+Gv�x+ iy� would also show the magnetic field lines gener-
ated by the two wires, as in Fig. 2.

E. Flux domes in the presence of strong bulk pinning

We consider here briefly the case of superconducting
films in which bulk pinning, characterized by a field-

FIG. 17. When I0�2Ic1+ Ic0 in the presence of bulk pinning, the
perpendicular magnetic field Hy�x ,0� /Hc1=Hvy�x ,0� /Hc1 vs x ex-
hibits adjacent vortex and antivortex flux domes at 0� 
x 
 �a, as
shown here for Kc=Hc1 /2, Ic0=0.5Ic1, y1=1, and y2=2. As I0 in-
creases, the domes become taller and wider, as shown for I0

=2.5Ic1 when a=1.933 �solid curves�, I0=4.25Ic1 when a=2.504
�short-dashed curves�, and I0=6Ic1 when a=2.913 �long-dashed
curves�.

FIG. 18. Sheet-current density Kz�x ,0� /Hc1 vs x when I0

�2Ic1+ Ic0 in the presence of bulk pinning, shown here for Kc

=Hc1 /2, Ic0=0.5Ic1, y1=1 and y2=2. Shown are results for I0

=2.5Ic1 when a=1.933 �solid curve�, I0=4.25Ic1 when a=2.504
�short-dashed curve�, and I0=6Ic1 when a=2.913 �long-dashed
curve�, corresponding to the cases shown in Fig. 17.

FIG. 19. Contour plot of the real part of the vortex-generated
complex potential in the presence of bulk pinning 	Eq. �43�

Gv�x+ iy� vs x and y for y1=1, y2=2, Kc=Hc1 /2, I0=2Ic1+ Ic0

=2.5Ic1, a=1.933, and b=0, as for the solid curves in Figs. 17 and
18. The contours correspond to magnetic field lines of the vortex-
generated complex field Hv�x+ iy� given by Eq. �32�.
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independent critical sheet-current density Kc= jcd�0, is so
strong that Kc�Hc1. In principle, the process of vortex entry
is qualitatively the same as discussed in Sec. II D. However,
in the limit that Hc1 /Kc→0, the width of the current region
Ic1+ Ic0 to 2Ic1+ Ic0 �in which there is a gap of width 2b
between the vortex and antivortex domes� shrinks to zero,
and Ic0 becomes the only critical current of practical interest.
Essentially, as soon as I0 exceeds Ic0, the vortices penetrating
from the top surface divide in such a way as to produce
adjacent vortex and antivortex flux domes in the regions 0
�x�a and −a�x�0, and the sheet-current density is
Kz�x�=−Kc in these regions. The perpendicular magnetic
field Hy�x ,0�, sheet-current density Kz�x�, and vortex-
generated complex potential Gv�x+ iy� can be calculated as
discussed in Sec. II D for the case that b=0, and plots of all
these quantities look very similar to those in Figs. 17–19.

Figure 20 shows plots of Hx�0, ±	�=HMx�0, ±	�
+Hvx�0, ±	� vs I0 in the limit Hc1 /Kc→0. For 0� I0� Ic0,
we have Hx�0,	�=HMx�0,	�=KcI0 / Ic0 and Hx�0,−	�
=HMx�0,−	�=0. For I0� Ic0, Hx�0, ±	�=H0x�0,0�±Kc /2
=KcI0 /2Ic0±Kc /2. Figure 21 shows a plot of −Kz�0� vs I0 in
the same limit, where Kz�0�=Hx�0,−	�−Hx�0,	�. For 0� I0

� Ic0,−Kz�0�=KcI0 / Ic0, and for I0� Ic0, −Kz�0�=Kc.

III. SUMMARY AND DISCUSSION

In this paper we have predicted that separated vortex and
antivortex flux domes can be produced in weak-pinning
type-II superconducting films subjected to local magnetic
fields generated by current-carrying wires above the film’s
surface and far from the edges. To calculate these effects
analytically, we have chosen an idealized geometry of two
parallel infinitely long wires above an infinite superconduct-
ing film. However, the basic phenomenon of the creation of
separated vortex and antivortex flux domes without nucle-
ation at the film’s edges is far more general than in the ge-
ometry we have considered here.

For example, consider the case of a bulk-pinning-free
superconducting film of finite size in the xz plane and a
small coil at �x ,y ,z�= �0,y0 ,0� a short distance above the
film. Suppose the coil produces a magnetic dipole moment
m=−x̂m. When m is small, the film remains in the Meissner

state, and if the magnetic field below the film is very small,
the coil-generated dipole magnetic field and its image
produce a magnetic field at the film’s top surface HM
= x̂HMx+ ẑHMz, where HMx�x ,	 ,z�=2m�y0

2−2x2+z2� /R0
5,

HMz�x ,	 ,z�=−6mxz /R0
5, and R0=�x2+y0

2+z2. The induced
sheet-current density is KM = x̂KMx+ ẑKMz, where KMx�x ,z�
=HMz�x ,	 ,z� andKMz�x ,z�=−HMx�x ,	 ,z�, such that � ·KM

=0. In the plane z=0 the magnetic-field and sheet-current
distributions resemble those shown in Figs. 2 and 3. The
maximum magnetic field parallel to the top surface occurs at
the origin, where HM�0,	 ,0�= �2m /y0

3�x̂, and the first flux
penetration through the film occurs when m increases to the
value mc=Hc1y0

3 /2. The penetrating vortex splits into a vor-
tex and an antivortex, and the vortex is driven by the Meiss-
ner screening currents via the corresponding Lorentz force
F�x ,z�=�0HM�x ,	 ,z� to the point �x ,y ,z�= �y0 /�2,0 ,0�,
while the antivortex is similarly driven to �x ,y ,z�= �−y0 /
�2,0 ,0�. A further increase in the coil’s current �m�mc� will
result in more nucleating vortices and antivortices and cause
the development of vortex and antivortex flux domes cen-
tered at �x ,y ,z�= �±y0 /�2,0 ,0�. Vortex and antivortex flux
domes also could be produced by bringing a permanent mag-
net with magnetic dipole moment m=−x̂m close to the film.

Similar effects should occur in superconducting films with
bulk pinning. In particular, when the maximum magnetic
field parallel to the surface, accounting for image fields, ex-
ceeds Hc1+Kc, vortex and antivortex flux domes should be
produced with properties similar to those described in Secs.
II D and II E. In the above geometry with a small coil or a
permanent magnet producing a magnetic moment m=−x̂m,
we expect that the main effect of bulk pinning will be to
reduce the separation between the vortex and antivortex flux
domes.

In this paper we have confined our attention to the case in
which an initially flux-free film is subjected to locally ap-
plied magnetic fields increasing in magnitude. We expect that
interesting hysteretic effects, similar to those in a finite-width
film with a geometrical barrier,16 will occur when ac mag-
netic fields are applied. For example, consider a bulk-
pinning-free superconducting film in the geometry studied in
Sec. II but with I0 being cycled. As I0 is increased from zero,
we expect vortex and antivortex domes to develop as pre-
dicted in Sec. II C, where the dome boundaries a and b are
determined in part by the condition that Hx�0,	�=Hc1 	Eq.
�25�
. Suppose that these values are amax and bmax when I0

FIG. 21. Magnitude of the sheet-current density at the origin
−Kz�0�=Hx�0,	�−Hx�0,−	� vs I0 for strong bulk pinning in the
limit as Hc1 /Kc→0 �see Fig. 20�.

FIG. 20. Parallel magnetic fields at x=0 at the top and bottom
surfaces Hx�0,	� and Hx�0,−	� vs I0 for strong bulk pinning in the
limit as Hc1 /Kc→0 �see text�. The bold dashed line is H0x�0,0�
=Hc1I0 /2Ic1 	Eq. �2�
.
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increases to some maximum value Imax, where Ic1� Imax
�2Ic1, amax=x0

2 /bmax�x0, and bmax�x0=�y1y2. If I0 is now
decreased, the condition that Hx�0,	�=Hc1 is replaced by the
condition that the magnetic flux under each flux dome re-
mains constant, i.e., Re	G�a�−G�b�
=const. As a result, as
I0 decreases, the width of each dome increases while its
height decreases, i.e., b decreases �b�bmax� and a increases
�a�amax�. The resulting values of b and a can be calculated
as functions of I0 using the relations a=x0

2 /b and

I0�g�a,b� = Imax�g�amax,bmax� , �45�

where 	see Eqs. �B14� and �B15�


�g�a,b� = Re�	g0�a,y1� − g0�a,y2�
 − 	g0�b,y1� − g0�b,y2�
� .

�46�

So long as b�0, vortex-antivortex annihilation cannot occur
because the sheet current flowing in the region 
x 
 �b still
keeps vortices and antivortices apart. In fact, a subsequent
increase of I0 would produce reversible changes in the width
and height of the vortex and antivortex domes, provided I0
� Imax. However, the vortex-free gap of width 2b closes
when I0 is decreased to the value Iex at which b→0 and a
→�, where

Iex = Imax�g�amax,bmax�/�g�� ,0� �47�

and �g�� ,0�=ln�y2 /y1�. When I0= Iex, the sheet-current den-
sity becomes everywhere zero, the film appears as if it were
completely incapable of screening, and the magnetic field
distribution �averaged over a length of the order of the int-
ervortex separation� is essentially the same as it would be in
the absence of the film. On the other hand, viewing the field
distribution as a linear superposition of the Meissner-state
response and a vortex-antivortex distribution, we see that
when the gap of width 2b closes, vortex-antivortex annihila-
tion begins to occur at x=0, and magnetic flux begins to exit
from the vortex and antivortex domes. As I0 decreases from
Iex to zero, the magnitude of the magnetic flux under each
dome decreases to zero. When I0=0, the film is again flux-
free, and as I0 further decreases to −Imax, the behavior is very
similar to that for increasing I0, except that the roles of vor-
tices and antivortices are interchanged.

We expect that similar but somewhat more complicated
hysteretic effects will occur in the presence of bulk pinning.
In the case of strong bulk pinning �Kc�Hc1�, the role of Hc1

can be neglected, and the hysteretic properties can be calcu-
lated analytically as in Ref. 25, which treats the response of
a superconducting film to currents in linear wires in arrange-
ments similar to that discussed in Sec. II. Such calculations
illuminate the fundamental physics underlying the ac tech-
nique introduced by Claassen et al.26 to determine the critical
current density jc in superconducting films. This technique
employs a small coil, placed just above the film, carrying a
sinusoidal current. When the current amplitude exceeds the
value at which the maximum induced sheet-current density
reaches Kc= jcd, a third-harmonic voltage appears in the
coil.26–29 A similar technique was introduced by Hochmuth
and Lorenz.30

The effects discussed in this paper and applied to type-II
superconducting films are quite general and also should be
observed in type-I superconductors. Magnetic flux domes
consisting of intermediate-state regions containing multiply
quantized flux tubes have been observed in type-I strips in
which the geometric barrier plays a dominant role.9 It is
therefore likely that separated domes of positive and nega-
tive magnetic flux produced in response to nearby current-
carrying wires, coils, or permanent magnets also will be ob-
served in weak-pinning type-I superconducting films, foils,
or plates when the net parallel field at the surface exceeds the
bulk thermodynamic critical field Hc �or, when bulk pinning
is present, Hc+Kc�. In type-I superconductors, however, we
expect that the magnetic flux will enter in the form of the
intermediate state. The analog of a vortex dome will be an
intermediate-state region consisting of either an array of
multiply quantized flux tubes or a meandering normal-
superconducting domain structure carrying magnetic flux up
through the film, while the analog of an antivortex dome will
be a similar intermediate-state region carrying magnetic flux
down through the film. Such magnetic structures should be
observable by magneto-optics or related means by placing
the magnetic-field source on one side of the sample and the
magnetic-field detector on the opposite side.
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APPENDIX A: SCREENING EFFECTS

The primary purpose of this paper is to describe in detail
how magnetic flux penetrates through a superconducting film
in the form of vortices and antivortices, using the assumption
that the magnetic field below the film is initially negligibly
small. In the following we present results confirming that
this is an excellent approximation when d�� and d�y1.

Consider the experimental configuration shown in Fig. 1
but allow for the finite thickness d of the superconducting
film in the region 
z 
 �d /2. When the film, characterized by
the London penetration depth �, is in the Meissner state, the
vector potential and the magnetic field throughout all space,
as well as the supercurrent density in the film, can be calcu-
lated as described in Ref. 31. The results for the x compo-
nents of the magnetic fields Hx�0, 
d /2� at the bottom and
top surfaces of the film, expressed in units of H0x�0,0� 	Eq.
�2�
, are

Hx�0,− d/2�
H0x�0,0�

=
2y1y2

�y2 − y1��0

� � Qq

2qQ cosh�Qd� + �q2 + Q2�sinh�Qd��
��e−qy1 − e−qy2�eqd/2dq , �A1�
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Hx�0, + d/2�
H0x�0,0�

=
2y1y2

�y2 − y1��0

� � Q	q cosh�Qd� + Q sinh�Qd�

2qQ cosh�Qd� + �q2 + Q2�sinh�Qd��

��e−qy1 − e−qy2�eqd/2dq , �A2�

where Q=�q2+�−2. These quantities are plotted as the solid
curves in Figs. 22 and 23 as functions of � /d for the case
that d=y1 /1000 and y2=2y1.

When �→0, the film screens perfectly, such that
Hx�0,−d /2�=0 and Hx�0, +d /2�=2Hx0�0,d /2�. In the
opposite limit, when �→�, Hx�0,−d /2�=Hx0�0,−d /2� and
Hx�0,d /2�=Hx0�0,d /2�, where Hx0�0,y�= I0�y2−y1� /
2��y1−y��y2−y� is the magnetic field produced by the wires
in the plane x=0 for y�y1 in the film’s absence.

Equations �A1� and �A2� reduce to simpler expressions
when d�y1 and either ��d or, if ��d, the Pearl length32

�=�2 /d obeys ��y1. Then to good approximation q can be
set equal to zero inside the brackets and Q can be replaced
by 1/�. The resulting integrals yield

Hx�0,− d/2�
H0x�0,0�

=
2�y1 + y2��

y1y2sinh�d/��
, �A3�

Hx�0, + d/2�
H0x�0,0�

= 2 −
2�y1 + y2��

y1y2tanh�d/��
. �A4�

As shown by the long-dashed curves in Figs. 22 and 23,
these expressions are excellent approximations, indistin-
guishable from the solid curves, when � /d�1 or ��y1
when � /d�1. However, the long-dashed curves deviate sig-
nificantly from the solid curves for � /d�10, which is to be
expected, since for the parameters used for the figures, �
�y1 when � /d�30.

To evaluate Eqs. �A1� and �A2� for all values of the Pearl
length32 �=�2 /d when d�y1 and ��d, it is a good ap-
proximation to ignore q2 relative to 1/�2 inside the brackets
and to replace Q by 1/� but to retain the terms proportional
to q in the denominators. This approximation is equivalent to
the assertion that when d��, the only length that deter-
mines the screening properties of the film is �. This proce-
dure yields the following approximate results:

Hx�0,− d/2�/H0x�0,0� = 1 − I , �A5�

Hx�0, + d/2�/H0x�0,0� = 1 + I , �A6�

where

I =
y1y2

�y2 − y1��0

� 1

1 + 2q�
�e−qy1 − e−qy2�dq , �A7�

=
y1y2

2�y2 − y1��
	ey2/2�Ei�− y2/2�� − ey1/2�Ei�− y1/2��
 ,

�A8�

and Ei�x� is the exponential integral. On the scale of Fig. 22,
the approximation for Hx�0,−d /2� given in Eq. �A5�, shown
as the short-dashed curve, is indistinguishable from the solid
curve for values of � /d�3. Surprisingly, on the scale of Fig.
23, the approximation for Hx�0,d /2� given in Eq. �A6� is
indistinguishable from the solid curve for all values of � /d.

APPENDIX B: COMPLEX FIELD AND COMPLEX
POTENTIAL

In the following we derive the complex field H��� and
complex potential G��� satisfying the boundary conditions
that the perpendicular �y� component of the magnetic field in
the plane of the film obeys Hy�x ,0�=0 for 
x 
 �b or 
x 
 �a
and that the sheet-current density in the z direction obeys
Kz�x�=−Kc for b� 
x 
 �a. We begin by considering the
function

F��� = 	H��� − H�
/���� , �B1�

where H��� is defined in Eq. �1�,

H���� = i
I0

2�
� y1

�2 + y1
2 −

y2

�2 + y2
2� �B2�

and

���� = ��a2 − �2���2 − b2� . �B3�

FIG. 23. Magnetic field just above the film Hx�0, +d /2� /
Hx0�0,0� vs � /d, shown here for d=y1 /1000 and y2=2y1 as calcu-
lated from Eqs. �A2� �solid curve� and �A4� �dashed curve�. A plot
of the same quantity using Eq. �A6� would be indistinguishable
from the solid curve.

FIG. 22. Magnetic field just below the film Hx�0,−d /2� /
Hx0�0,0� vs � /d, shown here for d=y1 /1000 and y2=2y1 as calcu-
lated from Eq. �A1� �solid curve�, Eq. �A3� �long-dashed curve�,
and Eq. �A5� �short-dashed curve�.
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For 
� 
 →�, ����→ 
 i�2, where the upper �lower� sign
holds in the upper �lower� half plane. Just above �below� the
real axis,

��x ± i	� =�±i�̃�x�, 
x
 � b or 
x
 � a ,

�̃�x�, b � 
x
 � a ,
�B4�

where

�̃�x� = �
��a2 − x2��b2 − x2�, 
x
 � b ,

sgn�x���a2 − x2��x2 − b2�, b � 
x
 � a ,

− ��x2 − a2��x2 − b2�, 
x
 � a .

�B5�

As can be seen from Eqs. �1� and �B2�, F��� is an analytic
function of �=x+ iy except for poles at �= ± iy1 and �
= ± iy2, and a branch cut along the real axis.

Next consider the following integral around the closed
contour C consisting of a line just above the real axis at ��
=u+ i	 from u=−� to u= +�, the infinite circle at ��=Rei�

from �=0 to �=2� with R→�, and a line just below the real
axis at ��=u− i	 from u= +� to u=−�,

�
C

d��
F����
�� − �

= �
−�

+�

du
F�u + i	� − F�u − i	�

u − �
, �B6�

where the integral around the infinite circle vanishes because

F��� 
�
H��� /�2 
 →0 as 
� 
 →�. Using the residue theorem,
accounting for the poles of the integrand on the left-hand
side of Eq. �B6� at ��=� , iy1 , iy2 ,−iy1, and −iy2, we obtain

F��� − F0��� =
1

2�i
�

−�

+�

du
F�u + i	� − F�u − i	�

u − �
, �B7�

where

F0��� =
I0

2�
� y1

s1��2 + y1
2�

−
y2

s2��2 + y2
2�� , �B8�

s1 = ��a2 + y1
2��b2 + y1

2� , �B9�

s2 = ��a2 + y2
2��b2 + y2

2� . �B10�

From Eqs. �1�, �2�, and �B2�, we find that

H�x ± i	� − H��x ± i	� = Hy�x,0� 
 iKz�x�/2, �B11�

such that Eqs. �B1� and �B4� yield

F�u + i	� − F�u − i	� = �− 2iHy�x,0�/�̃�x�, 
x
 � b ,

− iKz�x�/�̃�x�, b � 
x
 � a ,

− 2iHy�x,0�/�̃�x�, 
x
 � a .

�B12�

However, Hy�x ,0�=0 for 
x 
 �b or 
x 
 �a, and Kz�x�=−Kc

for b� 
x 
 �a. Using Eqs. �B5� and �B12� and evaluating the
integrals, we obtain the following expressions for the com-
plex field H��� and complex potential G���=�i	

� H����d��:

H��� =
I0

2�
� y1	i + ����/s1


�2 + y1
2 −

y2	i + ����/s2

�2 + y2

2 � ± iKc/2,

�B13�

G��� =
I0

2�
	g0��,y1� − g0��,y2�
 ± i

Kc

2
� , �B14�

where

g0��,y� = �
±i	

�

d��
y	i + �����/s


��2 + y2

= i arctan��/y� 

i

asy

�	a2y2E��,k� + y2�b2 + y2�F��,k�

− �a2 + y2��b2 + y2����,− b2/y2,k�
 , �B15�

s = ��a2 + y2��b2 + y2� , �B16�

� = arcsin��/b� , �B17�

k = b/a , �B18�

where E, K, and � are incomplete elliptic integrals.
When b=0, the following replacements can be made in

the above expressions:

���� = ��a2 − �2, �B19�

s1 = y1
�a2 + y1

2, �B20�

s2 = y2
�a2 + y2

2, �B21�

and E, K, and � can be evaluated to obtain

g0��,y� = i arctan��/y� +�a2 − �2

a2 + y2 −
a

�a2 + y2

− arctanh�a2 − �2

a2 + y2 + arctanh
a

�a2 + y2
.

�B22�

It follows from Eq. �1� that the integral �H���d� around
the great circle at 
� 
 →� yields i�Kz�x�dx along the real
axis. The requirement that the film carries no net current is
thus equivalent to the requirement that �H���d�=0. Using

FLUX DOMES IN WEAK-PINNING SUPERCONDUCTING… PHYSICAL REVIEW B 74, 214505 �2006�

214505-13



Eq. �B13� and the property that for 
� 
 →�, ����→ 
 i�2,
where the upper �lower� sign holds in the upper �lower� half
plane, we obtain the requirement that when Kc=0, y1 /s1
=y2 /s2. Solving the latter equation, we obtain the following
condition relating a and b:

ab = x0
2 = y1y2. �B23�

Similarly, when Kc�0 and b�0, the requirement that the
film carries no net current leads to the condition that

I0

�
� y1

��a2 + y1
2��b2 + y1

2�
−

y2

��a2 + y2
2��b2 + y2

2�
� = Kc.

�B24�

When Kc�0 but b=0, the same requirement leads to the
condition that

I0

�
� 1

�a2 + y1
2

−
1

�a2 + y2
2� = Kc. �B25�
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