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We study by the perturbative functional renormalization group �FRG� the random field and random aniso-
tropy O�N� models near d=4, the lower critical dimension of ferromagnetism. The long-distance physics is
controlled by zero-temperature fixed points at which the renormalized effective action is nonanalytic. We
obtain the beta functions at two-loop order, showing that despite the nonanalytic character of the renormalized
effective action, the theory is perturbatively renormalizable at this order. The physical results obtained at the
two-loop level, most notably concerning the breakdown of dimensional reduction at the critical point and the
stability of quasi-long-range order in d�4, are shown to fit into the picture predicted by our recent nonper-
turbative FRG approach.
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I. INTRODUCTION

Despite decades of intensive investigation the effect of
weak quenched disorder on the long-distance physics of
many-body systems remains in part an unsettled problem.
This is the case for the class of models in which
N-component classical variables with O�N� symmetric inter-
actions are coupled to a random field. Depending on whether
the coupling is linear or bilinear, the models belong to the
“random field” �RF� or the “random anisotropy” �RA� sub-
classes. Such models with N=1, 2, or 3 are relevant to de-
scribe a variety of systems encountered in condensed matter
physics or physical chemistry. To name a few, one can men-
tion dilute antiferromagnets in a uniform magnetic field,1

critical fluids and binary mixtures in aerogels �both systems
being modeled by the N=1 RF Ising model�,2–4 vortex
phases in disordered type-II superconductors �described in
terms of an elastic glass model whose simplest version is the
N=2 RF XY model�,5–9 amorphous magnets, such as alloys
of rare-earth compounds,10,11 and nematic liquid crystals in
disordered porous media �described by N=2 or N=3 RA
models�.12

On the theoretical side the main questions raised about the
equilibrium behavior of such systems concern the nature and
the characteristics of the phases and of the phase transitions.
It has been shown by both heuristic and rigorous
methods13–17 that the lower critical dimension below which
no long-range order is possible is dlc=2 for the RFIM and
dlc=4 for RF models with a continuous symmetry �O�N�
with N�1�. The same conclusion applies to RA models with
the restriction that only ferromagnetic �to use a magnetic
terminology� long-range order is forbidden below dlc=4; an-
other type of long-range order associated to a spin-glass
phase is still possible.11 Here, we only consider RA models
with isotropic distributions of the random anisotropies and
with N�1; for anisotropic distributions, long-range ferro-
magnetic ordering may still occur below dlc=4, whereas RA
makes no real sense for N=1, the model reducing then either
to the random temperature Ising model or to the pure Ising
model depending on the details of the effective Hamil-
tonian.11

Two central issues remain under active debate. The first
one is about the so-called “dimensional reduction” property.
Standard perturbation theory predicts to all orders that the
critical behavior of an O�N� model in the presence of RF is
the same as that of the pure model, i.e., with no RF, in two
dimensions less.18 The same applies to the RAO�N�M with
N�1 near the paramagnetic-ferromagnetic transition.19 Di-
mensional reduction is known, however, to break down, its
most striking failure being the prediction of a lower critical
dimension dlc=3 for the RFIM in contradiction with the ex-
act result �see above�. A proper description of the long-
distance behavior of RF and RA models must thus provide a
way out of the dimensional reduction.

The second issue concerns the phase diagram of the RF
and RA models with a continuous symmetry �N�1� in di-
mensions below d=4, which of course are relevant to the
physical situations. If long-range ferromagnetism is forbid-
den, quasi-long-range order �QLRO�, namely a phase char-
acterized by no magnetization and a power-law decrease of
the correlation functions at large distances, may still
exist.5–9,20 It has been shown that QLRO is absent for N
�3 in the presence of RF and for N�10 in the presence of
RA;20 yet it has been argued that QLRO is present for N
=2 in d=3, in which case it corresponds to the “Bragg glass”
phase predicted for vortices in disordered type-II
superconductors.5,8,9

We have recently proposed a coherent resolution of those
issues based on a nonperturbative �NP� functional renormal-
ization group �FRG� treatment.21,22 This approach has al-
lowed us to provide a unified picture of ferromagnetism,
QLRO, and criticality in RF models in the whole �N ,d� dia-
gram as well as a way to escape dimensional reduction.

The main findings21,22 can be summarized on the phase
diagram of the RFO�N�M shown in Fig. 1. In region III,
there are no phase transitions and the system is always dis-
ordered �paramagnetic�. In regions I and IV, there is a
second-order paramagnetic to ferromagnetic transition and in
region II, a second-order transition between paramagnetic
and QLRO phases. In all cases, the critical behavior is con-
trolled by a zero-temperature fixed point at which tempera-
ture is formally irrelevant. At this fixed point the renormal-
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ized effective action is a nonanalytic function of its
arguments �the order parameter fields�. Although present, the
nonanalyticity is weak enough in region IV to let the critical
exponents take their dimensional reduction value �correc-
tions to scaling may nonetheless differ from the dimensional
reduction predictions�. In regions I and II the nonanalyticity
takes the form of a cusp in the renormalized second cumu-
lant of the random field, which leads to a complete break-
down of dimensional reduction. Finally, the whole QLRO
phase in region II is also controlled by a zero-temperature
fixed point characterized by a cusp.

There is undoubtedly room for improving the quantitative
predictions of our NP-FRG theory, in terms of both the num-
ber of observables studied and, more importantly, of the ac-
curacy of the �necessary� approximations involved. �In addi-
tion, the NP-FRG study of the RAO�N�M has not yet been
completed.� The robustness of the proposed scenario may,
however, be tested by considering a perturbative FRG treat-
ment of the models near d=4. Such a perturbative FRG has
been pioneered by D. Fisher19,23 and widely used to study the
statics and the depinning of elastic systems pinned by
quenched disorder.5,8,9,24,25

At one-loop level, the flow equation for the renormalized
second cumulant of the disorder, first derived by Fisher19 for
the RF and RA O�N� models, has been studied by several
authors.20–22,26,27 The results fit into the diagram displayed in
Fig. 1, which should come as no surprise: the flow equations
obtained in our NP-FRG approach exactly reproduce the
one-loop result near d=4.22 Below, we give a survey of the
behavior of the RFO�N�M at the one-loop level in d=4+�,
including some new results, as well as a study of the related
RAO�N�M.

To go beyond this first step, one must consider the next
order in the loop expansion. However, the technical difficul-
ties are now much more involved than at the one-loop level.
On top of the rapidly increasing number of diagrams, dia-
grams which in the present case are functionals, the nonana-
lytic character of the renormalized effective action at T=0
leads to the appearance of “anomalous” terms in the diagra-
matics, whose evaluation is a priori ambiguous. A resolution
of the problem has been proposed for the simpler case of
disordered elastic systems by Le Doussal, Wiese, and
co-workers.25

A preliminary account of this work has been published in
Ref. 21. An independent calculation has appeared in Ref. 30.

The rest of the paper is organized as follows. In Sec. II we
present the RF and RA O�N� models and their nonlinear
sigma versions appropriate to describe the long-distance
physics near the lower critical dimension of ferromagnetism,
d=4. We outline the perturbative FRG framework and the
way to extract scaling behavior and critical exponents. Sec-
tion III is devoted to an analysis of the one-loop FRG equa-
tions at T=0 in d=4+�, discussing the fixed points and their
stability and contrasting the RF and RA cases. In Sec. IV we
derive the FRG beta functions at two-loop order in T=0. We
present the diagrammatic representation and the method used
to handle the apparent ambiguities appearing in the formula-
tion due to the nonanalytic character of the renormalized
dimensionless effective action. Proceeding in this way we
obtain a well-defined renormalized theory at two-loop order.
The physical results obtained from solving the two-loop
FRG equations are discussed in Sec. V, and we stress the
new features appearing at this order. Several technical as-
pects of the work are deferred to Appendixes.

II. MODELS AND FRAMEWORK

A. Models

We consider the O�N� model in the presence of RF or RA
near d=4. We stress again that d=4 is the lower critical
dimension for N�1 and for the paramagnetic-to-
ferromagnetic transition. In a manner similar to that devel-
oped for the pure model at low temperature near d=2, the
long-distance physics for weak disorder �which, we recall,
takes here the role played by low temperature in the pure
model, temperature being now irrelevant and eventually set
to zero� can be described in a field-theoretical setting by a
nonlinear sigma model with effective Hamiltonian

H�S� =� ddx
1

2
��S�x��2 − �

i

�hi�x� + Hûi�Si�x�

− �
ij

�ij�x�Si�x�Sj�x� , �1�

where the N-component spins S satisfy the fixed-length con-
straint, S�x�2=1, and H=Hû is a uniform external magnetic
field; h�x� is a random magnetic field and ��x� a second-rank
random anisotropy tensor, both with Gaussian distributions
characterized by zero means and variances given by

hi�x�hj�y� = ��ij��x − y� , �2�

�ij�x��kl�y� =
�2

2
��ik� jl + �il� jk���x − y� . �3�

Higher-order random anisotropies could be included as well.
They will indeed be generated in the perturbation expansion
and the renormalization group flow.19 However, starting with
only a second-rank �or more generally an even-rank� random
anisotropy, only even-rank anisotropies will be generated. In
what follows we will therefore use the acronym RA to char-
acterize models with even-rank random anisotropies.

FIG. 1. Nonperturbative FRG prediction for the �N ,d� phase
diagram of the RFO�N�M. See text for comments.

MATTHIEU TISSIER AND GILLES TARJUS PHYSICAL REVIEW B 74, 214419 �2006�

214419-2



From the associated partition function,

Z =� DS��S2 − 1�exp�−
1

T
H�S�� , �4�

one can obtain the free energy by averaging the logarithm of
Z over the quenched disorder. This is more conveniently
performed by introducing replicas Sa�x�, a=1, . . . ,n, which
leads after explicitly performing the average over the disor-
der to the following “replicated” effective Hamiltonian

Hn�	Sa
� =� ddx�
a

1

2
��Sa�x��2 − �

a

Hû · Sa�x�

−
1

2T
�
ab

R0�Sa�x� · Sb�x�� �5�

with

R0�z� = �z + �2z2 �6�

and −1	z	 +1. The fluctuations around a fully ordered
state in which spins in all replicas align in the same direction
are as usual handled by splitting the replica field Sa�x� into a
component collinear to the external field �and to the magne-
tization�, 
a�x�=Sa�x� · û, and N−1 components orthogonal
to it, �a�x�=Sa�x�−
a�x�û. By using the relation between

a�x� and �a�x� imposed by the unit-length constraint, the
replicated partition function can be expressed as a functional
integral over the �N−1�-component replica fields �a�x�,

Zn =� �
a

D�a

�exp�− �
a

S1��a� +
1

2�
ab

S2��a,�b� + ¯ � , �7�

where the 1-replica and 2-replica parts of the action read

S1��a� =
1

T
� ddx�1

2
���a�2 +

��a · ��a�2

2�1 − �a
2�

− H1 − �a
2� ,

�8�

S2��a,�b� =
1

T2 � ddxR0��a · �b + 1 − �a
21 − �b

2�

�9�

and the dots denote terms, such as those produced by the
Jacobian of the transformation from the Sa’s to the �a’s and
possible contributions involving more than two replicas, that
either do not contribute to the perturbation expansion in the
T=0 limit or turn out to be irrelevant within conventional
power counting.19,25

From the logarithm of the partition function, Eq. �7�, one
can obtain, by a Legendre transform with respect to external
sources coupled to the �N−1�-component replica fields
�a�x�, the effective action �n�	�a
� which is the generating
functional of the one-particle irreducible vertices for the �a
fields and from which all equilibrium observables can be
derived. �The subscript n will be dropped in the following.�

B. Perturbation theory and renormalization

We proceed by calculating the effective action ��	�a
�
perturbatively in powers of the disorder correlator R0, keep-
ing only terms that do not vanish in the limit T=0. The
results so obtained would, however, be singular, showing the
standard ultraviolet divergences as �=d−4 goes to zero. For
instance, if we use the dimensional regularization as a regu-
larization scheme, the one-loop calculation brings in terms
proportional to 1/�. To cure this problem, it is necessary to
renormalize the theory by introducing in the effective Hamil-
tonian “counterterms” that are chosen to keep the physical
quantities finite.

Expressed in terms of dimensionless renormalized quan-
tities at an arbitrary momentum scale , the 1- and 2-replica
parts of the action read:

S1��a� =
d−2Z�

2ZTt
� ddx����a�2 + Z�

��a · ��a�2

1 − Z��a
2

− 2Z�
−1/2ZTh1 − Z��a

2� , �10�

S2��a,�b� =
d

2ZT
2t2 � ddxZR�z0 = Z��a · �b

+ 1 − Z��a
21 − Z��b

2� , �11�

where the dimensionless renormalized quantities are defined
as

� = Z�� , �12a�

T = 2−dZTt , �12b�

H = ZTZ�
−1/2h , �12c�

R0 = 4−dZR, �12d�

and ZR�z� is a functional of the renormalized dimensionless
disorder correlator R�z�, with its leading term equal to R�z�.
The two renormalization constants ZT and Z� and the renor-
malization function ZR�z� are chosen so that the loopwise
perturbative expansion of the effective action remains finite.
�We work in the minimal subtraction scheme in which the
counterterms contain only the singular parts necessary to
make the physical quantities finite.� In practice we compute
the 2-point proper vertex associated with the 1-replica part of
the effective action, �1

�2��q�, and the 2-replica part of the
effective action, �2, both being evaluated for uniform con-
figurations of the �a fields.

The perturbative expansion is organized about the free
theory formed by the quadratic part of the 1-replica action.
The associated free propagators are expressed in terms of the
bare quantities as follows:

Gij�q� = T
�ij − �i� j

q2 + H/

, �13�

where 
=1−�2. Note that following Brezin and
Zinn-Justin28 we keep an external magnetic field H which
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allows one to regularize the infrared divergences by giving a
mass to the Goldstone modes. Aside from this term, the ac-
tion in Eqs. �10� and �11� is O�N� invariant. The loop expan-
sion can be graphically expressed in terms of 1-particle irre-
ducible Feynman diagrams with vertices coming from both
the nonquadratic piece of the 1-replica action and from the
2-replica action.

A difficulty of the present problem lies in the functional
character of the expansion, the 2-replica vertices involving
the whole function R�z� and its derivatives. This is somewhat
similar to the treatment of disordered elastic systems,25 with,
however, the additional complication that the 1-replica part is
now nontrivial and gets renormalized in a manner that
couples to the renormalization of the disorder. The details of
the calculation as well as the method to handle possibly
anomalous terms appearing at the two-loop level when the
renormalized correlator of the disorder is nonanalytic will be
presented in Sec. IV.

C. FRG equations, critical exponents, and correlation
functions

For the 1-replica, 2-point proper vertex and for the
2-replica effective action �when both are evaluated for uni-
form configurations of the fields�, the relation between the
renormalized and the bare theories is simply

�1,
�2� �q;�,t,h,R� = Z��1,B

�2� �q;�,T,H,R0� , �14�

�2,�z,t,h,R� = �2,B�z,T,H,R0� , �15�

where B denotes the bare theory.
The RG flow equations then result from the invariance of

the bare theory under a change of the momentum scale ,
when T, H, and R0 are held fixed. Actually, we are only
interested in the situation of zero temperature �T=0� and
zero external field �H=0�. We introduce

�� =�� log Z��R0
, �16�

�T =�� log ZT�R0
, �17�

and

�R�z� =� − �R�z��R0
, �18�

where we have implicitly set T=H=0. As an illustration, the
flow of the 1-replica proper vertex, t�1,

�2� �q�, when H=h=0,
T= t=0, �=�=0, is derived as

�� + �2 − d + �T − ��� − �
−1

1

dz��R�z��
�

�R�z����t�1,
�2� �q��

= 0, �19�

where the long-distance physics is now obtained when 
→0.

The scaling behavior and the critical exponents of the
physical quantities can be obtained from the fixed-point so-
lutions and the properties of the flow near the fixed points. In
particular, the exponents � and �̄ that characterize the

power-law decay of the 2-point correlation functions at the
critical point for small q,

�S�− q� · S�q�� − �S�− q�� · �S�q�� � q−�2−��, �20�

�S�− q�� · �S�q�� − �S�− q�� · �S�q�� � q−�4−�̄�, �21�

and the exponent � associated with the temperature, t=�T,
are given by

� = ��* − �T*, �22�

�̄ = 4 − d + ��*, �23�

� = d − 2 − �T* = 2 − �̄ + � , �24�

where ��* and �T* are the fixed-point values of Eqs. �16� and
�17�. Provided ��0, the fixed point indeed occurs at zero
renormalized temperature.

Before closing this section, it is worth recalling an in-
equality for the correlation functions in the present models,
which turns into an inequality between critical exponents. In
the RF case, the result is due to Schwartz and Soffer,29 who
have proven that the q Fourier component of the “connected”
pair correlation function, �S�−q� ·S�q��− �S�−q�� · �S�q��, is
always less than the square root of the q component of the
“disconnected” pair correlation function, �S�−q�� · �S�q��
− �S�−q�� · �S�q��, up to an irrelevant multiplicative constant.
As a consequence, one must have �̄	2�.

The RA case is different and has been considered by
Feldman.20 In this model indeed, the randomness couples to
a composite field that is bilinear in the spin variables �see Eq.
�1��. As a consequence, the inequality now applies to the
connected and disconnected correlation functions of the
composite �bilinear� field. One can define new critical expo-
nents, �2 and �̄2, for those correlation functions,

�m�− q� · m�q�� − �m�− q�� · �m�q�� � q−�2−�2�, �25�

�m�− q�� · �m�q�� − �m�− q�� · �m�q�� � q−�4−�̄2�, �26�

where mi�x�=Si�x�2− �1/N�. The inequality between the cor-
relation functions then imposes that �̄2	2�2. However, the
exponents � and �̄ are no longer constrained by the usual
Schwartz-Soffer inequality. The exponents �2 and �̄2 are also
expressable in terms of fixed-point quantities.

In the following we first analyze the FRG equations ob-
tained at one-loop order near d=4.

III. ANALYSIS OF THE ONE-LOOP FRG EQUATIONS
IN d=4+�

A. One-loop beta function in d=4+�

The beta function for the renormalized correlator of the
disorder R�z� at zero temperature has been obtained by
Fisher at the one-loop level in d=4+�.19 It reads
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�R�z� = − �R�z�

= − �R�z� + C�2�N − 2�R�z�R��1�

+
1

2
�N − 2 + z2�R��z�2 − z�1 − z2�R��z�R��z�

+
1

2
�1 − z2�2R��z�2 − �N − 1�zR��1�R��z�

+ �1 − z2�R��1�R��z�� , �27�

where C=1/ �8�2�. The above expression is valid for both
the RF and the RA models. The only difference is the addi-
tional inversion symmetry present in the latter: z goes from
−1 to +1 in all cases, but in the RA model, R�−z�=R�z�.

At the same one-loop level, the critical exponents � , �̄
and �2 , �̄2 defined in Eqs. �20�, �21�, �25�, and �26� are given
by19,20

� = CR*��1� , �28�

�̄ = − � + �N − 1�CR*��1� , �29�

�2 = �N + 2�CR*��1� , �30�

�̄2 = − � + 2NCR*��1� , �31�

where the star indicates a fixed-point solution.
For studying the fixed points and their stability it is con-

venient to introduce R̃�z�= �C /��R�z� �the renormalized dis-
order is of order � at the putative fixed points� and to con-
sider the beta function for its derivative,

�−1�R̃��z� = − R̃��z� + zR̃��z�2 + �N − 3�R̃��z�R̃��1�

+ �N − 3 + 4z2�R̃��z�R̃��z� − �N + 1�zR̃��1�R̃��z�

− z�1 − z2�R̃��z�R̃��z� + �1 − z2�R̃��1�R̃��z�

− 3z�1 − z2�R̃��z�2 + �1 − z2�2R̃��z�R̃��z� . �32�

It is illustrative to write down the one-loop beta functions

for the first derivatives R̃��z=1� and R̃��z=1�, assuming that

R̃�z� is at least twice continuously differentiable around z
=1. �z=1 corresponds to the situation where the spins in the
two considered replicas become equal, Sa=Sb.� The expres-
sions are

�−1�R̃��1� = − R̃��1� + �N − 2�R̃��1�2, �33�

�−1�R̃��1� = − �− 1 + 6R̃��1��R̃��1� + �N + 7�R̃��1�2 + R̃��1�2.

�34�

If R̃�z� is analytic around z=1, the beta functions for the
higher derivatives evaluated at z=1 can be derived as well.
As noted by Fisher,19 the expression for the pth derivative
only involves derivatives of lower or equal order �and for

p�3 the beta function is linear in the pth derivative�. This
structure allows an iterative solution of the fixed-point equa-

tion, provided of course that R̃�z� has the required analytic
property.

The fixed points corresponding to the zeros of Eq. �33�
are R̃*��1�=0 �stable� and R̃*��1�=1/ �N−2� �unstable with
an eigenvalue �1=��. The latter fixed point leads to the
dimensional-reduction value of the critical exponents, e.g.,
�= �̄=� / �N−2�, �=1/�1=1/�. The second expression, Eq.
�34�, has then �two� nontrivial zeros only if N�18: the

fixed point with R̃*��1�=
�N−8�+�N−2��N−18�

2�N−2��N+7� is unstable

��2=�N−18�

�N−2� �� whereas that with R̃*��1�=
�N−8�−�N−2��N−18�

2�N−2��N+7�

has a negative second eigenvalue, �2=−�N−18�

�N−2� �.

This little exercise already shows that no nontrivial fixed-

point function R̃*�z�, twice differentiable in z=1, can exist
for N�18. Actually, one finds that there is a finite range of

initial conditions for R̃��1� for which, no matter what one

chooses for its initial value, the RG flow for R̃��1� leads to a
divergence at a finite scale . The solution to this problem
has been known for some time:23 the proper fixed point con-
trolling the critical behavior must be nonanalytic around z

=1, with R̃*��z� having a cusp, i.e., a term proportional to
1−z when z→1, at least when N�18.

We now consider, separately and in more detail, the re-
sults for the RFO�N�M and the RAO�N�M.

B. RF O„N… model

Numerical solutions of the fixed-point equation, �R̃��z�
=0, have been given by Feldman26 for N=3, 4, and 5 and by
us for general values of N.22 Some analytical results can also
be derived and will be discussed at the end of this section.
The picture one gets from the numerical solutions is that the
long-distance physics of the RF O�N� model near d=4 dras-
tically depends on whether N is above or below two distinct
critical values: NDR=18 and Nc=2.8347. . ..

The value NDR=18 separates a region in which R̃*��z� at
the critical, i.e., once unstable, fixed point has a cusp �N
�NDR� from a region �N�NDR� where R̃*��z� has only a
weaker nonanalyticity, a “subcusp” in �1−z���N� with ��N� a
noninteger strictly larger than 1.32 As already mentioned, the
occurrence of a cusp changes the values of � and �̄ from
their dimensional-reduction value, �DR= �̄DR=� / �N−2�. On
the contrary, the weaker nonanalyticity occurring for N

�18 does not alter the fixed-point value of R̃*��1� from that
obtained from Eq. �33�; this leads to �= �̄=�DR. This is il-
lustrated in Fig. 2 where we plot �DR /� and �̄DR / �̄ as a
function of N.

On the contrary, at Nc=2.8347. . ., the perturbative
“cuspy” fixed point describing the paramagnetic-to-
ferromagnetic critical point when ��0 disappears �� and �̄
diverge as N→Nc

+, see Fig. 2�. Below Nc an attractive cuspy
fixed point appears for ��0 that now describes a whole
phase with QLRO. The exponents � and �̄ characterizing
this QLRO phase are plotted versus N in Fig. 3.
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At the critical value Nc, the beta function for R��z� �un-
scaled by �� in exactly d=4 has a �cuspy� fixed-point solu-
tion R*��z� for any arbitrary value of the renormalized disor-
der strength R*��1�. We have noted in Ref. 21 that the
situation bears some similarity with the pure O�N� model
near d=2. There, the critical value Nc below which a QLRO
phase may occur for ��0 is Nc=2, and for Nc=2 and d=2
the beta function for the temperature identically vanishes,
independently of the value of the temperature. The singular
point �Nc=2, d=2� is characterized by the existence of a
Kosterlitz-Thouless transition. One may then wonder
whether the singular point of the RFO�N�M �Nc=2.8347. . .,
d=4�, despite the absence of the Abelian property specific to
the O�N=2� model, also possesses a Kosterlitz-Thouless
transition. This point will be addressed below with the help
of the two-loop calculation.

We now complement this numerical study by providing
some analytical results. We first show that for d�4, the criti-
cal point is always characterized by a correlation-length ex-
ponent � which is equal �at one loop� to its dimensional-
reduction value, �DR=1/�. The eigenvalue equation obtained
by linearizing the beta function, Eq. �32�, for a small devia-

tion from the fixed-point solution, ��z�= R̃��z�− R̃*��z�, is

�

�
��z� = ��z�„R̃*��z�z3 + 2R̃*��z�z − R̃*��z�z + NR̃*��1� − 3R̃*��1�

+ �4z2 + N − 3�R̃*��z� − 1… + ��1�„�N − 3�R̃*��z�

− �N + 1�zR̃*��z� − �z2 − 1�R̃*��z�… + ���z�„R̃*��z�z4

− 2R̃*��z�z2− NR̃*��1�z − R̃*��1�z + 6�z2 − 1�R̃*��z�z

+�4z2 + N − 3�R̃*��z� + R̃*��z�… − �1 − z2�

�„zR̃*��z� − R̃*��1� − �1 − z2�R̃*��z�…���z� . �35�

By substituting ��z�= R̃*��z� in the above equation, one can
easily check that the fixed-point solution is also a solution of
the eigenvalue equation with a positive eigenvalue �1=�
�from which �=�DR=1/��. This result is independent of the

analytic or nonanalytic character of R̃*��z�. For d�4, R̃*��z� is
also the solution of Eq. �35� with �1=�, but the eigenvalue is
now negative, which allows the fixed point to be fully attrac-
tive.

For N�18 it is possible to adapt Fisher’s arguments con-
cerning the hierarchy of flow equations for the successive

derivatives of R̃*�z� evaluated at z=1.19 �In his paper how-
ever, Fisher did not envisage nonanalytic fixed-point solu-
tions.� As explained above, a fixed point with a well-defined
second derivative and an associated negative eigenvalue
��2�0� can be found for N�18. �Note that cuspy fixed
points are also present, but they are more than once unstable
and correspond to putative multicritical behavior; a detailed
analysis of the fixed points and their stability in the N→�
limit has been recently provided by Sakamoto et al.27� The
flow equations for the higher derivatives are linear, namely,

− �R̃�p��1� = − �p„R̃�1�,R̃�1�…R̃�p��1�

+ Fp„R̃�1�,R̃�1�, . . . ,R̃�p−1��1�… , �36�

provided of course that the pth derivative is well-defined in

z=1. If R̃��1� and R̃��1� are chosen equal to their fixed-point

values, R̃*��1�=1/ �N−2� and R̃*��1�=
�N−8�−�N−2��N−18�

2�N−2��N+7� , one

finds

FIG. 2. Ratios �DR /� �upper curve� and
�̄DR / �̄ �lower curve� vs N for the RFO�N�2�M
at first order in �=d−4 �the dimensional-
reduction value for the exponents is �DR= �̄DR

=� / �N−2��. The critical value of N at which both
� and �̄ diverge is Nc=2.8347. . ..

FIG. 3. Exponents � and �̄ �divided by �� characterizing the
power-law decay of the pair correlations in the QLRO phase of the
RFO�N�M for N�Nc=2.8437. . . �first order in �=d−4�.
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�p* =
�

N − 2
�2p2 − �N − 1�p + �N − 2�

+
p�N − 5 + 6p�

2�N + 7�
„N − 8 − �N − 2��N − 18�…� .

�37�

For a given N, �p* monotonically increases with p, so that
there exists an integer value p#�N� such that �p#�N�*�0 and
�p#�N�+1*�0. Starting with an analytic bare action, a fixed

point value is reached �provided R̃��1� is appropriately

tuned� at which the first p#�N� derivatives of R̃*�z� are well-
defined in z=1. The RG flow for the �p#�N�+1�th derivative
on the other hand goes to infinity, but only in the limit 
→0. �This is to be contrasted with the situation for N�18 in

which the second derivative R̃��1� diverges at a finite scale
, due to the nonlinear nature of the corresponding beta
function.� As a consequence, the �p#�N�+1�th derivative of

R̃*�z� is not defined in z=1, and there must be a nonanalyt-

icity in R̃*��z� of the form �1−z���N� with p#�N�−1���N�
� p#�N�.

It is easy to show that the beta function for the coefficient,
say a, of the �1−z���N� term is equal to �a=���N�+1*a, where
���N�+1* is given by Eq. �37� with p replaced by the nonin-
teger ��N�+1. The beta function is equal to zero with a
nontrivial a�0 if and only if ���N�+1*=0. This selects the
form of the nonanalyticity of the fixed-point solution around
z=1. As noticed in our previous work,22 the nonanalyticity
goes as N /2+O�1� at large N �a behavior that cannot be
captured in a 1/N expansion, see, e.g., Ref. 27�. However,
contrary to what is stated in Ref. 22, the exponent of the
subcusp increases continuously with N when N�18, as il-
lustrated in Fig. 4.

Finally, we close this survey of the RFO�N�M at one-loop
order by pointing out that for N=2, the FRG equations, Eqs.
�27�–�29�, exactly reduce to those of a periodic elastic sys-
tem, with a one-component displacement field, pinned by
disorder. This is more easily seen by switching variables
from z to an angle �=cos−1�z�. A cuspy fixed-point solution
�with �= ����2 /9 and �̄= ����1+�2 /9�� describing a QLRO

phase �a “Bragg glass”� when d�4 is then analytically ob-
tained �compare with Refs. 8, 9, and 5�.

C. RA O„N… model

Overall, the picture of the long-distance physics of the RA
O�N� model that one gets from solving the one-loop FRG
equations is very similar to that of the RF O�N� model. This
conclusion, we recall, comes with the proviso that one fo-
cuses on weak disorder �working near the lower critical di-
mension of the paramagnetic-to-ferromagnetic transition�
and that the possible spin-glass ordering which may occur at
stronger �finite� disorder is not considered. The main differ-
ence with the behavior of the RF O�N� model then lies in the
critical values NDR and Nc: Nc is found to be 9.4412…; on
the other hand, NDR=�, which means that, contrary to the RF
case, a cusp appears for all values of N and dimensional
reduction always breaks down completely.

To show that the fixed-point solution R̃*��z� always has a
cusp, it is instructive to go back to the beta functions for the

first two derivatives R̃��1� and R̃��1�, Eqs. �33� and �34�,
assuming that there is no cusp, �1−z�� with 0���1, in

R̃��z�. The RA model having the additional inversion sym-

metry, R̃�−z�= R̃�z�, it is convenient to rewrite R̃�z�
= �1/2�S̃�z2�. From Eqs. �33� and �34� one obtains the flow

equations for S̃��1� and S̃��1�. A nontrivial fixed point of the

beta function for S̃��1�= R̃��1� is again R̃*��1�=1/ �N−2� and
the associated eigenvalue is positive ��1=��, so that the
fixed point can only be reached if one tunes the initial value
to be exactly 1/ �N−2�. When doing so, the flow equation for

S̃��1� can now be written as

− �−1�S̃��1� =
1

2�N − 2�2 + 2�N + 7��S̃��1� − S̃+��

��S̃��1� − S̃−�� , �38�

where

FIG. 4. Exponent ��N� characterizing the
nonanalyticity �1−z���N� in R��z� for the
RFO�N�M in d=4+� �at one loop�. For N
�18 �=1/2 whereas ��N→18+�=3/2.
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S̃±� = − � �N + 22� � �N − 2��N − 18�
2�N − 2��N + 7�

�

are both strictly negative for any finite value of N. If one

starts with a value of S̃��1� that is positive or even zero,
which is indeed a physical requirement since the bare disor-

der correlator is of the form �̃2z2 plus possible higher-order
even powers of z associated with even-rank anisotropies, the
beta function, i.e., the right-hand side of Eq. �38�, stays
strictly positive. As a result, S̃��1� diverges, and it actually
diverges at a finite scale . This is of course incompatible
with the hypothesis that the fixed point has a well-defined

second derivative S̃*��1�: a cusp must appear along the flow.
Note that this reasoning is completely independent of N.

The limit N→� is, however, somewhat special. Looking

for S̃�z2�=O�1/N� and taking the N→� limit in Eq. �38�,
one finds

− �−1�„NS̃��1�…� = 2„NS̃��1�…��„NS̃��1�…� + 1� . �39�

A fixed point with S̃*��1�=0, although having a second
positive eigenvalue, can still be reached from an initial con-

dition with S̃��1�=0: this analytic fixed point is the one
found by a direct analysis of the N→� saddle-point equation
of an RA model with only a second-rank anisotropy, �2z2. It
is, however, unstable to the introduction of higher-order
anisotropies �and of course never stable when N is large but
finite�.

One can actually find the cuspy fixed-point solution in the
large N limit. It is convenient to change the variable from z

to �=cos−1�z� and define T̃���= �N−2�R̃�z�. T̃��� must be an

even function of � and the symmetry R̃�−z�= R̃�z� translates

into T̃��−��= T̃���, so that it is sufficient to consider � in

the interval �0, �
2
�. The beta function for T̃���� in the large N

limit is given by

�−1�T̃���� = − T̃���� −
cos���
sin3���

T̃����2

+
T̃����

sin2���
�cos�2��T̃��0� + T̃�����

−
cos���
sin���

T̃��0�T̃���� +
T̃����
N − 2

�T̃���� − T̃��0�� ,

�40�

where the last term can be dropped in the large N limit.
Details on the derivation of the solution and on the stability
analysis are provided in Appendix A. Here, we only quote
the result:

T̃*���� = − 3 sin��� cos�� + ���
3

� + O� 1

N
� . �41�

The 1/N correction can also be analytically obtained and

is given in Appendix A. One can see that T̃*���� in Eq. �41�
satisfies the symmetry requirement around �

2 , since T̃*�� �
2

�
=0, and has a cusp in ��� �i.e., in 1−z� as � goes to zero
�and z goes to 1�. The fixed point is once unstable with, as
shown in the previous section, �1=�; hence �=�DR=1/�.
The critical exponents � , �̄ and �2 , �̄2 are obtained

from R̃*��1�=−T̃*��0� / �N−2�= 3
2N + 26

N2 +O�1/N3� �see Eqs.
�28�–�31��:

� =
3�

2N
�1 +

52

3N
+ O� 1

N2�� , �42�

�̄ =
�

2
�1 +

49

N
+ O� 1

N2�� , �43�

�2 =
3�

2
�1 +

58

3N
+ O� 1

N2�� , �44�

�̄2 = 2��1 +
26

N
+ O� 1

N2�� . �45�

FIG. 5. Variation with N of the �cuspy� fixed
point of the RAO�N�M in d=4+� �at one loop�:
T̃*���� vs � for 0	�	� /2. The curves corre-
spond to N=16 �top curve in the right part of the
figure� and to N=1500 �bottom curve in the right
part of the figure� by steps of 5% relative in-
crease. The thick curve is the analytical result for
N→� �see Eq. �41��. Note that there is a zero
slope when �=� /2 and a nonzero one �i.e., a
cusp� when �→0+.
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Note that a Schwartz-Soffer-like inequality is satisfied, as
it should be �see Sec. III A�, by the exponents �2 and �̄2
�namely, �̄2�2�2�, but not by the exponents � and �̄.

We display in Fig. 5 the large N cuspy fixed-point solu-
tion, Eq. �41�, together with the numerical solution obtained
for a wide span of N. The convergence to the N→� limit is
clearly visible, as is visible the presence for all N’s of a
nonzero slope as �→0, which corresponds to a cusp. In Fig.
6 we display the exponents � and �̄ as a function of N; this
again illustrates that dimensional reduction fails for all val-
ues of N.

The change from ferromagnetic ordering to QLRO occurs
for Nc=9.441. . ., to be compared to Nc=2.834. . . for the
RFO�N�M. As first shown by Feldman,20 QLRO may thus be
present in the RAO�N�M near, but below, d=4 for N
=2,3 , . . . ,9: see also Fig. 7. The �cuspy� fixed-point solution
associated with QLRO can be analytically derived in the N
=2�XY� case. Just like in the RFO�N�M, the FRG equations

then reduce to those of a disordered periodic elastic
system,5,8,9 the only difference with the RF case being a
simple rescaling of the solution accounting for the difference
in the periodicity, from 2� to �. This yields the critical ex-
ponents �= ����2 /36 and �̄= ����1+�2 /36�.

IV. DERIVATION OF THE FRG BETA FUNCTIONS
TO TWO LOOPS

In this section we describe in detail the calculation of the
beta functions and of the critical exponents at two loops.

A. Diagrammatic representation

As explained above �see Sec. II B� the calculation is
based on an expansion of the effective action in powers of R.
The terms of this expansion are given by all amputated
1-particle irreducible Feynman diagrams. In order to deter-
mine all the counterterms, we need to compute the 1-replica
2-point proper vertex and the 2-replica effective action with
no derivatives �uniform fields�. The associated diagrams are
obtained by connecting the different vertices of the theory
with the free propagator given in Eq. �13�.

The free propagator is represented by a line. The vertices
are obtained by deriving either S1 �Eq. �10�� or S2 �Eq. �11��.
In the former case they are represented by lines emerging
from a single circle �see Fig. 8� and in the latter by lines
emerging from two circles �corresponding to the two replicas
of S2� connected by a dashed line �see Fig. 9�.

As can be seen in Eqs. �8� and �9� the 1- and 2-replica
parts of the action have a factor T−1 and T−2, respectively, so
that the various diagrams do not come with the same power
of the temperature. Anticipating that the fixed point of inter-
est to us is at zero temperature, we compute here only the
diagrams of lowest order in T, i.e., those proportional to 1/T
for the 1-replica effective action and to 1/T2 for the 2-replica
effective action. It is easy to check that the diagrams of low-
est order in temperature with n1 1-replica vertices and n2
2-replica vertices have n1+2n2−2 propagators. Similarly, for
the 2-replica effective action, the diagrams of lowest order in
temperature have n1+2n2−1 propagators. Given these con-
straints, one can draw all the diagrams and check that an
expansion in powers of R corresponds to an expansion in

FIG. 6. Exponents � and �̄ �divided by �� for the RAO�N�M at
first order in �=d−4. Dimensional reduction fails for all values of
N: �−1��3/ �2N� and �−1�̄�1/2 when N→�. The critical value of
N at which both � and �̄ diverge is Nc=9.4412. . ..

FIG. 7. Exponents � and �̄ �divided by �� characterizing the
power-law decay of the pair correlations in the QLRO phase of the
RAO�N�M for N�Nc=9.4412. . . �first order in �=d−4�.

FIG. 8. Vertices with three and four legs obtained from S1, i.e.,
with one replica.
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increasing number of loops. The one-loop diagrams are dis-
played in Figs. 10 and 11.

The two-loop diagrams are given in Appendix B. The in-
tegrals involved in the two-loop calculations have been
evaluated in the dimensional regularization scheme by using
the procedure described in Appendix C.

The 1-replica 2-point proper vertex can be formally ex-
pressed as

�2�1���
��i�q��� j�q�

= Z�� 1

T
�q2 −

H



���ij +

�i� j


2 �
+ one-loop + two-loops� �46�

with 
=1−�2. The first term in the parentheses corresponds
to the tree diagram and is given by the inverse of the free
propagator �see Eq. �13��.

The same can be done for the 2-replica effective action,
which formally gives

�2��a,�b� =
1

T2R0��a · �b + 
a
b� + one-loop + two-loops.

�47�

We next replace the bare quantities by the renormalized
ones, following Eqs. �12�, in the two previous expressions
and reexpand in powers of R. One must then choose the
counterterms such that the expressions are finite, i.e., such
that all terms in 1/� and 1/�2 vanish.33

Once the counterterms are known, the beta functions can
be calculated as derivatives of the renormalized quantities
with respect to the scale  at fixed bare quantities �see Eqs.
�16�–�18��. In order to perform the derivative in Eq. �18�, we
write the counterterm for R as

ZR = R + �1�R,R� + �2�R,R,R� , �48�

where �1�R ,R� and �2�R ,R ,R� are the one-loop and two-
loop contributions, respectively; the former is a quadratic
functional of R and is proportional to 1/�, and the latter is
cubic in R and contains terms in 1/�2 and 1/�. We then
invert Eq. �12d� with ZR given by Eq. �48�, so that the renor-
malized function R can be expressed as a functional of the
bare function R0 as

R = �R0 − 2��1�R0,R0� − 3���2�R0,R0,R0�

− 2�1†�1�R0,R0�,R0‡� + O�R0
4� . �49�

The term on the last line corresponds to a repeated one-
loop term, in which the first argument of the functional �1 is
replaced by �1�R0 ,R0�. This gives a cubic contribution in R0.
The flow equation for R is then given by Eq. �18� with the
following beta function:

�R = − ��R − �1�R,R� − 2�2�R,R,R� + 2�1†�1�R,R�,R‡� . �50�

In the above expression, the terms in 1/� appearing in �1,
�2, and in the repeated one-loop term are multiplied by � and
therefore give finite contributions. The last two terms also
have contributions in 1/�2, but they exactly cancel each other
�as can be explicitly checked by using Eqs. �53� and �54�
below�.

B. Analytic piece of the beta functions

As discussed in Sec. III, even when starting from an ana-
lytic initial condition, integration of the one-loop flow equa-
tion generates a nonanalyticity in the renormalized disorder
function R�z�. It is therefore necessary to consider the flow
equations for nonanalytic functions R�z�, and in particular to
determine the contributions of such nonanalyticities to the
beta functions. At the one-loop order, there are no such con-
tributions. However, they appear at two loops. For clarity’s
sake, we first describe the calculation of the flow equations

FIG. 11. One-loop diagrams for the 1-replica 2-point proper
vertex.

FIG. 9. Vertices with two and three legs obtained from S2, i.e.,
with two replicas.

FIG. 10. One-loop diagrams for the 2-replica effective
action.
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for analytic functions and consider the contributions due to
nonanaliticities in the next section.

The analysis described in the previous section and in Ap-
pendixes B and C leads to the following expressions for the
counterterms:

Z�
r = 1 +

C

�
�N − 1�R��1��1 +

C

2�
R��1��2N − 3�� , �51�

ZT
r = 1 +

C

�
�N − 2�R��1��1 +

C

�
R��1��N − 2 +

�

2
�� ,

�52�

2�

C
�1�R,R� = �z2 + N − 2�R��z�2 + 2z„�1 − N�R��1�

+ �z2 − 1�R��z�…R��z� + 4�N − 2�R�z�R��1�

+ �z2 − 1�R��z�„�z2 − 1�R��z� − 2R��1�… , �53�

4�2

C2 �2
r �R,R,R� = �� + 2�R��z�R��z�2�z2 − 1�4 + 2R��z�2�3z�� + 4�R��z� + �z2 − 1�R���z���z2 − 1�3

+ ��9� + 32�z2 + N�� + 2� − 2�� + 6��R��z�3�z2 − 1�2 + R��z�†z�15�� + 4�z2 + N�3� + 10�

− 2�6� + 25��R��z�2 + 2�z2 − 1�„�4�� + 5�z2 + 2N − � − 6�R��z� + 2z�z2 − 1�R���z�…R��z�

+ z�z2 − 1�2�� + 2�R��z�2
‡�z2 − 1� + z��� + 4�z2 + 2N − � − 6�R��z�3

+ 4�N − 2��3N + � − 6�R�z�R��1�2 + 2R��1�2	�− 4N2 + 13N − 9�zR��z� + �N2z2 + 9z2 − 3N�z2 − 1� − 10�

�R��z� + �z2 − 1��2�N + 1�zR��z� + �z2 − 1�R���z��
 + R��z�2
„��7� + 32�z4 − 12�� + 4�z2 + 2N2 + 5�

+ 2N�z2 − 1��� + 5� + 14�R��z� + 2z�z2 − 1�	��� + 8�z2 + 2N − � − 6�R��z� + z�z2 − 1�R���z�
…

− R��1�†�� + 2�R��z�2�z2 − 1�3 + 2R��z��z�2N + 3� + 14�R��z� + 2�z2 − 1�R���z���z2 − 1�2

+ 	�7� + 34�z2 − 4�� + 6� + N��� + 6�z2 + 2�� + 2��
R��z�2�z2 − 1�

+ 	− 4N2 + ��� − 2�z2 − � + 18�N − z2�� − 10� + � − 22
R��z�2 + 2R��z�„z�2N2 + �z2 − 1��� + 2�N − �

+ z2�� + 18� − 20�R��z� + �z2 − 1�	��� + 10�z2 + 2N�z2 + 1� − � − 6�R��z� + 2z�z2 − 1�R���z�
…‡ , �54�

where the superscript r stands for “regular” �i.e., analytic�,
C−1=8�2 and z=�a ·�b+1−�a

21−�b
2.

Note that the expressions for Z� and ZT correspond to
those obtained at two loops in the nonlinear sigma model for
the ferromagnetic-paramagnetic transition of the O�N� model
with no randomness if one replaces R��1� by the tempera-
ture, C by 1/2�, and � by d−2.28 Moreover, the counterterm
for R��1� �assuming here that the function R�z� is analytic�
reads

1

R��1�
�z���1 + �2

r ��z=1

=
C

�
R��1��N − 2��1 +

C

�
R��1��N − 2 +

�

2
�� , �55�

which again coincides with the counterterm found for the
temperature in the pure system.28 This equivalence between
the pure model near d=2 and the disordered one near d=4 is
the expression of the dimensional-reduction property.

The regular part of the beta function for R�z� can then be
calculated from Eqs. �50�, �53�, and �54�, which gives

�R
r �z� = − �R�z� +

C

2
	�N − 2 + z2�R��z�2 − 2z��1 − z2�R��z�

+ �N − 1�R��1��R��z� + 4�N − 2�R�z�R��1�

+ �1 − z2�R��z���1 − z2�R��z� + 2R��1��
 +
C2

2
	�1 − z2�

���1 − z2�R��z� + R��1� − zR��z����1 − z2�R��z�

− 3zR��z� − R��z��2 + �N − 2���1 − z2�2R��z�3

− �1 − z2��3zR��z� − �z2 + 2�R��1��R��z�2

− 2�1 − z2�R��z��R��z� − zR��1��R��z�

+ �1 − z2�R��1�R��z�2 + 4R�z�R��1�2�‰ . �56�

We next consider the derivation of the critical exponents.
The determination of �� and �T simplifies if one uses the fact
that Z� and ZT depend on R�z� only through R��1�. Equations
�16� and �17� become

�A
r = � log ZA

r = − �R��1��R��1� log ZA
r �57�

with A being � or T and the derivatives being taken at fixed
bare quantities. We then get
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��
r = �N − 1�CR��1� + O�R3� , �58�

�T
r = �N − 2�CR��1��1 + CR��1�� + O�R3� . �59�

The critical exponents � and �̄ can now be evaluated by
making use of Eqs. �22� and �23�:

�r = CR*�1��1 − �N − 2�CR*�1�� , �60�

�̄r = − � + �N − 1�CR*�1� . �61�

As we shall explicitly show in Sec. V, the exponents de-
fined under the assumption of an analytic fixed-point solu-
tion R*�z� are equal to their dimensional-reduction value.

C. “Anomalous” contributions

We have seen in Sec. III that, even with an analytic initial
condition for Rt=0�z�, the one-loop RG flow equation gener-
ates a nonanalyticity in the renormalized disorder function
R�z�. The strongest nonanalyticity is obtained in the
RFO�N�M for N�18 and in the RAO�N�M for all values of
N in the form

R�z� = R�1� + R��1��z − 1� −
a

3
�2�1 − z��3/2 + . . . �62�

when z approaches 1 �from below�; a will be used in the
following to quantify the strength of the singularity. Dimen-
sional reduction is recovered under the assumption that the
function R�z� is analytic �see above�, but if a�0 it is no
longer valid.

Alternatively, the renormalized disorder function can be
parametrized in terms of the angle � between the two repli-
cas instead of the scalar product z �z=cos ��. The expansion
in Eq. �62� then translates into a small � expansion,

R��� � R�z = cos �� = R�1� − R��1�
�2

2
−

a���3

3
+ . . . ,

�63�

where the nonanalyticity appears as a discontinuity in the
third derivative of R��� in �=0.

One can easily convince oneself that the nonanalytic term
in a can explicitly appear in �R�z�. Consider the repeated
one-loop term �last term in Eq. �50��. Since �1�R ,R� has an
explicit dependence on R��1�, one has to compute ��z�1�z=1

which, when the nonanalyticity of R�z� is taken into account
�see Eq. �62��, takes the form

��z�1�z=1 =
C

�
�R��1�2�N − 2� − a2�N + 2�� .

Replacing then R��1� by Eq. �62� yields an explicit depen-
dence of �R on a.

Actually, the two-loop, 2-replica diagrams also give con-
tributions in a2: look, for instance, at the sixth diagram of
Fig. 14 in Appendix B. Note that the two replicas of the
vertices on the left and on the right of the diagram are actu-
ally connected via propagators. These vertices are therefore

to be computed for identical replicas. In order to take into
account the nonanalytic part of this diagram, the 2-replica
vertices are evaluated for two slightly different replicas Sa
and Sa� with

Sa� =
Sa + ��

1 + �2
. �64�

Here, � is a small parameter that must be taken to zero at the
end of the calculation and � is a unit vector orthogonal to Sa
that gives the direction in which Sa� approaches Sa. The de-
pendence of the diagram on � appears only through the sca-
lar product � ·Sb whose absolute value varies between 0
�when � and Sb are orthogonal� and 1−z2 �when �, Sa, and
Sb are in the same plane�. We therefore write

� · Sb = �1 − z2 �65�

with � varying between −1 and 1.
There are six 2-replica diagrams giving nonanalytic con-

tributions in a2: diagrams 5, 6, 11, 12, 13, and 14 of Fig. 14.
These diagrams �and some others� also have contributions
linear in a, but we discard them for symmetry reasons. In-
deed, a corresponds to the third derivative of R��� �see Eq.
�63�� which changes sign under the operation �→−�. On
the other hand, the disorder function itself is unchanged in
the same operation; as a result, linear contributions in a must
vanish from all physical quantities.

The situation is even more complex when considering the
two-loop diagrams for the 1-replica 2-point function. In this
case a generic diagram has a singular limit �→0. Indeed an
expansion in powers of � around 0 gives terms in a2�−2,
a2�−1, and a2�0. On top of this, there is a strong dependence
of the result on the way the regularization is performed.
Look for instance at the first diagram of Fig. 15. We can
decide to attribute the field Sa to the replica on the left of the
diagram and the field Sa� to the replica on the right. It re-
mains to choose whether the propagator �which is diagonal
in replica indices� on the top of the diagram is associated
with Sa or Sa�. The calculation shows that the two choices
lead to different results.

Such ambiguities are already present in the two-loop FRG
treatment of disordered elastic systems and Le Doussal,
Wiese, and co-workers have given a detailed and well-
argumented analysis of the way to handle these
ambiguities.25 Here, we have extended their procedure and
used the following set of rules

1. The nonanalytic parts of the diagrams, i.e., those pro-
portional to a2, come with an a priori unknown weight.

2. Within a single diagram, the parts in a2�−2, a2�−1, and
a2�0 come with independent �a priori unknown� weights.

3. For diagrams that are ambiguous in the sense that dif-
ferent regularization schemes lead to different results, we
have introduced additional weighting factors such that all
possible results can be reproduced by appropriately choosing
these extra weighting factors.

As discussed in Ref. 25, the fact that pieces of the two-
loop diagrams come with a priori unknown weighting fac-
tors is due to the intrinsic ambiguity that occurs at T=0 when
the function R entering into the vertices is nonanalytic in z
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=1 �or �=0�. Consider for instance the third derivative of
R��� around �=0 �see Eq. �63��. Its sign depends on
whether �→0+ or �→0− and because of the discontinuity
its value in exactly �=0 is left undetermined. Vertices that
contain this derivative evaluated exactly in �=0 have thus a
contribution that come with an undetermined weight. Addi-
tional constraints must be used to fix the values of the
weighting factors �or at least enough relations between these
factors�. This is precisely what is done by requiring that the
physical quantities be finite.

Under these hypotheses, the calculation proceeds in a
straightforward way. We observe that it is possible to choose
the nonanalytic part of the counterterms and to fix all the
weighting factors such that the 1-replica 2-point proper ver-
tex and the 2-replica effective action �see Eqs. �46� and �47��
are finite. This procedure leads to a unique form for the
counterterms �for a given parameter �, see Eq. �65��. On top
of the analytic parts already computed �see Eqs. �51�–�54��,
one now must add the “anomalous” contributions, so that

Z� = Z�
r −

C2

�2 a2� �N − 1��N + 2�
2

+ �
3N − 2

4
� , �66�

ZT = ZT
r −

C2

�2 a2�N2 − 4

2
+ �

N − 2

2
� , �67�

�2�R,R,R� = �2
r �R,R,R� +

C2a2

�2 ��4 − N2 − �N − 2���R�z�

+
z

4
�2�N − 1��N + 2� + ��3N − 2��R��z�

−
1 − z2

4
�2N + 4 + �2 + �2N���R��z�� . �68�

The presence of “anomalous” contributions in the counter-
terms induce new terms in the beta function for R�z�, which
now reads

�R�z� = �R
r �z� −

C2a2

2
	4�N − 2�R�z� − �3N − 2�zR��z�

+ �1 − z2���2N + 2�R��z�
 , �69�

where, we recall, a is defined through Eq. �62�. Note here
that there is still an explicit dependence on �2, which en-
codes how one takes the limit Sa�→Sa �see Eq. �65��. There
is, however, a preferred value for �2. The simplest way to see
this is to compute �R�z� with a nonanalytic function R of the
form given in Eq. �62�. There is a term proportional to
a3�1−�2�1−z. If we choose �2�1, the flow equation gen-
erates a supercusp, i.e., a stronger nonanalyticity, R�z���1
−z�1/2, than the one initially considered; this supercusp
would itself generate an even stronger nonanalyticity and the
theory would not be renormalizable at the two-loop level. On
the other hand, �2=1 ensures that the procedure is consistent.
The value �2=1 also appears in another context: the repeated
one-loop term �last term of Eq. �50�� can be interpreted as the
set of two-loops diagrams obtained by replacing in the one-
loop diagrams �see Fig. 10� one of the 2-replica vertices by
the one-loop diagrams with two external legs. If we compute

these two-loop diagrams with their weighting factor accord-
ing to the above procedure, we get an expression that is
consistent with the repeated term only if we choose �2=1. In
the following, we thus fix �2 to this value.

It is worth stressing that Eqs. �56� and �69� �with �2=1�
exactly reduce to the two-loop FRG equation for periodic
disordered elastic systems when N=2.25 This is more easily
checked by switching to the angle variable �.

In Refs. 21 and 30 the renormalization constant for the
temperature ZT had not been derived at two loops, so that an
incompletely determined version of the beta function of Eq.
�69� was given. In the notations of Ref. 21 the unknown
parameter K is now fixed to K=1/2 whereas in the notations
of Ref. 30 the unknown parameter is now fixed to �a=1/4.34

Finally, the expressions of the critical exponents have to
be modified in order to take into account the nonanalytic
contributions. One obtains

� = �r −
C2a*

2

2
�N + 2� �70�

�̄ = �̄r −
C2a*

2

2
�3N − 2� , �71�

where a* is the fixed-point value for the parameter a.

V. DISCUSSION OF THE FIXED POINTS AT THE
TWO-LOOP LEVEL AND CONCLUSION

Going from the one-loop to the two-loop order does not
significantly alter the general behavior of the RF and RA
models in d=4+�. As we shall see, it allows nonetheless to
show that no Kosterlitz-Thouless-like transition occurs at the
special point �Nc ,d=4� and that in the vicinity of this point,
for N�Nc and d�4, a once unstable fixed point appears,
which describes the transition from the QLRO phase to the
paramagnetic one. The picture is now fully compatible with
that found in our NP-FRG approach and summarized in Fig.
1.

As for the one-loop level, it is worthwhile to start by
considering the beta functions for the first two derivatives of

the renormalized disorder correlator R�z�= �� /C�R̃�z� evalu-
ated in z=1, assuming that the second derivative is well-
defined at that point. Writing the beta functions as �=�1
+�2, we only give the expressions for the two-loop contri-
butions �2, the one-loop terms �1 being given in Eqs. �33�
and �34�:

�−2�R̃��1�,2 = �N − 2�R̃��1�3, �72�

�−2�R̃��1�,2 = 2�5N + 17�R̃��1�3 + 6�N + 7�R̃��1�R̃��1�2

− 6�N − 5�R̃��1�2R̃��1� − �N − 4�R̃��1�3.

�73�

One can immediately see that the fixed-point solution

R̃*��1�= 1
N−2

�1− �
N−2

� and its associated �positive� eigenvalue
�1=��1+ �

N−2
� lead to dimensional reduction, �= �̄=�DR
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= �
�N−2�

�1+ N−1
N−2�� �after using Eqs. �60� and �61�� and �=�DR

= 1
� − 1

N−2 . When R̃��1� is chosen equal to its fixed-point
value, the beta function for the second derivative becomes a

cubic polynomial in R̃��1� which has zeros only if the asso-
ciated discriminant is negative, i.e., if N�18− 49

5 �.27,30

Following the same lines as for the one-loop order, one
can check that the RFO�N�M at two loops has a critical fixed
point with a “subcusp” when N�NDR=18− 49

5 �, but that the
critical fixed point of the RAO�N�M always has a cusp, im-
plying NDR=� �see Appendix A�.

We next concentrate on the region N	Nc and d	4. A
first result is that the beta function for R��z� �unscaled by ��
in d=4 does not vanish for arbitrary values of the disorder
strength R*��1�. When scaling out the disorder strength to
define r��z�=R��z� /R*��1�, the beta function for �=0 can be
expressed as �r��z�=�1�r� ,r��+R*��1��2�r� ,r� ,r��. �r��z�
then vanishes independently of the value of R*��1� if and only
if �1�r� ,r��=0 and �2�r� ,r� ,r��=0 have the same solution
r*��z�. It is straightforward to check that inserting the solution
of the one-loop equation �1=0 into the two-loop equation
does not make the latter vanish identically. The consequence
is that no Kosterlitz-Thouless transition can exist in �Nc ,d
=4� since, even perturbatively, no line of fixed points can be
found. Actually, the only fixed point at the two-loop level for
N=Nc and d=4 is the trivial one with R*��1�=0.

For N�Nc and d�4, consideration of the two-loop order
brings in a new phenomenon. An additional, once unstable,
fixed point appears, which describes the transition from the
QLRO phase to the paramagnetic one. This new fixed point
is found perturbatively in � �which is now negative� and N
−Nc. More precisely, as shown by Le Doussal and Wiese,30 it
can be obtained within a double expansion in ��� and N
−Nc. For any given value of N�Nc, the critical fixed point
and the QLRO fixed point get closer as ��� increases and they
merge for a value �lc�N�. This latter corresponds to the lower
critical dimension dlc=4+�lc of QLRO. With the full two-
loop results given above, Eqs. �56� and �69�, one finds

dlc�RF� = 4 − 0.14�N − Nc�2 + O��N − Nc�3� , �74�

dlc�RA� = 4 − 0.002�N − Nc�2 + O��N − Nc�3� , �75�

where Nc=2.8347. . . for the RF model and 9.4412… for the
RA model. For what it is worth, directly plugging N=2 into
the above expressions gives the following estimates for the
lower critical dimension of the �QLRO� Bragg glass phase in
the XY model: dlc�RF��3.9,dlc�RA��3.9. �Our NP-FRG
theory predicts dlc�RF��3.8,21 so that in all cases no Bragg
glass is found for N=2 in d=3.�

Note that the fact that no Kosterlitz-Thouless transition
takes place in N=Nc and d=4 is connected to the absence of
a linear term in N−Nc in Eqs. �74� and �75�. �In the pure
O�N� model on the contrary, dlc=2−b�2−N�+O��N−2�2�,
where b=1/4 is proportional to the temperature of the

FIG. 12. Comparison between the results of the two-loop per-
turbative FRG �dashed line� and of the NP-FRG �continuous line�
near d=4 for the QLRO lower critical dimension Nlc�d� in the case
of the RFO�N�M. The black circle denotes the physical case of the
XY model in d=3, a case which is clearly below its lower critical
dimension.

FIG. 13. Comparison between the results of the two-loop per-
turbative FRG �dashed line� and of the NP-FRG �continuous line�
near d=4 for NDR�d� in the case of the RFO�N�M.

FIG. 14. Two-loop diagrams for the 2-replica effective action.
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Kosterlitz-Thouless transition.31� The slope of the curve
Nlc�d� giving the locus of the lower critical dimension for
QLRO is infinite as d→4−: see Fig. 12.

The two-loop predictions around N=Nc and N=Nlc�d�
near d=4 are in agreement with those of our NP-FRG treat-
ment. For a detailed comparison, we plot the two sets of
results in Figs. 12 and 13. The nonperturbative, but approxi-
mate FRG computation does not exactly reproduce the two-
loop calculation near d=4, but the differences are not very
significant and do not alter the general picture.

To summarize: We have shown in this paper that the
theory describing the long-distance physics of the RF and
RA O�N� models near d=4 is perturbatively renormalizable
at two loops, thereby proving that the one-loop result is not
fortuitous. The results we have obtained within the two-loop
order fit into the general scenario predicted by our NP-FRG
approach.21,22 Considering the technical difficulties associ-
ated with the FRG loop expansion in d=4+�, it is highly
unlikely that perturbative FRG will ever provide accurate
extrapolations to the physical cases d=2,3 �and to N=1� for
the RF and RA models. The NP-FRG on the other hand
offers a direct way to study these situations.

APPENDIX A: FIXED POINTS AND THEIR STABILITY
FOR THE RAO„N…M IN THE LARGE N LIMIT

We first rewrite the one-loop beta function for the deriva-

tive of T̃���= �N−2�R̃�z�, Eq. �40�, by introducing the func-

tion U���=−T̃���� / sin �,

�−1 sin����U��� = �U�0� − 1�sin���U���

+ �U�0�cos��� − U����U���� ,

�A1�

and we look for fixed-point solutions. When U*�0�=1, the
only solutions are U*���=cos � and U*���=1. If U*�0��1,
the equation �U���=0 can be solved by inverting the relation
between U and � and considering � as a function of U. The
fixed-point equation now reads

�U�cos ��U�� −
U0

U0 − 1

cos���U��
U

= −
1

U0 − 1
, �A2�

where U0 is such that ��U0�=0. The solutions of Eq. �A2�
are easily found as cos���U��=KUU0/�U0−1�+U. K is a con-
stant that is determined through the condition ��U0�=0. The
result can be reexpressed by stating that the fixed-point func-
tions U*��� are solutions of the following transcendental
equation:

U*��� − �U*�0� − 1��U*���
U*�0� �

U*�0�/�U*�0�−1�

= cos��� ,

�A3�

where U*�0� is different from 1 but still unknown.

Note that the property T̃��−��= T̃��� imposes U��−��
=−U���. Since we expect the functions to be analytic around
�
2 �i.e., z=0�, this property implies that U� �

2
� and all even

derivatives of U evaluated in �
2 are equal to zero. This re-

quirement can only be fulfilled by the solutions of Eq. �A3�
if

U*�0�

U*�0�−1 is a nonzero integer. On the other hand, it cannot be

satisfied by the solution U*���=1, which should therefore be
discarded.

To determine the acceptable values of U*�0�, we have to
turn to the stability analysis. Introducing a small deviation
around the fixed point, ����=U���−U*���, and linearizing
the associated FRG equation leads to the following eigen-
value equation:

��−1��sin ����� = �sin �U*��� + cos �U*�������0�

+ 	�U*�0� − 1�sin � − U*����
����

+ �U*�0�cos � − U*��������� . �A4�

We first check that the solution U*���=cos �, corre-
sponding to U*�0�=1, is fully unstable with �−1�=1, and we
next consider the solutions given by Eq. �A3�. As before we
consider � as a function of U�U*���, which gives after
some manipulations,

FIG. 15. Two-loop diagrams of type A for the 1-replica 2-point proper vertex.

FIG. 16. Two-loop diagrams of type B for the 1-replica 2-point proper vertex.
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� U

U0
�U0/�U0−1�

��U0� = − �U0 − 1��1 − � U

U0
�1/�U0−1��U���U�

+ �1 − ��−1� − U0 + 1�

��1 − � U

U0
�1/�U0−1�����U� , �A5�

where U0�U*��=0�. The solution of the above equations is
easily obtained as

��U� =
��U0�
�−1�

� U

U0
��U0−�−1��/�U0−1��1 − � U

U0
��−1�/�U0−1��

� �1 − � U

U0
�1/�U0−1��−1

, �A6�

where, we recall, U0 / �U0−1� is a nonzero integer. The con-
dition that ��U� be an odd fuction of U, analytic around U
=0, imposes stringent constraints on �−1�. One finds that the
only singly unstable fixed point corresponds to U0 / �U0−1�
=3, i.e., U*�0�=3/2. The associated eigenvalues are equal to
�−1�=1,0 ,−1 ,−2,−3, . . .. For U*�0�=3/2, Eq. �A3� can be
explicitly solved, which leads to U*���=3 cos� �+�

3
� and to

Eq. �41�.
To derive the fixed-point solution at the following orders

in 1/N, great simplification is obtained by first noticing that
the above solution �in the limit N→�� can be rewritten as

T̃*���� = −
3

2
sin�� − 2�

3
��2 cos�� − 2�

3
� − 1� ,

�A7�

which implies that T̃*��� is a function of cos� �−2�
3

�. For finite
N we now look for a fixed-point solution of the form

T̃*����=− 3
2 sin� �−2�

3
��2X−1�G�X� with X=cos� �−2�

3
�. G�X�

can be expanded in powers of 1 /N �or for convenience,
1 / �N−2��, its leading term being simply equal to 1 �see Eq.
�A7��. With this transformation the fixed-point equation can
be solved in powers of 1 / �N−2�, each term being a polyno-
mial in X. One obtains for the first terms

G�X� = 1 +
2

9�N − 2�
�95 − 44X − 16X2� + O� 1

�N − 2�2� .

�A8�

From this expression, one derives −T*��0�= 3
2G� 1

2
�= 3

2 + 23
N

+O� 1
N2 �, which leads to the expressions given in Sec. III C.

Finally, the fixed point can also be found at the two-loop
level in the large N limit by using the above variable X. One
obtains, for instance, that the correlation length exponent is
equal to

� =
1

�
−

17

3N
−

29 707

81N2 + O� 1

N3 ,�� , �A9�

so that it is now different from the dimensional-reduction
value.

APPENDIX B: TWO-LOOP DIAGRAMS

Here we give all the two-loop diagrams built with the
rules defined in Sec. IV A �see Figs. 14–20�.

APPENDIX C: TWO-LOOP INTEGRALS IN
DIMENSIONAL REGULARIZATION

In this section, we discuss the procedure used to evaluate
the integrals appearing in the two-loop calculation in d=4
+�.

1. Integrals for the 2-replica diagrams

We start with the integrals for the 2-replica effective ac-
tion. The most general integral reads

Ji,j,k,l,m,n
r,s,t �a,b�

= �
q1,q2,q3

��q1 + q2 + q3�

�
�q1 · q2�r�q2 · q3�s�q3 · q1�t

�q1
2 + a�i�q2

2 + a� j�q3
2 + a�k�q1

2 + b�l�q2
2 + b�m�q3

2 + b�n

�C1�

with the parameters 	i , j ,k , l ,m ,n ,r ,s , t
 being nonnegative
integers, 	a ,b
 being positive real numbers, and r+s+ t	2.
The integrals have obvious symmetry properties since the

FIG. 17. Two-loop diagrams of type C for the 1-replica 2-point proper vertex.

FIG. 18. Two-loop diagrams of type D for the 1-replica 2-point proper vertex.
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integration variables can be exchanged. For instance, the in-
tegral is unchanged when 	i , l ,s
 and 	j ,m , t
 are exchanged,
when 	j ,m ,r
 and 	k ,n , t
 are exchanged, or when 	i , j ,k ,a

and 	l ,m ,n ,b
 are exchanged.

It is possible to reduce the range of values of 	r ,s , t
 that
one must consider. This can be done by rewriting in the
integrand q1 ·q2= �q3

2−q1
2−q2

2� /2; q1
2 can then be replaced by

�q1
2+a�−a, which, if i�0, can be combined with �q1

2+a�−i to
give �q1

2+a�−i+1−a�q1
2+a�−i. Similar transformations can be

done for q2
2 and q3

2. Then, under the assumption that i, j, and
k are nonzero, one gets the identity

Ji,j,k,l,m,n
rst =

1

2
�Ji,j,k−1,l,m,n

r−1,s,t − Ji,j−1,k,l,m,n
r−1,s,t

− Ji−1,j,k,l,m,n
r−1,s,t + aJi,j,k,l,m,n

r−1,s,t � . �C2�

Similar relations can be obtained under the �weaker� condi-
tion that i+ l, j+m, and k+n are nonzero.

There remains to treat the case where one of the three
previous combinations �say, for instance, the last one� van-
ishes �which implies k=n=0�. It is sufficient to treat the
three cases where 	r ,s , t
= 	1,0 ,0
 up to a permutation, be-
cause the other possibilities never appear in the calculation.
Consider, for instance, Ji,j,0,l,m,0

100 . Since q3 appears in the in-
tegrand only through the � function, one performs the inte-
gral on q3 trivially. The integrand can then be factorized in a
piece q1�q1

2+a�−i�q1
2+b�−l depending only on q1 and another

�of a similar form� depending only on q2. Each piece is a
vector so that the integral vanishes for symmetry reasons.
Consider now the integral Ji,j,0,l,m,0

010 . By integrating over q3,
the numerator of the integrand becomes −�q2

2+q1 ·q2�. The
last term gives zero after integration for symmetry reasons,
just as before. The first term can be rewritten as �q2

2+a�−a so
that, under the condition that j�0

Ji,j,0,l,m,0
010 = aJi,j,0,l,m,0

000 − Ji,j−1,0,l,m,0
000 . �C3�

Similar equations can be obtained if j=0 and m�0, or if r
=s=0, t=1.

We can further simplify the integrals by using the relation

1

�q2 + a��q2 + b�
=

1

a − b
� 1

q2 + b
−

1

q2 + a
� , �C4�

which enables one to reduce the integrals to a form where, in
the three couples 	i , l
, 	j ,m
 	k ,n
, at least one element is
zero.

The previous procedure reduces the problem to the case
r=s= t=0. In this case, the integral is finite �and therefore of
no interest for us since we work in the minimal subtraction
scheme� whenever the four conditions i+ j+k+ l+m+n�4,
i+ j+ l+m�2, j+k+m+n�2, and k+ i+n+ l�2 are satisfied
simultaneously. The divergent integrals can be of two types.

�1� If the smallest value between i+ l, j+m, and k+n is
zero, then the integral factorizes and identifies to a product of
one-loop integrals of the form

Ii�a� = �
q

1

�q2 + a�i =
1

�4��d/2

��i − d/2�
��i�

ad/2−i. �C5�

�2� If the smallest value between i+ l, j+m, and k+n is 1,
then the second smallest one must also be 1 for the integral
to be divergent, and the last one is free. All these integrals
can be calculated by using derivatives of the relation

�
q1q2q3

��q1 + q2 + q3�
�q1

2 + a��q2
2 + b��q3

2 + c�

= − C
ad−3 + bd−3 + cd−3

d − 3
� 1

2�2 −
1

4�
� + O��0� �C6�

with C−1=8�2.

FIG. 19. Two-loop diagrams of type E for the 1-replica 2-point proper vertex.

FIG. 20. Two-loop diagrams of type F for the 1-replica 2-point proper vertex.
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2. Integrals for the 1-replica diagrams

The situation for the 1-replica diagrams is in a sense sim-
pler because only one mass can appear. However, the verti-
ces and propagators can now come with the external momen-
tum p. The first step in the evaluation of the integrals
consists in expanding the integrand in powers of p, keeping
only the constant, linear, and quadratic terms which are of
interest in the renormalization procedure. The linear part of
the integral vanishes for symmetry reasons. The constant part
can be evaluated by using the procedure described in the
previous section.

The quadratic part can come in the two following forms:
p2 or �qi ·p��q j ·p�. The first case is simple and can be evalu-
ated by using the procedure described above. For the second
form, we used the relation

�
q1q2q3

��q1 + q2 + q3��qi · p��q j · p�f

=
p2

d
�

q1q2q3

��q1 + q2 + q3��qi · q j�f , �C7�

where f is a function of q1, q2, and q3 and i , j are equal to 1,
2, or 3. The case i� j can then be treated as in the previous
section. In the case i= j, the integrand always comes with
�qi

2+c�� in the denominator, so one can use again the relation

qi
2

�qi
2 + c��

=
1

�qi
2 + c��−1 −

c

�qi
2 + c��

�C8�

and compute the remaining part by using the procedure de-
scribed previously.
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