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We calculate the magnetization of ferromagnetic polycrystals composed of monodomain hard magnetic
monocrystals with uniaxial anisotropy under a magnetic field by means of the many-body Green’s function
method. First, monocrystals are studied. The magnetization rotation of each monocrystal with the field varia-
tion is analyzed. When temperature is close to the Curie point, the magnitude of the magnetization changes
during the rotation. We find that the abnormal reorientation of the magnetization may cause its component
along the field direction to drop. By comparison with the classical model, we suggest an expression connecting
the classical anisotropy coefficient Ku to the single-ion anisotropy parameter K2 in the Heisenberg Hamiltonian
and show how Ku varies with temperature. The magnetizing and magnetization reversal processes of the
polycrystals are then investigated. It is concluded that the magnetizing curve can be divided into three parts.
The discussion includes the susceptibility in the three parts, the remanence, coercivity, and their temperature
dependence, the effect of varying anisotropy parameter K2 and spin quantum number S.
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I. INTRODUCTION

In a ferromagnetic �FM� polycrystal, the magnetization is
the weighted average of all the monocrystals in the sample.
When an external field B is applied to a magnetic material,
the magnetization of each monocrystal will change subject to
the field. Here, we only consider the case when each mono-
crystal has a monodomain structure. In monodomain mag-
nets, the most important change of the magnetization is its
rotation or reorientation. Stoner and Wohlfarth investigated
the magnetization rotation in such a case via a classical
model.1

The motivation of this paper is to deal with FM polycrys-
tals by a quantum statistical model based on many-body
theory. In this way, the details of the magnetization change
should be clearer than in the classical model. With a com-
parison of our results to those of the classical model, a for-
mula connecting the microscopic anisotropy parameter in the
Hamiltonian to the macroscopic one in the classical model
can be established.

To study the magnetization rotation, one needs to calcu-
late more than one spatial component of the magnetization as
statistical averages of spin operators. The many-body
Green’s function method �MBGFM� was proven to be a
powerful means for calculating the magnetization.2,3 Al-
though only one component was calculated by the MBGFM
before 2000, since then, methods have been developed to
calculate all three components of the magnetization in mag-
netic systems by means of the MBGFM with the random
phase approximation �RPA�.4–8

There have been mainly two kinds of methods used to
calculate all three components of the magnetization. One
method is to calculate the statistical averages of spin opera-
tors simultaneously;4–7 and the other is to use the frame ro-
tation method �FRM�.8,9

Fröbrich et al.4,5 first calculated the magnetization of FM
films by using three-component Green’s functions. Wang et
al.6,7 found that under RPA, a general formula for any spin

quantum number S could be given for one-, two- and three-
dimensional FM systems. This formula was an extension of
Callen’s method3 and was applicable to both the case of ex-
change anisotropy and single-ion anisotropy. Similar to
Callen’s derivation, the formula of Wang et al. proved to be
the solution of an ordinary differential equation.10,11 How-
ever, for FM films and for antiferromagnetic �AF� systems,
no analytical expression was able to be obtained and one had
to resort to numerical calculations. FM films were investi-
gated where the single-ion anisotropy could be in any
direction.12 In another work, the magnetization of sublattices
of AF films were studied where external fields were applied
along either the longitudinal or transverse direction.13 It was
found that, in the case of the transverse field, the magnetiza-
tion component along the easy axis did not disappear even
above the Néel point. This was because AF exchange should
play a role between neighboring spins when they were forced
to have a collinear component. This was a unique feature
quite different from FM systems. This example showed that
the three-component calculation allowed us to understand the
magnetic systems more clearly.

In FRM,8,9 the Cartesian system was first rotated to one in
which the magnetization was along the z� axis. In this frame,
called primed frame in Ref. 8, the Green’s function was
simple because the z� component of the spin is conserved.
Then after the magnetization was calculated in the primed
frame, the components of the magnetization in the original
frame were obtained. The merit of this method was that we
did not need to construct the three-component Green’s func-
tions, and thus saved computation time. Using this method,
Jensen et al.14 studied a two-dimensional AF lattice in detail,
and verified the feature of AF systems mentioned above.

In this paper, by means of FRM, we study a FM polycrys-
tal composed of monocrystals with uniaxial anisotropy. First,
the magnetization of a monocrystal under an external field is
investigated. We show that the magnetization reorientation
may happen when the metastable state becomes unstable.
With a comparison to the classical model, we suggest an
explicit relation between the microscopic anisotropy param-
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eter K2 in the Hamiltonian and the macroscopic one Ku,
which can be measured experimentally. Then we study the
magnetizing and magnetization reversal of a FM polycrystal.
In both the monocrystal and polycrystal cases, the effect of
temperature is emphasized.

II. THE MODEL AND METHOD

We first study the magnetization of a monocrystal in a
field. The crystal structure is assumed to be simple cubic
�s.c.�. The geometry is shown in Fig. 1. 0��0�� and −�
����. Here � is zero when M is along the z axis, and is
positive �negative� when M is on the right �left� side of the z
axis. The rotated frame where M is in the z� direction is
hereafter called the primed frame, as in Ref. 8.

The Hamiltonian is

H = −
1

2
J�

i,j
Si · S j − K2�

i

�Si
Z�2 − B · �

i

Si. �1�

The three terms are the FM exchange, single-ion anisotropy
energy, and Zeeman energy under an external magnetic field
B, respectively. In this paper, we let the Boltzmann constant
kB=1 and Bohr magneton �B=1 so that all the quantities, the
exchange parameter J, anisotropy parameter K2, temperature
T, magnetic field B, and magnetization are measured in the
unit of energies. We set J=100, K2=1 and S=1. In Sec.
IV C, we will discuss the effect of the variation of the spin
quantum number S and anisotropy K2.

The magnetization is the statistical average of the spin
operator in the primed frame. M = �Sz��, as well as correlation
function ��Sz��2�, is calculated by the retarded Green’s func-
tion. Usually, in experiments, the magnetization component
along the field direction is measured. Therefore, we mainly
calculate �Sz�=M cos �, the magnetization component pro-
jected onto the field direction.

The FRM method was used by two different groups.8,9

However, they gave different formulas for the energy spec-
trum. We tested both formulas to calculate M for a mon-
odomain and found no visible difference in the numerical
results. Hence, in this paper we use the formula in Ref. 8.

The energy spectrum of Hamiltonian Eq. �1� is

�k = MJpk + B cos � + 2K2MC1

��cos2�� − �0� −
1

2
sin2�� − �0�� , �2�

where pk=2�3−cos kx−cos ky −cos kz� and

C1 = 1 −
1

2S2 �S�S + 1� − ��Sz��2�	 . �3�

III. RESULTS AND DISCUSSION OF A MONOCRYSTAL

For each monocrystal with �0 in the range �0,�	, �Sz� as a
function of the field at several temperatures is computed. The
field varies in such a way that it increases from zero to a
value Bm, which is called magnetizing, and then decreases
from Bm to −Bm, which is called magnetization reversal.

In FRM, we have an equation that determines the angle �
as follows:

sin 2��0 − �� =
B

K2C1M
sin � . �4�

This equation is from Ref. 8, but is written here in the form
that agrees with the geometry of Fig. 1. It was obtained from

the condition that Sz�=�
i

Si
z� commutes with the Hamiltonian

Eq. �1� since, in the primed frame, Sz� is conserved. Here we
show that this condition is equivalent to an energy minimum.
The total energy ET of the system is the statistical average of
the Hamiltonian Eq. �1�,

ET = �H� = −
1

2
J
�

i,j
Si · S j� − K2
�

i

�Si
Z�2� − B · 
�

i

Si� .

The first term is isotropic. The third term is

− B · 
�
i

Si� = − NB�Sz� = − NBM cos � .

Here N is the site number of the lattice. We have used the
property that the lattice is of translation invariance. For the
anisotropy term,

��Si
Z�2� = sin2��0 − ����Si

x��2� + cos2��0 − ����Si
z��2�

+
1

2
sin 2��0 − ���Si

x�Si
z� + Si

z�Si
x�� ,

where the last term is zero.8,10 We can rewrite it as

��SZ�2� = ��Sz��2� − sin2��0 − �����Sz��2� − ��Sx��2�	 .

We neglect the terms independent of � and let E=ET/N be
the energy of each spin.

E = q sin2��0 − �� − BM cos �� �5�

where the coefficient of the first term is written by q. Taking
dE /d�=0, one obtains a relationship between � and �0,
which was exactly the same as Eq. �4�. Therefore, we think

FIG. 1. Geometry of a monocrystal. The external magnetic field
B is always along the z direction. The easy axis is presented by
dashed line. When the field is absent, the angle between the mag-
netization M and z direction is �0. When B is applied, M turns to
the z� direction. M changes in the xz plane and has two components
�Sz� and �Sx�.
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that the energy of the state reaches the minimum at �, satis-
fying Eq. �4�.

When the field varies, M rotates subject to the field. Now
we show, by analyzing Eq. �5�, that the M reorientation of
the crystallites happens when the field reaches a certain value
and the metastable state becomes unstable. Let p=BM /q. We
consider the case of T=0. At zero temperature, the magni-
tude of M as well as C1 does not change during the M
rotation. The energy is written as E /q=sin2��0−��− p cos �.
We look at an example of �0=135°. In Figs. 2�a� and 2�b�,
after the abscissa is translated by �0, sin2 �, −p cos��−45�
and E /q are plotted in the cases of p=1/2 and 1, respec-
tively. sin2 � is independent of p. When p=0, the field is
absent. There are two energy minima at �=0° and 180°, and
one maximum between them. We let the spin be at the posi-
tion of 0°. When p=1/2, the energy minimum is at �1 in Fig.
2�a�. Although the minimum at �3 is lower, the maximum at
�2 still exists. Therefore, when p increases from 0 to 1/2, the
magnetization rotates continuously from 0° to �1.When this
occurs, the maximum lowers. When p reaches 1, the maxi-
mum disappears and �1 becomes an unstable state, see Fig.
2�b�. The magnetization goes to position �3 instantly. This is
the so-called “reorientation.”

Now the change of M can be either a continuous rotation
or reorientation. Figures 3�a� and 3�b� show the trajectory of

M in the case of �0=� /4 as an example of �0�� /2 at T
=10. At the beginning, M is at position “A.” As the field B
increases, starting from zero to 3, M rotates toward the field
direction, going from point “A” to “B” as in Fig. 3�a�. There
is no abrupt reorientation of M. As B decreases from 3 to −3,
the magnetization trajectory is plotted in Fig. 3�b�. With B
decreasing, M turns away from the field direction. As B=0,
it goes back to point “A.” When B increases from zero in the
opposite direction, M turns from point “A” to “C.” In this
region, �Sz� is positive. A leap from point “C” to point “D”
occurs to make �Sz�negative, and then M continues to turn to
point “E.”

Hereafter, when �Sz� and B have the same sign, we say
that �Sz� is parallel to the field while, if they have opposite
signs, we say that �Sz� is antiparallel to the field.

In the case of � /2��0��, we need not draw the trajec-
tory explicitly. The symmetry of the system helps us under-
stand the trajectory from Fig. 3�b�. For example, in the case
of �0=3� /4, we image that the magnetic field points down
in Fig. 3�b� while the initial position of M remains un-
changed. Then, with the field increasing from 0 to 3, M
changes in the order of ACDE. The course of the magneti-
zation change as the field decreases from 3 to −3 can also be
easily analyzed.

We discuss the cases of �0�� /2 and of �0�� /2 sepa-
rately because, in the course of B increasing from 0 to 3,
reorientation occurs in the latter case while it does not occur
in the former case. Figure 4�a� below also shows this differ-
ence.

Figure 3�c� and 3�d� shows the trajectory of M at T
=260, a temperature close to the Curie point TC. It is seen
that at higher temperature, the magnitude of M varies with
the field. As M turns closer to the field direction, its magni-
tude becomes larger.

The field causing the reorientation is called the critical
field BC. Figure 4�a� plots BC versus �0 curves at T=10 by
solid lines. When the field reaches BC,min, the magnetization
with �0=3� /4 can start to reorient. Therefore, BC,min is the
minimum values of the field causing M reorientation. The
largest critical field is 2BC,min when �0 is equal to � /2.

FIG. 2. The solid, dashed and dotted lines are sin2 �, −p cos��
−45� and E /q, respectively. �a� p=1/2. �b� p=1.

FIG. 3. Trajectories of M subject to the field
in the case of �0=� /4. �a� and �b� T=10. �c� and
�d� T=260. The dotted lines show the easy axis.
The solid lines show rotation and the dashed lines
represent reorientation.

MAGNETIZATION OF FERROMAGNETIC POLYCRYSTALS… PHYSICAL REVIEW B 74, 214425 �2006�

214425-3



Let us make a comparison to the classical model. Accord-
ing to the classical model,15 the relationship between BC and
�0 is determined by the equation

sin 2�0 =
1

pC
2 �4 − pC

2

3

3/2

,

where pC=BCM /Ku. This equation applies when the magni-
tude of M does not change during the rotation. Imitating this
equation, we put down

sin 2�0 =
BC,min

2

BC
2 �4 − BC

2 /BC,min
2

3

3/2

�6�

to indicate a supposed case in which the magnitude of M
does not vary during the rotation. That is to say, M rotates
like a classical magnetization, although its magnitude varies
with temperature. The curve calculated by Eq. �6� is plotted
in Fig. 4�a� as a dotted line. By the MBGFM, however, the
magnitude of M varies during rotation. In Fig. 4�a�, the solid
and the dotted lines are nearly indistinguishable. This is the
case of very low temperature where the magnetization is
nearly saturated, and the difference in the magnetization
change between the classical model and quantum model is
trivial.

Figure 4�b� plots the curves of BC versus �0 at a tempera-
ture of T=260. We also label the position of BC,min, and plot
the curve according to Eq. �6� by dotted line. The solid line
becomes asymmetric and deviates from the dotted line. This
reflects the fact that, at higher temperature, the magnitude of
M is more easily affected by the external field.

The quantity BC,min�T� varies with temperature, and its
temperature dependence is plotted in Fig. 9 below. It is, in
fact, the coercivity of a monocrystal with �0=� /4 at tem-
perature T.

The angles just before and after the reorientation are de-
noted as �1 and �2, respectively. They are related to �0. In
Fig. 5, �1 and �2 versus �0 curves are plotted at a temperature

T=10 and 260, respectively. In the following discussion, the
numbers �numbers in parenthesis� are for the case of T=10
�260�. Figure 5�a� shows the case where B increases from
zero to 3 �0.3�. When �0�� /2, there is no reorientation.
Therefore, there is no curve on the left of Fig. 5�a�. When
�0�� /2, reorientation occurs. The angle �1 ranges from
some 15° �17°� to 171° �175°�, and �2 ranges from zero to
−45° �−49° �. When �0�132° �127°�, �1�� /2, and when
�0�132° �127°�, �1�� /2, which mean that �Sz� is parallel
and antiparallel to the field direction before reorientation,
respectively.

Figure 5�b� shows the case when B decreases from 3 �0.3�
to −3 �−0.3�. In the range of 48° �53° ���0�132° �127°�,
�Sz� is parallel to the field before reorientation. Outside of
this range, �Sz� is antiparallel to the field before reorientation.

In all of the cases, after reorientation, �Sz� is always par-
allel to the field direction, and the angle between M and B is
within � /3.

Figure 5 shows that the reorientation occurs more easily
at higher temperatures than at lower temperatures, reflecting
the fact that when the magnetization is smaller, the magne-
tization will be more easily forced to change.

We denote the �Sz� value just before and after reorienta-
tion as �S1

z� and �S2
z�, respectively. Figure 6 plots the curves

of �S1
z� and �S2

z� versus �0. Figure 6�a� shows the case of
magnetization at a temperature of T=10. If �S1

z� is antiparal-
lel to the field, the reorientation makes �S2

z� parallel to the
field. If both �S1

z� and �S2
z� are parallel to the field, the latter

is usually larger than the former. In most cases, the differ-
ence of �S1

z� and �S2
z� is enlarged as �0 rises. However, near

�0=� /2, the reorientation makes �S2
z� smaller than �S1

z�. This
is called abnormal reorientation. For example, at �0=93°, the
reorientation occurs when B=0.84. Before and after the re-
orientation M is �0.38,0 ,0.92� and �−0.57,0 ,0.82�, respec-

FIG. 4. The solid and dashed lines: BC as a function of �0

determined by Eq. �4� at temperature �a� T=10 and �b� T=260. The
dotted lines are drawn from Eq. �6�.

FIG. 5. The angles between M and B just before and after
reorientation as a function of �0. The solid and dashed lines: B is
from 0 to 3 in �a� and is from 3 to −3 in �b� at T=10. The dotted and
dash-dotted lines: B is from 0 to 0.3 in �a� and is from 0.3 to −0.3
in �b� at T=260. When �0�� /2, no reorientation happens in the
magnetizing process. Therefore, there is no curve on the left of �a�.
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tively, while the magnitude of M remains unchanged. This
means that, after reorientation, M is away from the field
direction. In spite of this, M is sufficiently close to the easy
axis that the drop of the anisotropy energy is more than the
increment of Zeeman energy. As a result, the total energy is
lower than that before reorientation.

Figure 6�b� shows �S1
z� and �S2

z� when B decreases. In both
Figs. 6�a� and 6�b�, �S1

z� varies with �0 linearly. This is be-
cause, at low temperatures, the magnitude of M remains un-
changed during rotation. Figure 6�c� shows the results at T
=260. Curves of �S1

z� versus �0 deviate from a straight line
as, at this temperature, the magnitude of M is changed by the
field. When �0 is around 0 or �, the change is the largest, in
accordance with Fig. 4.

We calculated the magnetizing and magnetization reversal
curves for various �0 at T=10 and 260, respectively �not
shown�. For most cases of �0, the curves at T=10 were al-
most exactly the same as those of the classical model.1,15,16

At T=260 the curves showed that the magnitude of the M
varied during rotation. A remarkable feature is that when �0
is around � /2, there were small tips on the curves which
resulted from the abnormal reorientation. Figure 7 shows ex-
amples. As has been discussed above, around �0=� /2, the
abnormal reorientation causes �S2

z� to be smaller than �S1
z�.

Therefore, �Sz� drops as the field reaches BC, which results in
the tip on the curve. We believe that the tips can be detected
in experiments.

Now let us discuss the anisotropy coefficient. The relation
between the microscopic anisotropy K2 and the macroscopic
one, Ku, has been carefully studied in a number of
papers.17,18 Our goal is to put down a formula between the
two quantities by comparing the present model to the classi-
cal one.

In the classical model, the magnetic crystalline anisotropy
energy1,15,16 is written as

EK = Kusin2��0 − �� , �7�

where Ku is the anisotropy coefficient, which can be mea-
sured experimentally. When a magnetic field is applied in the
geometry of Fig. 1, the equation that determines the angle �
is, under the condition of an energy minimum,

sin 2��0 − �� =
MB

Ku
sin � . �8�

By inspection of the right-hand side of Eqs. �4� and �8�, one
sees that M is in the denominator in the former and in the
numerator in the latter. We think that this is an important
difference between the classical and quantum models. From
these two equations, the connection between K2 and Ku is
established as follows:

Ku�T� = K2C1�T�M2�T� . �9�

The anisotropy coefficient Ku is temperature
dependent19–21 and its variation with temperature was be-
lieved to be more rapid than the magnetization M.19 Equation
�9� shows that Ku�T� depends on the square of the magneti-
zation C1�T�M2�T�. According to RPA, as T approaches the
Curie point TC, the magnetization of an FM system goes to
zero in the way of M 	 �T−TC�1/2. The temperature depen-
dence of C1 is embodied in Eq. �3�. The correlation ��Sz��2�
of a monocrystal is a nearly linear function of temperature
between zero and the Curie point, which is quite similar to
the two-dimensional case.4,5,22 We therefore do not plot the
curve here. Based on this fact, we can approximate the cor-
relation in the following way.

��Sz��2� =
2S − 1

2S
�1 −

T

3TC

, 0 � T � TC. �10�

Therefore, when T→TC,

FIG. 6. �Sz� value just before and after M reorientation as a
function of �0 when B varies. �a� B is from 0 to 3 at T=10. �b� B is
from 3 to −3 at T=10. �c� B is from 0 to 0.3 and is from 0.3 to −0.3
at T=260.

FIG. 7. Magnetizing and magnetization reversal curves of a
monocrystal at T=10 with �a� �0=87° and �b� �0=93°. The field
value at which the tip appears is BC. In the first quadrant of �a�, the
two curves are identical.
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Ku 	 �3TC − T��T − TC� 	 T − TC. �11�

Ku�T� goes to zero linearly with T. In Refs. 5 and 7, the free
energy was written and included a term equivalent to Eq. �7�,
where Ku was denoted as K2�T� and was called the effective
anisotropy coefficient. K2�T� was calculated under RPA and
it, indeed, approached zero linearly with T.

With the form of Eq. �9� we can calculate Ku easily, while
in Refs. 5 and 7 one had to apply a small field perpendicular
to the easy axis to calculate Ku. The quantity
C1�T�M2�T� /C1�0�M2�0� as a function of temperature is cal-
culated. It is not shown here because it is qualitatively the
same as K2�T� /K2 calculated in Refs. 4, 5, and 7. We notice
that its behavior is similar to measured Ku of some elements,
such as Co,19,20,23 Tb, and Dy24 as long as the temperature
was not close to transition point.

Besides the dependence of M2�T�, the correctness of Eq.
�9� is also related to the quantity C1, which came from the
decoupling procedure of the higher order Green’s function
��SzS++S+Sz ;S−��. The expression of Eq. �3� was from
Anderson-Callen’s decoupling.25 It was shown by a quantum
Monte Carlo calculation26 that when the ratio of K2 /J was
within some a few percents, the decoupling was good in
almost the whole temperature range below the Curie point,
and when K2 /J was larger, the decoupling was good only in
low temperatures �see Fig. 1 of Ref. 12�.

Please note that Eq. �10� is only suggested as a simplified
form. In this paper, we always calculate the correlation func-
tion ��Sz��2� by means of MBGFM.

IV. RESULTS AND DISCUSSION OF A POLYCRYSTAL

Having studied monocrystal in details, we now investigate
a polycrystal, in which the easy axes of monocrystals are
distributed uniformly over the full 4� solid angles. The mag-
netization of a monocrystal was denoted as M, and its pro-
jection to the field direction was �Sz�=M cos �. The magne-
tization component along the field direction of the
polycrystal, denoted as Mp, is averaged �Sz� over equally
weighted monocrystals. No effects due to noncollinear mag-
netizations at the crystal boundaries are considered, hence
the magnetic reversal via domain wall motion is not consid-
ered. In the following, we will discuss the magnetizing pro-
cess and corresponding susceptibility, the magnetization re-
versal process, and the remanence and the coercivity of a
polycrystal.

A. Magnetizing curve

Figures 8�a� and 8�b� show a magnetizing curve and the
corresponding susceptibility Mp /B versus B at T=10 and
200.

Let us first consider the solid lines in Figs. 8�a� and 8�b�.
The curves can be divided into three parts: that from the
origin to point “A,” that from point “A” to point “B,” and
that beyond point “B,” which are called region I, II, and III,
respectively. They correspond to a reversible rotation before
reorientation, irreversible reorientation, and reversible rota-
tion after reorientation of the magnetization, respectively.

The field values at points “A” and “B” are BA=BC,min and
BB=2BC,min, where BC,min is the parameter in Eq. �6�.

The three regions of the dashed lines in Fig. 8 are distin-
guished by letters “C” and “D,” and the analysis of them is
similar to the case of solid lines. In the following, we mainly
discuss the solid lines, mentioning the dashed lines as a com-
parison where necessary.

In region I, when the field decreases, the magnetization
goes back to the origin. Mp is almost linearly proportional to
B. Hence, the susceptibility in this region is comparatively
flat, as shown in Fig. 8�b�.

Let us now discuss the differential susceptibility 
d
= �dMP /dB� of a polycrystal. If we neglect the dependence of
M and C1 on �, the differential susceptibility of a monocrys-
tal 
dm can be derived with the help of Eq. �4�,


dm = �d�Sz�
dB


 =
M sin2 �

2K2C1M cos��0 − �� − B cos �
.

At each B, � is determined in terms of B and �0 by Eq. �4�.
Then, taking the average of 
dm with respect to �0, one ob-
tains 
d. However, because � is dependent on �0, the average
is difficult to calculate. The qualitative behavior of 
d can be
analyzed based on the magnetizing curves �see examples in
Fig. 8�a�	. As a simple case, the initial differential suscepti-
bility 
i can be obtained. When the field is weak, the mag-
netization of a monocrystal rotates by a small angle. That is
to say, �0−� is small. The initial differential susceptibility of
a monocrystal is


im = �
dm�B→0 =
1

2K2C1
sin2 �0.

The angular average of 
im gives the value of 
i of a poly-
crystal as

FIG. 8. �a� Mp and �b� Mp /B vs B of a FM polycrystal at
T=10 and 200. In �a�, the three regions of the solid are marked.
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i =
1

3K2C1
. �12�

As B→0, 
i is the same as the initial susceptibility
�MP /B�B→0. For instance, at T=10, ��Sz��2�=1, hence 
i

=0.67; at T=200, ��Sz��2�=0.83, and, hence, 
i=0.83. They
are in agreement with the results in Fig. 8�b�.

Although the magnetization does not explicitly appear in
Eq. �12�, 
i increases when the magnetization decreases.
This is because when M = �Sz�� is smaller, ��Sz��2� is also
smaller, resulting in a smaller C1. Figure 9 shows that 
i
increases with temperature. However, 
i calculated in Fig. 9
is up to T=260, which is below the Curie point TC=271.
This is because Eq. �12� does not apply at T=TC. At TC, M is
very small and the anisotropy energy is proportional to M2 so
that it is negligible compared to the Zeeman energy, which
results in a divergent 
i.

Here we should again make a comparison with the clas-
sical model. In the classical model, it is calculated that 
i
=M2 /3Ku,15 which is proportional to the square of the mag-
netization. The difference between the expression of the clas-
sical model and the quantum model is attributed to the dif-
ference between K2 and Ku.

Region II between points “A” and “B” in the magnetizing
curve is mainly due to the irreversible reorientation of mag-
netization. The field strength is between BC,min and 2BC,min,
and the reorientation occurs within this region, as can be
seen in Fig. 4. Because of the reorientation, Mp rises rapidly.
The susceptibility in this region is the highest among the
three regions �see Fig. 8�b�	.

We have seen from Fig. 4 that, at higher temperatures, the
irreversible reorientation occurs more easily. As a result, the
susceptibility should rise with temperature. It is seen in Fig.
8�b� that, in region II, a higher temperature leads to a larger
susceptibility.

Region III again reflects the reversible rotation of magne-
tization. In this region, the field B is above 2BC,min, and the
irreversible reorientation of the magnetizations of all mono-
crystals has been completed. As B increases further, they turn
closer to the field direction, which is reversible, �see, for
example, between points “A” and “B” or from “D” to “E” in
Fig. 3�. In this region, the susceptibility decreases with field

strength and a smaller magnetization contributes to a smaller
susceptibility �see Fig. 8�b�	.

B. Magnetization reversal

Now we study the magnetization reversal. We first mag-
netize the polycrystal, i.e., raise the field from zero to a value
Bv. Then we lower the field to zero and raise it in the oppo-
site direction. Figure 10 shows the results of BA=BC,min,
BC=0.5, BD=0.55, BE=0.6, BF=0.7, and BB=2BC,min at T
=10.

When Bv is less than BA, the magnetization reversal curve
is identical to the magnetizing one because, in this region, all
the monocrystalline magnetizations rotate reversibly. When
Bv is larger than BA, a hysteresis loop, as well as the rema-
nence Mr and coercivity Bcoer, appear. Mr is the Mp value at
B=0 on the magnetization reversal curve, and Bcoer is the
field value at which the magnetization Mp reorients from
antiparallel to parallel to the field direction. They increase
with Bv. When Bv is larger than BB, the magnetization rever-
sal curve is the same as when Bv=BB. As Bv�2BC,min, the
loop does not change any more and its Mr and Bcoer reach a
maxima. The inset of Fig. 10 shows their dependence on Bv.
Both increase with Bv rapidly, and quickly approach the
maxima. In the following, we merely discuss the maximum
Mr and Bcoer.

Our calculation shows that, at any temperature, the rema-
nence is Mr�T�=M�T� /2, where M�T� is the magnetization
of a monocrystal without an applied field. Mr�T� is also equal
to the remanence of a monocrystal with �0=� /3. The open
circles in Fig. 9�b� show Mr�T� as a function of temperature.

The dependence of the coercivity Bcoer�T� on temperature
is plotted by open triangles in Fig. 9. The coercivity of a
polycrystal is quite close to that of a monocrystal with �0
=� /4, which is actually BC,min�T� shown in Fig. 9. That is to
say, the ratio BC,min�T� /Bcoer�T� is quite close to 1. It is even
closer to 1 when the temperature goes to the Curie point, as
can be seen in Fig. 9. For instance, BC,min�10� /Bcoer�10�
=1.025 and BC,min�260� /Bcoer�260�=1.001.

C. Effect of varying the anisotropy parameter and spin
quantum number

Figure 11 shows examples of varying the anisotropy pa-
rameter K2 and spin quantum number S.

FIG. 9. The initial susceptibility 
i, the remanence, and coerciv-
ity of a polycrystal as functions of temperature. The solid triangles
are the coercivity of a monocrystal with �0=� /4. They are plotted
here to compare with Bcoer. The dashed lines are to guide the eyes.

FIG. 10. Magnetizing and magnetization reversal curves at T
=10. The inset: remanence and coercivity as functions of Bv at this
temperature.
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First, we discuss the effect of K2 while S is fixed. From
Fig. 11�a�, it is concluded that the Mr of a polycrystal is
independent of the K2 value.

It is deduced from Eq. �4� that the coercivity is nearly
proportional to K2. Here we say “nearly” because, as K2
varies, the magnetization M and, subsequently, C1 will be
changed slightly. In Fig. 11�a�, the parameter K2 of the solid
line is half that of the dashed line. Hence, the coercivity of
the former is about two times that of the latter.

The initial susceptibility 
I is nearly the inverse of K2 �see
Eq. �12�	. Figure 11�b� shows that the value of 
I of the solid
line is about two times that of the dashed line. It is also seen
that a polycrystal with a higher K2 has a lower susceptibility
under any field strength. As B is sufficiently large, the mag-
netization is very close to the field direction. In this case, the
magnitude of Mp is almost the same as for different K2 �see
Fig. 11�a�	. Subsequently, under sufficiently large fields, the
susceptibilities of the polycrystals with different K2 are the
same �see Fig. 11�b�	.

Next we discuss the effect of varying S with a fixed K2. A
larger S means a larger magnetization; hence, Mr conse-
quently becomes larger. From Eq. �4� the coercivity is ap-
proximately proportional to the magnetization, so that a
larger S means a larger coercivity. The conclusion is that a
larger S raises both remanence and coercivity, resulting in a
larger loop area. The solid and dotted lines in Fig. 11�a� give
the example.

From Eqs. �3� and �10� one sees that 2 /3−1/3S�C1�S�
�1−1/2S, so that it is easily proven that for S1�S2, C1

�S1��C1�S2�. From Eq. �12�, 
I can be seen to be the inverse
of C1�S�. Thus, a larger S causes a smaller 
i. Figures 11�a�
and 11�b� give an example of this. It is seen from Fig. 11�b�
that, in region III, the susceptibility corresponding to the
dotted line is greater than that represented by the solid line.
This is because, in region III, the magnetizations of the
monocrystals purely rotate after reorientation and, thus, a
larger magnetization contributes to a larger susceptibility.

V. SUMMARY

In this paper, we have studied the magnetization of an FM
polycrystal by MBGFM under RPA. The model is such that
each monocrystal is uniaxial and is a monodomain. The di-
rections of the easy axes of the monocrystals are uniformly
distributed over a 4� solid angle. First, we calculate the
magnetization M of a monocrystal under an external field for
�0 in a range �0,�	. We show that the spin is in the state of
minimum energy. The effect of temperature is studied. At a
higher temperature, the field causing irreversible reorienta-
tion of M is lower. Furthermore, the magnitude of M will
increase with an increase of B. At low temperatures, the be-
havior of the magnetization is closer to that of the classical
model. The reorientation of M causes �Sz� to have an abrupt
change. The abnormal reorientation makes �Sz� drop and, as
a result, small tips appear on the hysteresis loops. By com-
parison with the classical model, we suggest that the tem-
perature dependence of the experimentally measurable aniso-
tropy coefficient Ku is expressed by Eq. �9�. This equation
also enables us to calculate Ku directly.

Having studied monocrystals in detail, the magnetizing
process of a polycrystal is easily understood. The magnetiz-
ing curve can be divided into three regions, which reflect the
magnetization’s change in three field ranges: reversible rota-
tion before reorientation, irreversible reorientation, and re-
versible rotation after reorientation. In the first two regions,
the higher the temperature is, the higher the susceptibility,
while in the third region, it is the opposite. The initial sus-
ceptibility 
i can be calculated by Eq. �12�.

The magnetization reversal curves are calculated. The re-
sults show that the remanence of a polycrystal is Mr�T�
=M�T� /2, where M�T� is the magnetization of a monocrystal
at zero field. The coercivity of a polycrystal is very close to
that of a monocrystal with �0=� /4.

The effect of K2 and S on the coercivity and 
i can be
analyzed by Eqs. �4� and �12�. Qualitatively, a larger K2 and
S result in a larger coercivity and a smaller 
i. The rema-
nence is independent of the K2 value.

This paper shows that it is possible to study FM polycrys-
tals by means of the many-body theory.
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