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The magnetic structure of a single crystal MnSi under applied field has been studied by small angle
diffraction with polarized neutrons below TC=28.7 K. Experiments have shown that in zero field the magnetic
structure of MnSi consists of four left-handed spiral domains oriented along four �111� axes. The magnetic
field, applied along one of the �111� axes, produces a single domain helix oriented along the field at HC1

�80 mT at low temperatures. The magnetic mosaic of the spin structure changes with the magnetic field and
has a maximum at HC1. The integral intensity of the Bragg reflection shows a sharp minimum at Hin

�160 mT attributed to an instability of the helix structure. When the field has a component perpendicular to
the helix wave vector k, it rotates toward the field direction in the field range H�Hin. Additionally, a second
harmonic of the helix structure is induced by the perpendicular magnetic field for H�Hin. These three features
are well explained accounting for the presence of a spin wave gap ��g�BHin /�2�12 �eV, which provides
the stability of the spin wave spectrum with respect to the perpendicular magnetic field. Further increase of the
field leads to a magnetic phase transition from conical to a ferromagnetic state near HC2�600 mT. The critical
field HC2 is related to the spin wave stiffness A as g�BHC2=Ak2. Our findings are in agreement with the
recently developed theory 	Phys. Rev. B 73, 174402 �2006�
 for cubic magnets with Dzyaloshinskii-Moriya
interaction, which relates the major parameters of the spin wave spectrum �such as the spin wave stiffness and
the gap� with the features of the spin structure of MnSi being observed under applied magnetic field.

DOI: 10.1103/PhysRevB.74.214414 PACS number�s�: 75.25.�z, 61.12.Ex

I. INTRODUCTION

The weak itinerant ferromagnet MnSi orders below TC
=29 K in a left-handed spin helical structure with a propa-
gation vector �2� /a��� ,� ,�� with �=0.017.1,2 The helicity is
induced by an antisymmetric Dzyaloshinskii-Moriya �DM�
exchange interaction caused by the lack of a center of sym-
metry in Mn atomic arrangement.3–5 This DM interaction is
isotropic in cubic crystals, however, a weak anisotropic ex-
change �AE� interaction fixes the direction of the magnetic
spiral below TC along the cube diagonals �111�.4 Although
the magnetic properties of MnSi under applied magnetic
field were studied in detail by different methods,6–9 up to
now they remained puzzling due to lack of a microscopic
quantitative description of the obtained experimental results.
In particular, the nonlinear behavior of the magnetic suscep-
tibility with a small upturn curvature in the range of small
field H�150 mT has not been explained yet.6 The nature of
A phase observed in the vicinity of TC under applied field
was not clarified too.7–9

The neutron scattering experiments1 showed that the mag-
netic helical structure becomes a single-domain conical
structure in a magnetic field HC1�80 mT at low tempera-
ture. The cone angle � decreases as the field increases and an
induced ferromagnetic state appears at HC2�600 mT with
the saturated magnetic moment of 0.4 �B per Mn atom. This
value of the moment is much smaller than the effective para-
magnetic moment above TC, which has been estimated to be
1.4 �B from susceptibility measurements.2 As was also
shown in Ref. 1, if the direction of the applied magnetic field

H is not collinear to one of the �111�, the helix wave vector
k rotates toward the magnetic field. The period of the helix
does not change with the field. The k-rotation effect was
theoretically treated by Plumer and Walker on the basis of a
phenomenological approach.10,11

Bearing in mind a long period of the spin density wave of
order of 18 nm, small angle neutron scattering �SANS� gives
the unique opportunity to study the magnetic structure of
MnSi. The use of the polarized neutrons is especially impor-
tant because of the presence of a chiral �axial� vector in the
system. As shown in Refs. 12 and 13 the presence of such an
axial vector, or single-handed helicity, leads to the appear-
ance of a polarization dependent contribution in the neutron
scattering cross section. Indeed, the first experiments with
polarized neutrons14–16 demonstrated that the scattering is
strongly polarization dependent and therefore the spin helix
in MnSi is single-handed one. However, a thorough study of
the temperature and magnetic field dependence of the chiral-
ity in this system has not been done yet.

Recently, the magnetic properties of MnSi have attracted
much attention because of the discovery of a quantum phase
transition to a magnetically disordered state that is easily
reached under applied pressure. As was found in Refs.
17–19, the critical temperature TC decreases with increasing
pressure and the long range magnetic order disappears at
T=0 and a critical pressure of pC�14.6 kbar. Another inter-
esting feature of the magnetic structure of MnSi is observed
near the critical temperature in an applied magnetic field. A
structural spin instability, called A phase, was found in
the field range from HA1�130 mT to HA2�200 and slightly
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below TC by measuring the magnetization and magneto-
resistance.7 The neutron scattering experiments have shown
that the intensity of the Bragg reflections, with helix wave
vector oriented along the field, decreases strongly in a nar-
row range H�HA near TC �Ref. 8�. AC susceptibility mea-
surements under applied pressure have confirmed the pres-
ence of this instability near TC in a field from HA1 to HA2
�Ref. 9�. It was also found that while TC drops rapidly with
increasing pressure, absolute values of the characteristic
fields HC1, HC2 and HA1, HA2 do not change significantly.

Recently the magnetic structure of MnSi was studied by
small angle polarized neutron scattering near TC=29 K un-
der applied field.20 The weak magnetic field applied along
the 	111
 axes removes the domain walls and creates a single
domain sample with the helix wave vector along the field.
The 90° reorientation of the spin spiral from the 	111
 axis to

the 	11̄0
 axis is observed for 130�H�180 mT near TC.
Further increase of the field above 180 mT restores the origi-
nal orientation of the helix and leads to an induced ferromag-
netic state at 350 mT. This observation clarifies the nature of
the structural spin instability found in the H-T phase diagram
of MnSi by other techniques.7–9 We explain this phenomenon
as a result of the spin-wave Bose condensation provoked by
the field perpendicular to the helix axis.21

In this paper we present results of SANS measurements
with polarized neutrons of the magnetic structure in MnSi
under applied field well below TC. Neutron scattering experi-
ments have shown a number of features attributed first to the
process of reorientation of helices from the multidomain
structure to the single domain structure at H=HC1; second, to
the structural instability of the helix around Hin=160 mT;
and third, to the field-induced phase transition from the coni-
cal to the ferromagnetic state at HC2. On the basis of our
findings we have examined a theory recently developed for
the cubic magnets with Dzyaloshinskii-Moriya interaction,
which suggests the presence of the small gap in the spin
wave spectrum of MnSi.21 Particularly, the phenomena ob-
served in our experiments allowed to estimate the gap as
being of the order of 12 �eV.

The similar phenomena, i.e., rotation of the magnetic or-
dering wave vector of a DM spiral and generation of higher
harmonics when spiral is bunched by the magnetic field,
were studied in detail in Refs. 22 and 23 for quasiantiferro-
magnetic �AFM� spiral in Ba2CuGe2O7. The authors of Refs.
22 and 23 have generalized the spin wave description of
slightly distorted exchange spiral, which was developed in an
earlier paper24 to the case of a DM spiral and have obtained
a consistent and comprehensive description of the spin struc-
ture and spin excitations in quasi-AFM DM spiral in
Ba2CuGe2O7. The authors have observed the spin wave gap
related to the single-ion easy-plane anisotropy, which ap-
pears due to the DM interaction considered as a second order
perturbation.25–28 However, in case of the cubic symmetry
this correction can not produce a spin-wave gap as it has a
form of a small correction to the isotropic exchange.

The paper is organized in the following way. Section II
summarizes the essence of the theory developed in Ref. 21.
Section III describes the sample, the experimental setup, and
the geometry of the experiment. The results of the polarized

SANS experiments are shown in Sec. IV. This section is split
into three parts each of them dealing with a particular phe-
nomenon under study. In Sec. IV A the mosaic of the helix
structure and the integral intensity of the Bragg reflection
under field applied along the 	111
 axis is studied. In Sec.
IV B the k-rotation effect is studied for two different orien-
tations of the applied magnetic field: H � 	100
 and H � 	110
.
The process of k rotation is accompanied by the appearance
of the second harmonic of the helix spin structure as soon as
a field component perpendicular to the helix wave vector
occurs �Sec. IV C�. Section V is devoted to the temperature
evolution of the helix structure. Section VI contains a sum-
mary of the obtained results. The phenomena mentioned
above are interpreted in terms of the theory developed in
Ref. 21 and corresponding parameters for the interactions
driving the magnetic system of MnSi are obtained.

II. THEORETICAL BACKGROUND

A theory was recently developed by one of the authors to
describe properties of cubic helical magnets with DMI.21 The
following interactions are taken into account in this theory:
conventional isotropic exchange A, DM interaction D, AE
interaction F, magnetic dipolar interaction 	0=g�B /a3

where a is the lattice constant, Zeeman energy g�BH and
cubic anisotropy K. The ground state energy and the spin
wave spectrum were evaluated taking into account that DM
interaction and anisotropic interactions are of the first and of
the second order in the spin-orbit interaction. So we have a
hierarchy of interactions in the system: A
Da
F, Ka2,
	0a2 where A is the spin-wave stiffness in the exchange ap-
proximation. It is well known3–5 that DMI is responsible for
the magnetic helix structure with the wave vector

k = D/A . �1�

In cubic crystals the DMI fixes the sense of the helix �right or
left handed� but does not determine its direction. It is stabi-
lized by a very weak AE interaction and cubic anisotropy. It
is shown in Refs. 4 and 21 that in the absence of a field the
classical energy for orientation of the helix vector k is given
by

Ecl = fan
0 �

ı=x,y,z
ĉi

2�âi
2 + b̂i

2� , �2�

where fan
0 = S2Fk2

4 − 3S4K
8 , where F and K are the anisotropic

exchange and the cubic anisotropy constants, respectively. â,

b̂, and ĉ are mutually perpendicular unit vectors describing

the helix: ĉ is parallel to the helix wave vector k, and â, b̂ are
in the plane of the spin rotation perpendicular to ĉ. From this
expression one can see that the helix structure along �111� is
realized if fan

0 �0. Otherwise, the structure along �100�
evolves. The helix structure along �110� is not stable at all.21

If the magnetic field is applied along the helix axis H �k
the classical energy depends on the product of H� and the
mean spin induced by the field S sin �, where � is the incli-
nation angle of the spin driven out of the plane perpendicular
to k by the external field and determined by sin ��−H� /
HC2 for H�HC2 and sin �=−1 for H�HC2 where HC2 is the

GRIGORIEV et al. PHYSICAL REVIEW B 74, 214414 �2006�

214414-2



critical field for the transition from the conical spin structure
to the ferromagnetic spin state. The critical field is deter-
mined by the major interactions as follows:

g�BHC2 = hC2 = Ak2 + SFk2/3 � Ak2. �3�

One can neglect the second term in Eq. �3� since A
F. We
neglect also small contribution of the dipolar interaction.21

From Eq. �1� and Eq. �3� one can estimate the major param-
eters of the magnetic system such as spin wave stiffness A
�hc /k2 and the Dzyaloshinskii constant D=hc /k.

If the magnetic field is not parallel to the helix axis �h
�hC2� the field dependent part of the ground state energy is
given by �Ref. 21�:

Eh = −
Sh�

2

2hC2
−

Sh�
2 �2

2hC2�1 + cos2 ��	�2 − �h�
2 /2�cos4 �


. �4�

Here h� ,h� are the components of the magnetic field h
=g�BH parallel and perpendicular to the helix wave vector
k. The first term of this expression is the magnetic part of the
classical energy mentioned above. The second term describes
the interaction with the perpendicular field. The spin wave
gap � is responsible for the stability of the spin configuration
in weak perpendicular field. Otherwise the magnetic sub-
system is unstable in infinitesimal perpendicular field. As
was also shown in Ref. 21 the perpendicular component of
the magnetic field deforms the helix structure and gives rise
higher harmonics of the spin rotation. The corresponding
second-order reflections are observed in this experiment and
in Ref. 29.

III. EXPERIMENTAL

A. Sample

A single crystal MnSi was chosen for the study being a
disc with a thickness of 2 mm and a diameter of 20 mm. It
was cut from a large single crystal that was grown at Ames
Laboratory. The lattice constant is a=4.558 Å. The crystal-
lographic mosaicity of the sample was determined on the
neutron spectrometer “Reflex” at FZ Julich �Germany�. The
scans performed show that the average value of the full
width half maximum �FWHM� over all measured reflections
is 0.22°.

B. Setup

The polarized SANS experiments were carried out at the
SANS-2 scattering facility of the FRG-1 research reactor in
Geesthacht �Germany�. A polarized beam of neutrons with an
initial polarization P0=0.95, a neutron wavelength �
=0.58 nm, a bandwidth �� /�=0.1, and a divergence 
=2.5 mrad was used, leading to a transverse resolution of
0.75° in a rocking scan. The scattered neutrons were detected
by a position sensitive detector with 128�128 pixels. The
detector-sample distance was set such that the q range was
covered from 6�10−2 to 1 nm−1 with a step of 0.01 nm−1.
The scattering intensity was measured in the temperature
range 10�T�30 K with an accuracy better than 0.05 K.
The external magnetic field H from 1 to 800 mT was applied

perpendicular to the incident beam and the neutron polariza-
tion followed the direction of the magnetic field.

C. Geometry of the experiment

The magnetic structure of MnSi in the absence of the field
consists of four left-handed spiral domains oriented along the
cube diagonals: k � �111�. In our experiment, the single crys-
tal was oriented in such a way that two of these axes were set
in a plane perpendicular to the incident beam �Fig. 1�. These
two axes are inclined at about 71° with respect to each other.
In the case of the scattering from magnetic spirals with a
long period, this geometry allows one to observe diffraction
peaks in a range of small-angle scattering, provided that the
Bragg condition is fulfilled: 2d sin��B /2�=�, or q=2� /d,
where d is the period of the spiral and �B is the scattering
angle. Although the Bragg condition can only be fulfilled for
one satellite, due to the large mosaicity of the magnetic
structure, the sample can be oriented such that four Bragg
reflections can be observed.

The neutron elastic cross section per unit cell of the mag-
netic helix below TC has the following form �Ref. 12�:

d�

d�
=  rS

2
�2 �2��3

V0
�	1 + �q̂ĉ�2 − 2�q̂P0��q̂ĉ�
��q − k�

+ 	P0 → − P0
��q + k��sin2 � , �5�

where r=0.54�10−12 cm, V0 is the unit cell volume, q̂
=q / �q� is the unit vector of the momentum transfer, ĉ is the
unit vector of the helix, P0 is the vector of polarization, � is
the cone angle and ��q�k� enforce the Bragg conditions.

The second harmonic of the helix structure induced by the
perpendicular field is given by �Ref. 21�:

d�

d�
=  rS

2

h�

hC2
�2� �2

�2 − �g�Bh��2/2
�2

� �	1 + �ĉq̂�2 − 2�ĉq̂�

��q̂P0�
��q − 2k� + 	P0 → − P0
��q + 2k�� , �6�

where we put sin2 �=1.
For the single-handed helical structure the neutron cross

section depends on the incident polarization P0. For example

FIG. 1. �Color online� The schematic outline of SAPNS experi-
ment. The single crystal MnSi was oriented such that the incident

beam hits the sample along the 	11̄0
 axis. Therefore, four crystal-

lographic axes 	111
, 	111̄
, 	110
, and 	001
 are laying in the plane
perpendicular to the beam direction. The magnetic field H and the
polarization P are applied in the same plane.
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if P0 is along ĉ and P0=1, the scattering is forbidden for q
=k but is maximal for q=−k. When P0� ĉ, the scattering
does not depend on the polarization. In intermediate case the
polarization of the neutron scattering is determined as fol-
lows:

P =
��P0� − ��− P0�
��P0� + ��− P0�

= �q̂P0� = cos � , �7�

where � is the angle between the incident polarization and
the scattering vector. This equation is valid for all measure-
ments presented below for T�TC.

In our experiments the magnetic field and the polarization

vector P0 were set in the plane 	11̄0
 �perpendicular to the
incident beam� in three different directions of interest: �a�
H �P � 	111
; �b� H �P � 	110
; and �c� H �P � 	001
. We inves-
tigated experimentally the intensities with the polarization
along 	I�q , P0�
 and opposite to 	I�q ,−P0�
 the magnetic
field. The measured reflections were characterized by the
following quantities: �1� intensity of the peaks: Ip= 	Ip�P�
+ Ip�−P�
; �2� polarization of the peaks: Pp= 	Ip�P�
− Ip�−P�
 / 	Ip�P�+ Ip�−P�
; �3� position of the peaks: qp.

IV. DEPENDENCE ON THE MAGNETIC FIELD

A. Magnetic mosaic and Bragg intensity

A typical example of the neutron scattering pattern at zero
field is shown in Fig. 1. The map demonstrates the coexist-
ence of four major diffraction peaks originating from two
different types of helix domains with the wave vector along

the 	111
 and 	111̄
 axes. The observation of several peaks is
caused by a large mosaic of the magnetic rather than the
crystallographic structure of MnSi. The mosaic of the mag-
netic structure was determined by measuring the rocking
curve of the magnetic reflection at q=k parallel to 	111

�Fig. 2�. The full width half maximum �FWHM� at H
=1 mT is of order of 1.7° being much bigger than that of the
crystallographic structure �0.2°� and is almost equal to the
value of the Bragg angle �1.8°�. Thus, it becomes clear that if
the Bragg condition is ideally fulfilled for one reflection then
it is also fulfilled partially for the other reflections. The value

of the magnetic mosaic in zero field does not change with
temperature from 10 K to TC.

The magnetic structure of MnSi under applied field has a
complicated and irreversible behavior at T�TC. Therefore, it
is important that the magnetic history of the sample is always
uniquely defined. We performed the measurements in the fol-
lowing way: �i� zero field cooling from the paramagnetic
state to the temperature of interest T; �ii� raising the field
from H=0 to the field of interest; and �iii� the field direction
is fixed with respect to the sample in the rocking scan ex-
periment. Using these principles the rocking curves of the
Bragg peak �111� were taken at different values of the field at
T=15 K �Fig. 2�. The curves are well fitted by the Gaussian
function:

I��� = IBG +� 2

�

Iint

�M
exp− 2

�� − �c�2

�M
2 � , �8�

where IBG is a the background intensity. The integral inten-
sity Iint, the center of the Gaussian �c, and the FWHM, or
mosaic of the helix structure �M, were obtained from the fit.

Figure 3�a� shows �M as a function of the field. It reaches
a maximum at H=70 mT and then decreases exponentially
to the resolution level that is of the order of 0.75°. The field
dependence of the integral intensity Iint is shown in Fig. 3�b�.
It is small at low H, then it increases sharply at HC1
=70 mT, and decreases again diminishing to zero at HC2
=570 mT, where the conical structure transforms to a ferro-
magnetic alignment.

FIG. 2. Angular dependence of the rocking curve of the mag-
netic Bragg reflection ����� at T=15 K.

FIG. 3. The magnetic mosaic �M �a� and the integral intensity
Iint �b� of the magnetic Bragg reflection ����� as a function of the
applied field. The data is not corrected for resolution.
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There are three features in Figs. 3�a� and 3�b� at HC1, HC2,
and Hin. The sharp increase of the integral intensity of the
reflection �111� at HC1 is accompanied by the decrease of the

intensity of the reflections �111̄�, �11̄1�, �1̄11� as well as by
the increase of the magnetic mosaic. This is interpreted as a
reorientation of the helices with the wave vector along the

three unfavorable axes �	111̄
 , 	11̄1
 , 	1̄11
� to the favorable
axis with the wave vector k along the 	111
 axis.

To specify the behavior of the helix near HC2 the intensity
and the polarization of the Bragg reflection �111� were mea-
sured in detail and are plotted as a function of field in Figs.
4�a� and 4�b�, respectively. The polarization is constant and
is equal to 1 in the whole field range H�HC2. The value of
the helix wave vector k does not change with the magnetic
field. The abrupt change of the intensity and polarization at
HC2 shows that the transition to the ferromagnetic state is
sharp in contradiction to the simple classical theory,21 which
predicts the second order transition with Iint�sin2 �
= �H� /HC2�2. The constant polarization at H�HC2 shows
clearly that the chirality of the spin structure does not change
at all. As the system undergoes the transition to the field
induced ferromagnetic state, the static spiral structure disap-
pears but the polarization-dependent scattering is still ob-
served. According to the theory21 it is the spin-wave scatter-
ing, which is maximal at the former helix vector Q=k. This

scattering has an unusual form as we have now two sources
of the spin chirality: the magnetic field and the DM interac-
tion. 	See Eq. �72� in Refs. 21 and 30
. As a result the
	-integrated chiral part of the intensity is an odd function of
vector q determined as difference q=Q−k, where Q is the
momentum transfer: Iint,ch�q�=−Iint,ch�−q� whereas the con-
ventional part of the Iint is the even function of q. Hence we
have partial cancellation of the chiral part of the intensity
measured along the vector k and a decrease of the polariza-
tion above HC2. Unfortunately, an exact treatment of the data
at H�HC2 is hardly possible because of the low signal-to-
noise ratio.

The third feature concerns the fact that the integral inten-
sity Iint has a well-pronounced minimum at Hin�160 mT. It
demonstrates an instability of the helix structure in the nar-
row region near Hin. We explain this instability in terms of a
competition between the magnetic energy of the system and
the anisotropy energy. In our case Hin is less than HC2
�570 mT and parameter of the theory sin2�in= �Hin /HC2�2

�0.08�1. In this case from Eqs. �2� and �4� for the free
energy we have

E�k,H� = fan
0 � ĉi

2�âi
2 + b̂i

2� −
Sh�

2

2hC2
−

Sh�
2 �2

hC2��2 − h�
2 /2�

,

�9�

where fan
0 �0 and �ĉi

2�âi
2+ b̂i

2� has its maximal value 2/3 if
k �H � 	111
. In this case h�=0 and the last term in Eq. �9� is
zero. For other directions of the wave vector k this term
becomes very important and at h�→��2 the energy with
k�H � 	111
 becomes smaller than that with k � 	111
 �H. So
the helix axis k has to turn perpendicular to the field. Figure
5 shows the schematic behavior of the free energy as a func-
tion of the field for two possible orientations of the helix
wave vector. We take the values of the free parameters close
to the values as extracted from the experiments: �i� gap �
�g�BHin /�2=12 �eV and �ii� the critical field hc

FIG. 4. The field dependence of the integral intensity �a� and
the polarization �b� of the diffraction peak ����� for H �P � 	111
 at
T=15 K.

FIG. 5. Orientation dependence of the free energy �sum of
the anisotropy and the magnetic energy� as a function of the field
for the helix wave vector along the field direction 	111
 and perpen-
dicular to it for parameters HC2=570 mT and �=g�BHin

=12 �eV.
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=570 mT. It is seen from Fig. 5 that for k along the field, the
free energy decreases proportionally to −h2, while Ek�h de-
creases faster with increasing field. At an intermediate field
determined by the condition Ek�	111
�h�Ek�h, the magnetic
spiral destabilizes. This instability takes place up to h
���2. However, at h����2 the denominator in the last
term becomes negative. As was shown in, Ref. 21 this de-
nominator is the square of the spin-wave gap and when it is
negative the system is instable. Hence it has to return to the
k �h � 	111
 state. Such two rotations were observed near the
same field Hin�160 mT just below Tc.

20 At low T the region
of this instability is very narrow and we see the minimum
only in Fig. 3�b�. It should be noted also that the last term in
Eq. �9� is a result of approximations which do not work at h�

very close to ��2.21

B. Rotation of the helix vector k

To illustrate the typical behavior of the magnetic spirals in
a magnetic field that deviates from the 	111
 axis we show in
Fig. 6 experimental results for H along the 	110
 direction.
The intensities of the diffraction peaks are given on a loga-

rithmic scale. The contour map at H=0 and T=10 K shows
four major and three minor peaks 	Fig. 6�a�
. The four major
peaks �closest to the center� are reflections attributed to he-
lices with wave vectors that are collinear with the 	111
 and
	111̄
 directions. We denote these peaks as left �L�, bottom
�B�, right �R�, and top �T� ones in accordance with their
positions in Fig. 6�a�. Additional small peaks at q=qR+qB,
q=qR+qT, q=qL+qB and q=qL+qT are the result of double
Bragg scattering. When a small magnetic field H=50 mT is
applied, new peaks appear at q=2qL, q=2qR, q=2qT, and
q=2qB 	Fig. 6�b�
. All peaks move toward the direction of
the magnetic field, i.e., the direction of the helix vectors k
changes, however, the value of �k� remains constant. When
the field exceeds H=120 mT, the peaks almost collapse
along the direction of the magnetic field k �H, and finally
two peaks are left on the contour map 	Fig. 6�c�
.

The integral intensities for the T and R, and L and B peaks
are shown in Figs. 7�a� and 7�b�, respectively, as a function
of the magnetic field. The polarization of the peaks is pre-
sented in Fig. 7�c�. The position of the peaks is determined
by the angle between the direction of spirals and of the mag-
netic field H. This angle for two spirals being initially sepa-
rated and then united is shown in Fig. 7�d�.

Figure 7 shows that upon increasing the magnetic field
from 1 to 70 mT, the intensity of the peaks increases. This
result reflects the progressive reorientation of the helices

with k along the 	11̄1
 and 	1̄11
 axes �invisible in the ex-

periment� along the 	111
 and 	111̄
 axes as observed in Fig.
6. In the range of H from 0 to 120 mT all peaks rotate to-
ward the field direction and the polarization of the peaks
increases to the saturation value. The change in polarization
of the peaks is related to the movement of the peaks toward
the field direction. It is well described by Eq. �7� P
= P0 cos��exp�. Thus the calculated value of the polarization
with �exp, shown in Fig. 7�d�, is close to the experimentally
measured value of the polarization 	Fig. 7�c�
.

In the field range H�120 mT peaks collapse to the direc-
tion of the magnetic field. The pairs of peaks on the right-
and left-hand side of the detector collapse into single peaks,
respectively. The intensity of these united peaks decreases
strongly with further increase of the magnetic field. It is
caused by movement of the k vector away from the Bragg
condition under applied field due to the misalignment of the
field with the Bragg condition since k �h. The polarization of
the peaks decreases slightly what is connected to the fact that
the signal-to-noise ratio dramatically decreases. When the
amplitude of the magnetic field is decreased, the data shows
a significant hysteresis in the intensity. Peaks become sepa-
rated again near H=70 mT. The intensity of the peaks after
manipulation with magnetic fields differs from the intensity
before it.

When the field H is applied along the 	001
 axis, the
magnetic helix shows a similar behavior as along the 	110

axis. The map in Fig. 8�a� shows Bragg reflections and the
direction of the magnetic field for H � 	001
: �1� four major
peaks at qR, qL, qT, and qB are denoted as left �L�, bottom
�B�, right �R�, and top �T�; �2� Bragg peaks at q=qR+qB,
q=qR+qT, q=qL+qB, and q=qL+qT are due to the double
Bragg scattering; and �3� the second harmonic peaks appear

FIG. 6. �Color online� Contour maps of the diffraction peaks on
a logarithmic scale for T=10 K for H �P � 	110
. �a� H=1 mT, �b�
H=50 mT, and �c� H=150 mT.
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at 2qT, 2qR, and 2qB. All these peaks are the reflections from

two helices with wave vectors along the 	111
 and the 	111̄

axes.

The field dependence of the angle determining the posi-
tions of the peaks for these two helices is shown in Fig. 8�b�.
It is seen that the reorientation develops in two steps with
increasing field. First, when H grows from 0 mT to 130 mT,
the peaks rotate toward the field direction, so that a direction
of the helix vectors k changes but their amplitudes �k� are
constant. When the field exceeds H=130 mT, the peaks �he-

lix axis� collapse to the line along the field direction k �H, so
that only two peaks are left on the contour map. Upon de-
creasing field, again a small hysteresis loop of 20 mT in the
rotation angle is observed. Peaks become separated again at
the field H=110 mT.

The k-rotation effect is well interpreted in terms of the
competition between the anisotropy and the magnetic energy.
It is interesting to note that the second term in the magnetic
energy 	Eq. �4�
 that is related to the spin wave gap � can be
neglected for explaining the k-rotation effect since h�

=h sin �→0 when k rotates toward h, i.e., �→0. Then the
magnitude of the anisotropic interaction can be evaluated as
S2Fk2 /6�Shcol

2 /2hC2�1.8 �eV, where hcol is the field value
when peaks collapse onto the field direction. The result of
the corresponding calculations will be published elsewhere.

C. Second harmonic induced by a perpendicular field

In the previous subsection we have pointed out the ap-
pearance of second harmonic Bragg peaks arising at q
= ±2k when the magnetic field is applied along the 	110
 or

FIG. 7. Magnetic field dependence of �a� the integral intensity of
the L and R peaks corresponding to the axis 	111
; �b� the integral

intensity of the B and T peaks, corresponding to the axis 	111̄
; �c�
the polarization of these peaks; and �d� the angle of their rotation
for H � 	110
 at T=10 K.

FIG. 8. �Color online� Magnetic field dependence of the angle of
the helix rotation for H � 	001
 at T=10 K. �a� Shows the contour
map of the diffraction peaks on a logarithmic scale for a field H
=1 mT. �b� Rotation angle of the helix.
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	001
 directions, i.e., when H has a component perpendicular
to k. It is important to note that no additional Bragg reflec-
tions appear, when the helix wave vector k is parallel to the
magnetic field, i.e., when H � 	111
. This demonstrates the
deformation of the helix structure, i.e., an additional circular
rotation of the spins in the same plane but with wave vector
2k and constant magnetization along H.21

Figure 9 shows the intensity of the second harmonic as a
function of the field. The solid line was calculated by using
Eq. �6� with h�=h sin � and shows good agreement with the
data. The values of the free parameters were chosen to be
close to the experimental conditions: the gap �=12 �eV and
the critical field HC2=590 mT. h�=h sin � was calculated
using the experimentally measured value of the angle � be-
tween the helix wave vector k and the field h. In this case the
factor 	�2 / ��2−h�

2 �
2 in Eq. �6� can be replaced by unity as
h�=h sin �→0, and the factor �h� /hC2�2 determines the be-
havior of the cross section for the second harmonic.

V. TEMPERATURE EVOLUTION

As was shown above, the magnetic field changes the spin
structure significantly. One can extract the following param-
eters of the spin structure from the diffraction experiments:
the spiral wave vector k, the characteristic fields HC1, HC2,
and Hins. The temperature dependence of the helix wave vec-
tor length k is shown in Fig. 10. It is well described by the
expression

k = k�0�	1 + a�T/TC�x
 �10�

with k�0�=0.345±0.002 nm, a=0.11±0.01, and x=2.32
±0.01 for temperatures �TC−T� /TC�0.1. Our results are
close to those obtained in Ref. 32.

The dependence of the critical fields HC1, HC2, and Hin on
temperature is shown in Fig. 11. We fitted the experimental
points to the expression

HCi�T� = HCi
0 	1 − ��T/TC�x
 , �11�

i=1,2. For the lower critical field HC1 the parameters of the
fit are: HC1

0 =85±5 mT; �1=0.70±0.05, and x=2.5±0.1. An
important conclusion is that the temperature, as it increases,
approaches the energy of the domain walls. If this would
happen, one could observe the magnetic transition with a
direction of the spiral structure k as an order parameter. In
reality such a transition takes place only at T�TC, when the
satellite reflections are transformed into a ring of the inten-
sity with constant �k� �Ref. 31�.

For the upper critical field HC2 the parameters of the fit
are: HC2

0 =600±10 mT; �2=0.30±0.02, and x=2.5±0.1. As
shown in Eq. �3�, the critical field HC2 is related to the spin
wave stiffness A through the wave vector k. Accordingly, the
temperature dependence of the spin wave stiffness can be
calculated from HC2�T� as A�T�=A0	1−c�T /TC�z
 with A0

= �d0 /2��2H0=50 meV Å2, c=0.035±0.006, and z=2.4
±0.1. The obtained values for A�T� are close to those ob-
tained by three-axis spectroscopy: �1� for T=5 K the mea-
sured value of Am=50 meV Å2 �Ref. 2�, and the estimated
value Aest=49 meV Å2; �2� for T=25 K the measured value

FIG. 9. Magnetic field dependence of the integral intensity of
the second harmonic peak for H � 	110
 at T=10 K. The line repre-
sents the calculated behavior according to Eq. �6�.

FIG. 10. Temperature dependence of the helix wave vector k at
H=1 mT. The solid line corresponds to the fit as described in the
text.

FIG. 11. Temperature dependence of the critical magnetic fields
HC1, HC2, and Hin for H � 	111
. The solid lines are fits to Eq. �12�.
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of Am=23.5 meV Å2 �Ref. 33� and the estimated value Aest
=33 meV Å2. The measurements of the SW stiffness men-
tioned above were performed at H�HC2. The experimental
study of the stiffness at low H has not been done yet. The
theoretical considerations21,34,35 predict a strongly aniso-
tropic magnon dispersion at small H, i.e., in the helical
phase.

The instability of the helix at Hin=160 mT was measured
at T=15 K only. Nevertheless a similar effect of the same
origin was observed near the critical temperature for fields
130�H�180 mT. The maximal effect was detected at H
�155 mT �Ref. 20�. These points are plotted in Fig. 11. This
observation suggests that the instability is temperature inde-
pendent.

VI. CONCLUDING REMARKS

The magnetic structure of a single crystal MnSi has been
investigated by small angle polarized neutron scattering in a
wide range of temperature and magnetic field. We have com-
pared our findings with the theory recently developed for
cubic magnets with the Dzyaloshinskii-Moriya interaction.21

In this theory the ground state energy and the spin wave
spectrum of magnetic compounds with the symmetry of
MnSi is considered. It relates the existing interactions: iso-
tropic exchange interaction A, Dzyaloshinskii-Moriya inter-
action D, anisotropic exchange interaction F, cubic aniso-
tropy K, and the major parameters of the spin wave
spectrum, such as the spin wave stiffness A and the spin
wave gap �. The behavior of the helical structure and the
spin-wave spectrum in magnetic field is considered also. The
experimental results of this paper are in agreement with this
theory.

Our experimental results are summarized in the following.
The magnetic structure of MnSi in zero field consists of four
left-handed spiral domains oriented along four �111� axes. A
magnetic field, applied along one of the �111� axes, induces a
single domain helix oriented along the field near HC1. This
reorientation is accompanied by a pronounced maximum in
the magnetic mosaic of the spin structure. Thus the field HC1
determines the energy of the domain wall in the sample. The
integral intensity of the Bragg reflection shows a sharp mini-
mum at Hin�160 mT. This phenomenon is well explained
by the presence of a spin wave gap ��g�BHin /�2 that pro-
vides the stability of the spin wave spectrum with respect to
the perpendicular magnetic field. Two other features, i.e., the
k-rotation effect and the second harmonic of the helix struc-
ture, take place when the field has a perpendicular compo-
nent. These observations do not reveal directly the spin wave
gap. However, they demonstrate the competition between the
external magnetic field and the anisotropic exchange that is
of the order of S2Fk2 /6 and determines the orientation of the
helix in the absence of a field. Further increase of the field
leads to the magnetic phase transition from the conical to the
ferromagnetic state near HC2.

Finally, we demonstrate that the major interactions of the
system can be estimated from diffraction experiments using
the above mentioned theory.

�i� The magnetic phase transition from the conical to the
ferromagnetic state at HC2�T� is observed. The critical field
HC2�600 mT is related to the spin wave stiffness as Ak2

�g�BHC2. We estimate the spin wave stiffness at T=0 to be
A�50 meV Å2 in agreement with its direct determination by
neutron scattering.2

�ii�.The temperature dependence of the wave vector k
=D /A�0.035 Å−1 is determined. Its value provides the DM
characteristic energy �Da � =A�ka��8 meV Å2. It is impor-
tant to note that the scattering is fully polarized within the
temperature range T�TC and within the field range H
�HC2. The polarization of the scattering satisfies the equa-
tion P= �q̂P0�=cos �, where � is the angle between the in-
cident polarization P0 and the scattering vector q̂. This cor-
responds to the negative sign of the DM interaction. Neither
temperature nor magnetic field are able to change this sign.

�iii� The k-rotation effect toward the field direction is
observed when the field is applied along the �110� or �001�
axes. The helix rotates toward and then collapses to the
field direction at Hcol�110 mT. This field characterizes
the weakest interaction of the system at T=0, S2Fk2 /6
�Shcol

2 /2hC2�1.8 �eV.
�iv� The integral intensity of the Bragg reflection shows a

sharp minimum at Hin=160 mT that is attributed to the in-
stability of the helix structure and caused by the presence of
a temperature-independent spin wave gap ��g�BHin /�2
�12 �eV. This observation may be considered as the major
result of the work since the presence of the gap may explain
the quantum phase transition in MnSi at high pressure.

Indeed, two contributions to the spin wave gap have to be
considered.21 One contribution stems from the interactions
between spin waves in presence of DM interaction �SW

2

�Ak2hc / �4S���D2 /2A�2. The second contribution is deter-
mined by the cubic anisotropy, which is given by: �cub	111


2

�3S3Khc /2. It is seen that �SW
2 is always positive while �cub

2

may have an arbitrary sign. So the different contributions to
the gap may compete. Changing the sign and the strength of
the cubic anisotropy, for example by pressure may lead to a
quantum phase transition from the ordered to a spin-liquid
state. It is a possible explanation of the transition that is
observed in MnSi �Refs. 17–19�.
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