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Motivated by recent experiments on the itinerant helimagnet MnSi, we study general properties of helical
spin crystals -magnetic structures obtained by superposing distinct spin spirals. An effective Landau descrip-
tion of helical spin crystals is introduced and simple rules for stabilizing various spin crystal structures over
single spirals are established. Curious properties of the magnetic structures so obtained, such as symmetry
stabilized topological textures and missing Bragg reflections are pointed out. The response of helical spin
crystals to crystalline anisotropy, magnetic field and nonmagnetic disorder are studied, with special reference
to the bcc1 spin structure, a promising starting point for discussing the partial order phases seen at high
pressure in MnSi. Similar approaches may be applied to other crystallization problems such as Larkin-
Ovchinnikov-Fulde-Ferrel states in spin-imbalanced superconductors.
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I. INTRODUCTION

Long period helical spin-order resulting from
Dzyaloshinskii-Moriya �DM� spin-orbit coupling1 in noncen-
trosymmetric itinerant magnets �e.g., MnSi, FexCo1−xSi,
FeGe with crystal structure B20� has been intensively stud-
ied in the past.2–10 One material of this family, MnSi, has
attracted recent interest because of its puzzling behavior un-
der applied hydrostatic pressure.11,12 A state with non-Fermi
liquid transport properties13 is obtained over a wide range of
pressures above a critical threshold pc. Beginning at the same
critical pressure, but over a smaller pressure range, magnetic
partial order is observed in neutron scattering
experiments.14,15 While usual helical order gives rise to sharp
Bragg peaks in neutron scattering �corresponding to the pe-
riodicity of the helical spin-density wave�, partial order is
characterized by a neutron scattering signal which is smeared
over a wave vector sphere rather than localized at discrete
points in reciprocal space.

Recent theoretical work on electronic properties, critical
fluctuations and collective modes of helimagnets are in Refs.
16–18. Theoretical proposals for the high pressure state of
MnSi have invoked proximity to a quantum multicritical
point19 or magnetic liquid-gas transitions.20 Closest in spirit
to our approach are the skyrmionlike magnetic patterns stud-
ied in Refs. 21 and 22.

Recently, we have proposed a kind of magnetic order, the
helical spin crystal, as a promising starting point for a theory
of partial order.23 Helical spin crystals are magnetic patterns,
which are obtained by superposition of several helical spin-
density waves which propagate in different directions. There
is a substantial resemblance to multi-k magnetic structures
�also known as multiple q or multiple spin density wave
states�.24–28 But in contrast to most other magnetic multi-k
systems, in helical spin crystals the ordering wave vectors
are selected from an infinite number of degenerate modes
lying on a sphere in reciprocal space—a process analogous
to the crystallization of liquids.

In this work, we present a detailed theory of such struc-
tures. The stability, structure and distinctive properties of
such states are described, and the consequences of coupling
to nonmagnetic disorder is discussed.

The paper is organized as follows. First, we review the
standard theory of helimagnetism in Sec. II, finishing with a
short remark about more general helical magnetic states.
Then, the theory of helical spin crystals is developed. The
requirements to energetically stabilize helical spin crystal
states are investigated in Sec. III. The analysis works in two
directions. First, we establish a phase diagram in terms of
natural parameters which tune the interaction between helical
modes and second, we give simple rules to construct model
interactions which stabilize a large class of helical spin crys-
tals. The remaining parts of the paper are dedicated to ex-
tracting testable consequences of these magnetic states. In
Sec. IV, we give a description of the most prominent spin
crystals which emerge from our energetic analysis in terms
of their symmetry. It is shown that the symmetry of the mag-
netic state may stabilize topological textures like merons and
antivortices which are otherwise not expected to be stable in
the present context, given the order parameter and dimen-
sionality of the system. Symmetry also determines, which
higher-harmonics Bragg peaks these structures would pro-
duce. We subsequently study the response of helical spin
crystals with respect to different perturbations in Sec. V. For
example, subleading spin-orbit coupling �crystal anisotropy�
locks the magnetic crystal to the underlying atomic lattice
and thus determines the location of magnetic Bragg peaks.
We also study the response to an external magnetic field
which, apart from producing a uniform magnetic moment,
also leads to distinctive distortions of the helical magnetic
structure, which could be observable by neutron scattering.
Finally, in Sec. VI we investigate the implications of non-
magnetic impurities, which are expected to destroy long-
range magnetic order and produce diffuse scattering.

II. LANDAU-GINZBURG THEORY OF HELIMAGNETISM

For a cubic magnet without a center of inversion, the
Landau-Ginzburg free energy to quadratic order in the mag-
netization M�r� is

F2 = �r0M2 + J���M�����M�� + 2DM · �� � M�� , �1�

where �¯� indicates sample averaging, r0 ,J ,D are param-
eters �J�0� and Einstein summation is understood. The last
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term of Eq. �1� is the DM interaction, which is odd under
spatial inversion and originates in spin-orbit coupling.1 Fou-
rier transformation, M�r�=�qmqeiq·r with m−q=mq

*, leads to

F2 = �
q

��r0 + Jq2��mq�2 + 2Dmq
* · �iq � mq�� . �2�

Clearly, the energy is minimal for circularly polarized spiral
modes, where ��M points in the direction of −DM. For
such modes,

F2 = �
q

r�q��mq�2, �3�

where r�q�=r0−JQ2+J�q−Q�2 with Q= �D� /J. The Gaussian
theory thus determines both the chirality of low-energy heli-
cal modes and their wavelength �=2� /Q. The latter is typi-
cally long �between 180 Å in MnSi and 2300 Å in
Fe0.3Co0.7Si�, reflecting the smallness of spin-orbit coupling
effects compared to exchange. However, no preferred spiral-
ing direction is selected by Eq. �1�, since F2 is rotation in-
variant. Cubic anisotropy terms which break this invariance
are of higher order in the spin-orbit interaction and therefore
small. We neglect them for the moment and reintroduce them
later.

The isotropic Gaussian theory leaves us with an infinite
number of modes which become soft as r�Q�→0. They con-
sist of helical spin-density waves with given chirality �deter-
mined by the sign of D�, whose wave vectors lie on a sphere
�q�=Q in reciprocal space. Each of these helical modes is
determined by an amplitude and a phase. Hence, for each
point q on the sphere, we define a complex order parameter
	q �with 	−q=	q

*� through

mq = 1
2	q�
̂q� + i
̂q�� , �4�

where 
̂q�, 
̂q�, and q̂, are mutually orthogonal unit vectors
�with a defined handedness, given by the sign of D�. Obvi-
ously, changing the phase of 	q is equivalent to rotating 
̂q�
and 
̂q� around q̂. The phase of 	q is thus only defined rela-
tive to some initial choice of 
q�. The neutron scattering in-
tensity is proportional to �q̂�mq�2=1/2�	q�2, independent of
the phase. Changing the phase of 	q is also equivalent to
translating M�r� along q̂.

In the following, we study minima of the free energy in
the ordered phase �r�Q��0�. These depend on the interac-
tions between degenerate modes �i.e., free energy contribu-
tions, which are quartic or higher order in M�. We only con-
sider interactions which, as F2, have full rotation symmetry
and we will include the weak crystal anisotropy last. The
most general quartic term which has full rotation symmetry
�transforming space and spin together� is of the form

F4 = �
q1,q2,q3

U�q1,q2,q3��mq1
· mq2

��mq3
· mq4

� , �5�

with q4=−�q1+q2+q3�.

A. Single-spiral state

For example, if U�q1 ,q2 ,q3� is a constant, then F4

� �M4�. If the interaction depends only on the local magne-

tization amplitude, i.e., in general if F=F2+ �f�M2�� for
some function f , then the absolute minimum of F is given by
a single-spiral state �also known as helical spin density
wave� M�r�=mkeik·r+mk

*e−ik·r, where a single pair of oppo-
site momenta ±k is selected. To prove this, we write F as

�
q

�r�q� − r�Q���mq�2 + �r�Q�M2 + f�M2�� . �6�

In the single-spiral state, M2 is constant in space and it mini-
mizes the first and the second term of Eq. �6� independently.
Therefore, no other magnetic state can be lower in energy.

Because Q is small, the relevant wave vectors entering
Eq. �5� are also small and U�q1 ,q2 ,q3� is effectively close to
a constant. Therefore, the single-spiral state, as observed in
FexCo1−xSi, FeGe and in MnSi at ambient pressure, is the
most natural helical magnetic order from the point of view of
Landau theory.

B. Linear superpositions of single-spiral states

Motivated by the phenomenology of partial order, we will
now extend the theory beyond this standard solution. We
speculate that U�q1 ,q2 ,q3� is not constant, such that F4 fa-
vors a linear superposition of multiple spin-spirals with dif-
ferent wave vectors on the sphere of degenerate modes �q�
=Q.

One may first speculate about magnetic patterns whose
Fourier transform is nonzero everywhere on the wave-vector
sphere and peaked infinitely sharply perpendicular to the
sphere, i.e.,

�	q�2 � 
��q� − Q� �7�

�see Eq. �4��. This idea turns out to be complicated for at
least two reasons.

The first complication is that there is no continuous way
of attributing a finite-amplitude spiral mode to each point on
the wave vector sphere. This can be seen by noting that 
̂q�
�Eq. �4�� is a tangent vector field on the sphere. Thus, it
cannot be continuous �impossibility of combing a
hedgehog�.29 Thus there is no “uniform” superposition of
helical modes on the sphere. The problem of singularities can
be avoided if one assumes a 	q with point nodes on the
sphere.

The second complication is that higher harmonics would
result in a broadening of the delta function in Eq. �7�. This is
seen as follows. Consider three momenta q1, q2, q3 on the
wave vector sphere and q4 which is off the sphere. The non-
vanishing modes mq1, mq2, mq3 couple linearly to mq4 via
Eq. �5� and thus induce a higher harmonic “off-shell” mode
mq4�0. Since this happens for every point away from the
sphere, the effect is an intrinsic broadening of the peak in
�	q�2, in contradiction with the initial assumption of Eq. �7�.

III. ENERGETICS OF HELICAL SPIN CRYSTALS

In the following, we study magnetic structures which are
superpositions of a finite number of degenerate helical
modes 	 j with wave vectors ±k j, j=1, . . . ,N. We call the
resulting states helical spin crystals, because of the analogy
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with weak crystallization theory of the solid-liquid
transition.30

A. Structure of the quartic interaction

We assume that F4 is small, and that its main effect is to
provide an interaction between the modes which are degen-
erate under F2. Thus, the relevant terms of F4 are those with
�q1�= �q2�= �q3�= �q4�=Q. This phase-space constraint and ro-
tational symmetry implies that the coupling function U de-
pends only on two relative angles between the momenta

�U�q1,q2,q3���qi�=Q = U��,�� , �8�

where we have chosen the following parametrization:

2� = arccos�q̂1 · q̂2� ,

�/2 = arccos	 �q̂2 − q̂1� · q̂3

1 − q̂1 · q̂2

 . �9�

Geometrically, � /2 is the angle between the two planes
spanned by �q1 ,q2� and �q3 ,q4� �Fig. 1�. In the special case
q1+q2=0, it becomes the angle between q2 and q3. This
mapping allows � and � to be interpreted as the polar and
azimuthal angles of a sphere and the coupling U�� ,�� is a
function on that sphere. Since it describes an effective cou-
pling between modes on the wave vector sphere, the cou-
pling U�� ,�� has a status similar to that of Fermi liquid
parameters in the theory of metals.

The Landau free energy F=F2+F4 of helical spin crystal
states is calculated as follows. Obviously,

F2 = r�Q��
j

�	 j�2. �10�

The quartic term, Eq. �5�, may be split into three distinct
contributions F4=Fs+Fp+Fnt. The first term, Fs, is the self-
interaction of each spiral mode with itself,

Fs = Us�
j

�	 j�4, �11�

where Us=U��=� /2 ,�=0�. A minimum requirement for
stability of the theory is Us�0.

The next term, Fp, stems from pairwise interactions be-
tween modes. It is of the form

Fp = 2�
i�j

Vp��ij��	i�2�	 j�2, �12�

where 2�ij =arccos�k̂i · k̂ j� and

Vp��� = U	�

2
,4�
 + sin4 � U��,0� + cos4 � U	�

2
− �,0
 .

�13�

Since lim�→0 Vp���=2Us is large and positive, Fp provides
an efficient repulsion of modes which are too close on the
wave vector sphere. Energetically stable superpositions of
spirals require substantially smaller values of Vp��� and
therefore big-enough angles between them �Sec. III C�. This
“mode repulsion” suggests that a continuous distribution of
Fourier modes on the wave vector sphere, as discussed in
Sec. II B, is difficult to stabilize energetically by slowly
varying coupling functions U�� ,��. However, singular be-
havior of the coupling function is conceivable when discuss-
ing effective interactions of low energy modes.31

Finally, the nontrivial quartic term Fnt stems from quartets
of modes, whose wave vectors sum up to zero. The geometry
of four equal-length wave vectors summing to zero is de-
picted in Fig. 1. A quartet-contribution occurs for 0�2�
�� and 0�� /2��. In this case, the eight wave vectors
±k j form the vertices of a cuboid. Hence,

Fnt = �
j1�¯�j4

� Fj1,j2,j3,j4
, �14�

where the summation is over such quartets. For example, if
k j1

+k j2
+k j3

+k j4
=0, there is a term Fj1,j2,j3,j4

�	 j1
	 j2

	 j3
	 j4

.
The algebra of these terms, which depend on the relative
phases of modes, is rather lengthy and obviously depending
on the phase convention used to define the 	 variables.

The term Fnt fixes the relative phases of 	 j to minimize
the energy. If there is no frustration between minimizing
each individual quartet term, the phases arrange in such a
way that all Fj1,j2,j3,j4

�0. It follows that Fnt�0, after mini-
mization for the 	 phases. A special case is the quartet of
modes, whose wave vectors ±kj form the vertices of a cube
�e.g., modes along �111��. In this case, Fj1,j2,j3,j4

=0 indepen-
dently of the coupling function U�� ,�� as a consequence of
rotational symmetries.32 This is the reason why no such quar-
tet term appears in the theory of Bak and Jensen.6 As a con-
sequence, a superposition of four modes along all �111� di-
rections is necessarily unstable towards shifting the wave
vectors away from the perfect cubic configuration in order to
gain energy from Fnt �see description of fcc* below�.

B. Phase diagram

If U�� ,�� is only slowly varying, it is justified to expand
it in spherical harmonics �Ylm�. That is,

FIG. 1. The set of quartets �q1 , . . . ,q4� satisfying �qi�=Q and
q1+ ¯ +q4=0, modulo global rotations, may be parametrized by
two angles � and � as shown in this figure.
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U��,�� = U0 + U11 sin � cos � + U20�3 cos2 � − 1�

+ U22 sin2 � cos 2� , �15�

where we retained all terms with l�2, which satisfy the
relation U�� ,��=U��−� ,��=U�� ,2�−��.

Different quartic expressions in terms of the real-space
magnetization M�r� may lead to the same projected coupling
U�� ,��. For example, the three terms

�WM4 + W����M2��2 + W����M�����M��M2� �16�

lead to U�q1 ,q2 ,q3�=W+W��q1+q2�2−W�q1 ·q2. When pro-
jected onto the wave vector sphere, they generate only two
spherical harmonics, namely

U0 = W + 1
3 �4W� + W��Q2,

U20 = 2
3 �2W� − W��Q2. �17�

The terms W and W� have intuitive interpretations: W re-
stricts the magnetization amplitude, whereas W� favors or
disfavors modulations of M2, depending on the sign.33 In the
following, we set W�=0 and use the four parameters W, W�,
U11, and U22 to tune the interaction U�� ,��.

It is hard to find the exact global minimum of F2+F4 for
a general coupling function U�� ,��. We therefore restrict
ourselves to a certain variational class of magnetic states and
determine the minimum within this class. Recently,23 we
studied only states which can be obtained by superposition of
those six modes which propagate along the �110� directions
�six-mode model�. Here, we explore a much broader class of
states. We include

�1� any superposition of those 13 spin-spirals which
propagate along the directions34 �111�, �110�, and �100� �13
complex variables 	 j as variational parameters�,

�2� any superposition of up to four spirals with arbitrary
propagation direction �four variables 	 j and five independent
angles between wave vectors as variational parameters�.

Within these constraints, we have computed35 a phase dia-
gram as a function of the coupling parameters W, W�, U11,
and U22, shown in Figs. 2 and 3.

All magnetic ground states are equal-amplitude superpo-
sitions of 1,2,3,4 or 6 spiral modes. The body-centered-cubic
�bcc� states are superpositions of all �110� modes. bcc1 and
bcc2 differ by the relative phases of the six interfering helical
modes �see Sec. IV A 1�. The simple cubic �sc� crystal con-
sists of three mutually orthogonal spirals �e.g. along all �100�
directions�. A face-centered-cubic �fcc� helical spin crystal is
obtained by superposing all four �111� modes. However, the
ground state is not fcc but a small distortion of it, fcc*. In
fcc*, the wave vectors are shifted slightly away from �111� in
order to gain energy from the quartet-term Fnt.

36 The sym-
bols “�” and “�” are used differently here than in our pre-
vious paper.23 Here, “�” stands for a superposition of four
modes with wave vectors as shown in Fig. 1 with � /2
=� /2. Hence, wave vectors ±kj form a square cuboid and
allow for one quartet term Fnt. The angle 2� changes as a
function of interaction parameters within the range 0.24�
�2��0.38�. Finally, the phase “�” consists of three
modes. The wave vectors k1, k2, k3 point to the vertices of

an equilateral triangle on the sphere, whose size is deter-
mined by the requirement that the mutual angle between two
wave vectors, 2�, minimizes Eq. �13�. The angle 2� is pa-
rameter dependent and lies in the range 0.14��2��0.24�.

As expected, a negative W� �Eq. �16�� favors multimode
spin crystal states with varying magnetization amplitude
relative to the spiral state with constant M2 �compare Figs. 2
and 3�. Positive W� has the opposite effect, and enhances the
region of the spiral phase �not shown�. The term W� alone
�i.e., with U11=U22=0� stabilizes sc in the regime Q2W��
−W /2�0. However, a small positive U22 is sufficient to fa-
vor bcc1 over sc.

In conclusion, we observe that two helical spin crystals,
bcc1 and sc, appear adjacent to the single-spiral state and are
stable at relatively small values of Q2W�, U11, and U22. In the
following, we study the properties of the bcc1, and sc states
since they are the most likely candidates of helical spin crys-
tals from the point of view of energetics.

C. Model interactions with exact ground states

In the preceding section, we established a variational
phase diagram for “natural,” i.e., slowly varying coupling
functions U�� ,��. Most phases in this phase diagram
�“spiral”, sc, bcc1, bcc2, fcc, and “�”� can be shown to be
the exact global minima for some fine-tuned model interac-
tion, that are constructed below.

Let us consider the toy model Ftoy=F2+Fs+Fp �Eqs.
�10�–�12�� where the quartet term Fnt is dropped and we
replace Vp��� by a constant V. In this model, local minima

FIG. 2. Phase diagram for W�0 and W�=0. In the gray region,
F4�0 and the quartic theory is unstable. The various phases are
explained in the text. In contrast to our earlier use of these symbols
�Ref. 23�, “�” and “�” denote general states with 3 and 4 helical
modes, respectively.
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with N nonvanishing modes �N�1� must have equal ampli-
tudes �	 j�2= �r� / �Us−V+NV� /2 and the minimum energy
with N modes is

Ftoy,N = −
1

4

r2

V +
Us − V

N

. �18�

There are three regimes. If 0�Us�V, the ground state is the
single-mode phase with N=1 �all but one 	 are zero�. For
0�V�Us, the energy is monotonically decreasing with N. It
means that the system includes as many modes as possible to
lower its energy. Finally, for V�0 or Us�0, Ftoy is not
bounded from below and therefore unstable.

To make use of this toy model, we must tune the interac-
tion such that U�� ,��→0 unless �=� /2 or �=0. This re-
moves the quartet term Fnt and we are left with a model
similar to Ftoy with the difference that Vp��� is not constant.

We now tune the interaction such that Vp��� is very big37

everywhere except at some angle �opt, where it has a narrow
minimum. For such a pair interaction, all arrangements of
modes which involve angles other than 2�opt are excluded.
Within this constraint, we are left with our toy model with a
constant pair interaction V=Vp��opt�, but the number of
modes is restricted to 1�N�3, since no more than three
modes can have equal mutual angles between them. It is
clear that in the region −3Us /2�Vp��opt��Us, the ground
state is a helical spin crystal with three modes, i.e., the state
“�” or sc �in the case 2�opt=� /2�.

A different class of exact ground states is obtained, if the
interaction is tuned such that

�1� Vp��� is very big37 in the region 0�2��2�c and

�2� Vp���=V �constant� in the region 2�c�2��� /2
for some critical angle 2�c. In this way, modes whose wave
vectors are too close are excluded. That is, it enforces a
“hard sphere” constraint �k̂i± k̂ j��2�1−cos 2�c� on the wave
vectors. The interaction between modes which satisfy this
constraint is constant and reduces to the toy model. There-
fore, if V�Us the ground state will include as many modes
as geometrically possible by the “hard sphere” constraint. In
the case 2�c=arccos 1/3, we obtain fcc, which has wave
vectors at the vertices of a cube. In the case 2�c=� /3, we
obtain bcc whose wave vectors are the vertices of a cuboc-
tahedron. This can be seen as follows. A real-space bcc lat-
tice corresponds to a fcc reciprocal lattice and the wave vec-
tors ±kj of the bcc spin crystals are the 12 nearest neighbors
of the origin in the fcc reciprocal lattice. Because fcc is the
cubic close packing of spheres, this represents the only ar-
rangement of 12 vectors �k j�=Q which satisfies the constraint

�k̂i− k̂ j��1. �The hexagonal close packing is not acceptable
because it does not consist of pairs ±k j.� In principle, this
construction can be used to create models whose ground
state contains an arbitrarily high number of modes.

We can now use the insight from these constructed mod-
els to understand certain features of the phase diagram of
Figs. 2 and 3. In Fig. 4, we plot Vp��� as obtained from the
expansion Eq. �15� at different places in the phase diagram
of Fig. 2. In the bcc1 region of the phase diagram �curve C�,
Vp��� is similar to the one constructed above: close to con-
stant and small for � /3�2��� /2, big for 2��� /3. At the
phase boundary between single-spiral and bcc1 �curve B�, Vp
is still bigger than Us, indicating that the quartet term Fnt is
essential to stabilize bcc1 close to the phase boundary. The
phase boundaries between single-spiral and three-mode
states �sc or �� are exactly determined by the crossing of the
minimum of Vp��� with Us, as illustrated by curves D and E.

FIG. 3. Same as Fig. 2 with Q2W�=−0.5W. The point U11

=U22=0 is now at the phase boundary between spiral order and
simple cubic.

FIG. 4. �a� and �b� For the locations A , . . . ,E in the phase dia-
gram of Fig. 2, the ratio between the pair interaction Vp��� and the
self-interaction Us is plotted as a function of the angle 2� �the angle
between propagation directions of modes�. A, single-spiral state; B,
phase boundary between single-spiral and bcc1; C, bcc1; D, sc; E,
�.
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IV. STRUCTURE OF HELICAL SPIN CRYSTALS

A. Symmetry properties and topology of helical spin crystals

Time-reversal symmetry �T� reverses the magnetization
direction M→−M and may be implemented in terms of the
	 variables as 	 j→−	 j.

Under spatial translation by a vector a, the 	 variables
transform as 	 j�=	 j exp�ik ja�, i.e., they experience a phase
change.

If the set of vectors k j is linearly independent, every
phase change of modes simply amounts to a global transla-
tion. This is the case in helical spin crystals with up to three
nonplanar modes, e.g., in sc and �. These states are periodic
with Bravais vectors a1, a2, a3, which are determined by
ai ·k j =2�
ij. It follows that time-reversal T is equivalent to a
translation by �a1+a2+a3� /2 for these states, which leads to
a twofold symmetry inside the unit cell reminiscent of anti-
ferromagnetism.

In contrast, helical spin crystals with more than three
modes like bcc, fcc, and � depend essentially on the relative
phases between the helical modes. For these states, T is not
equivalent to any translation, since it is not possible that
exp�ik ja�=−1 for all k j. As a consequence, these states are
doubly degenerate in addition to the translational degeneracy.

To obtain an understanding of the real-space picture of
helical spin crystals, it is useful to study their symmetries
under rotations �reflections change the chirality and therefore
never appear in the symmetry group�. For example, if the
structure M�r� has a n-fold rotation axis with direction û,
then M � û along this axis. Therefore, M�, which is the pro-
jection to the plane orthogonal to û, has a node at the axis.
The winding number29 �vorticity� of the node is restricted by
symmetry to the values 1, 1±n, 1±2n, etc. The resulting
pattern in the vicinity of the rotation axis, M pointing along
û in the center and M� winding around it, resembles that of
a skyrmion or meron. Such patterns are currently being dis-
cussed in the context of helimagnets.21,22 Here, we observe
that they naturally appear resulting from rotational symme-
tries. The simplest cases are winding numbers of +1 �for any
n-fold axis� or −1 �only for n=2�.

Apart from proper rotations, the point group may contain
antirotations, i.e., symmetry operations which are composed
of a rotation followed by T. n-fold antirotation axes are only
possible for even numbers n, since they imply n /2-fold ro-
tation symmetry. In the special case n=2, it merely follows
that M� û along the axis, where û is the axis direction.
Higher antirotation symmetries with n=4,6 , . . . imply M=0
along the axis, i.e., they create a line node in the magnetiza-
tion. In the vicinity of this line node, M is approximately
orthogonal to û �as can be seen by expanding M�r� to linear
order around a point on the axis�. The winding number of
M� around the node, is restricted by symmetry to the values
1±n /2, 1±3n /2, 1±5n /2, etc. The simplest case for a four-
fold antirotation axis is a winding number of −1 �antivortex
line� and the simplest case for n=6 is a winding number of
−2.

We have thus demonstrated the emergence of topological
objects like merons and antivortices, which are not expected
to be stable in the present context of a vectorial order param-

eter in three dimensions but which are stabilized by symme-
try. Thus, rotation axes are meron lines and fourfold antiro-
tation axes are antivortex node lines.

1. Symmetry and real-space picture of bcc1

The bcc helical spin crystals consist of six helical modes

with wave vectors k̂1= �11̄0�, k̂2= �1̄1̄0�, k̂3= �01̄1�, k̂4

= �01̄1̄�, k̂5= �101�, and k̂6= �101̄�, as shown in Fig. 5, and
has the periodicity of a body-centered-cubic lattice. We
choose the convention �see Eq. �4��


̂ j� =
ẑ � k̂ j

�ẑ � k̂ j�
, �19�

for j=1, . . . ,6 with ẑ= �001�, and we consider negative

chirality �i.e., M · ���M��0�, such that 
̂ j�= k̂ j �
̂ j�. The ge-
ometry of the wave vectors allows for three quartet terms in
the free energy produced by Tx=	1

*	2	5	6, Ty =	1
*	2

*	3	4,
and Tz=−	3	4

*	5
*	6. The sign in the definition of Tz has been

introduced for convenience.
The transformation properties of the 	 variables and the

three quartic terms under rotations are shown in Table I.
From this, it can be deduced that the �rotation-invariant�
quartet contribution to the free energy is

Fnt = 2�nt Re�Tx + Ty + Tz� . �20�

The value of the parameter �nt is not determined by symme-
try. Direct calculation yields

�nt =
7

4
U��

3
,2 arccos	1

3


 −

1

2
U	�

4
,�
 . �21�

There are thus two bcc states, depending on the sign of
�nt. In bcc1 �bcc2�, which corresponds to �nt�0 ��0�, the
phases of the 	’s are such that Tx, Ty, Tz are all negative
�positive�. Three out of the six phases are arbitrary due to
global translation symmetry. This means that the magnetic
pattern of bcc1 and bcc2 is uniquely determined up to trans-
lational and time-reversal degeneracy.

The solution for �nt�0, bcc1, turns out to be the bcc
structure with the highest point group symmetry. By select-
ing the coordinate origin conveniently, we obtain −	1=	2=
−i	3= i	4= i	5=−i	6=SM0 for bcc1, where S= ±1 is the
time-reversal symmetry label and M0�0 is the amplitude.
From Table I, we deduce that M�r� changes sign under a

FIG. 5. Geometry of the wave vectors k1 , . . . ,k6, which consti-
tute the bcc spin crystal states. The vectors ±k j form the vertices of
a cuboctahedron.
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� /2 rotation about the x, y or z axis. That is, the magnetic
point group is O�T� �international notation 4�32� with four-
fold antirotation axes at �100�, threefold rotation axes at
�111�, and twofold antirotation axes at �110�.

The real-space representation of the bcc1 state is

M�r� = SM0�
�2sx�cy − cz� − 2sysz

�2sy�cz − cx� − 2szsx

�2sz�cx − cy� − 2sxsy

� , �22�

where sx=sin�Qx /�2�, cx=cos�Qx /�2�, etc. The resulting
pattern was shown in Fig. 2 of our earlier paper.23 In Fig. 6,
we show the symmetry axes. As discussed above, the mag-
netization must vanish along the fourfold antirotation axes,
which are antivortices with winding number −1. The x ,y ,z
axes, and their translations according to the bcc periodicity,
form two interpenetrating cubic lattices of such line nodes.
The cubic space diagonals are threefold and the red arrowed
lines of Fig. 6 are twofold rotation axes. In the vicinity of
these lines, the magnetization field is skyrmionlike �i.e., M�

has a winding number of +1�.
The fact that the bcc1 state breaks T in a nontrivial way

and cannot be restored by any translation is manifest in the
occurrence of the T-breaking order parameter �MxMyMz�
=SM0

3 /2�0, which is a magnetic octupole. This curious
property may lead to distinctive anomalous effects, e.g., in
the magnetotransport.38 Octupolar magnetic ordering has re-
cently been discussed in different contexts.39

2. Symmetry and real-space picture of sc

The simple-cubic �sc� helical spin crystal consists of three

modes with k̂1= �100�, k̂2= �010�, and k̂3= �001�. It forms a
periodic structure with a cubic unit cell and the lattice con-
stant is �=2� /Q. The convention for 
 j� is given by Eq. �19�,
where the unit vector ẑ is replaced by �111�.

The transformation properties of the 	 variables under
rotations are given in Table II. By choosing the center of
coordinates corresponding to 	1=	2=	3= iM0, we obtain
from Table II that the point group symmetry is D3�D3� �in-
ternational notation 32�. That is, the chosen origin has a
threefold rotation axis along �111� and three twofold axes

along �11̄0�, �101̄�, and �011̄�. Obviously, M must vanish at
a point of such high symmetry. Hence there is a point node at
the origin.

Symmetry operations consisting of a rotation followed by
an appropriate translation yield similar point nodes at 1

2
3
4

1
4

�with threefold axis along �1̄11��, 1
4

1
2

3
4 �threefold axis �11̄1��,

and 3
4

1
4

1
2 �threefold axis �111̄��. Finally, each of these nodes

is doubled inside one unit cell because a translation by
� �

2 , �
2 , �

2
� amounts to M→−M. The twofold and threefold ro-

tation axes form a complex array of skyrmionlike lines, all
with winding numbers of +1. The real-space representation
is

M�r� = SM0� c̃y − s̃z

c̃z − s̃x

c̃x − s̃y
� , �23�

where s̃x=sin�Q�x+� /8��, c̃x=cos�Q�x+� /8��, etc.

B. Higher harmonics Fourier modes

As briefly mentioned in Sec. II B, magnetic ordering in
wave vectors ±k j generally induces higher harmonics in the
magnetic structure. In the presence of magnetic order mkj
�0, the Landau free energy for the modes mq, which do not
belong to the set mkj

, is �to quartic order�

�F = �
q

r̃	�q��mq�2 − h	�q� · mq
* − h	

*�q� · mq, �24�

with r̃	�q�=r�q�+O��	 j�2� and

h	�q� = − 4 �
q1,q2,q3

� U�q1,q2,q3��mq1
· mq2

�mq3
, �25�

where the sum is restricted to q1 ,q2 ,q3� �±k j� such that
q1+q2+q3=q. The origin of the exchange field h	 is the

TABLE I. Transformation properties of the 	 variables and three quartic terms �defined in Sec. IV A 1� of the bcc spin crystals under
rotations. Rz and Rx, respectively, are � /2 rotations around the z and x axis. These two rotations generate the cubic point group O and
therefore, the behavior under any rotation which maps the 12 wave vectors onto each other may be obtained by combining these two
operations.

	1� 	2� 	3� 	4� 	5� 	6� Tx� Ty� Tz�

Rz 	2 	1
* 	6

* 	5
* 	3 	4 Ty Tx

* Tz
*

Rx i	5 −i	6
* −	4

* 	3 i	2
* i	1 Tx

* Tz Ty
*

FIG. 6. �Color online�. Symmetry of the bcc1 state. The figure
shows a cubic unit cell of bcc1. Black lines are antivortex lines with
fourfold antirotation symmetry and vanishing magnetization. The
red �dark gray� lines are twofold rotation axes and the arrows indi-
cate the direction of M. The structure has threefold rotation sym-
metry about all cubic space diagonals.
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coupling term Eq. �5�. In the following, we assume that
r̃�q��0. Obviously, Eq. �24� then leads to induced modes

mq =
h	,q

r̃�q�
�26�

at momenta q= ±k j1
±k j2

±k j3
.40 These modes modify the de-

tailed magnetic structure, but they do not change its symme-
try, since the field h	 respects all the symmetries of the spin
crystal.

We now briefly discuss the consequences for the three
helical magnetic structures under consideration.

A single spin-density wave involving wave vectors ±k
might create higher harmonics at ±3k via Eq. �26�. However,
in the case of spin spirals, mk

2 =0 and therefore h	,3k=0.
Thus, there are no higher harmonics created by a single spin
spiral.

The sc spin structure with principal ordering wave vectors
along �001� with �k j�=Q generates higher harmonics along
�111� �with �q�=�3Q� and along �012� �with �q�=�5Q�. Note
that throughout the current and last sections, all crystal di-
rections refer to the magnetic crystals. The orientation of a
magnetic crystal with respect to the atomic crystal depends
on the anisotropy term Fa, which will be considered in Sec.
V A 2.

In contrast to the former cases, bcc structures couple lin-
early to the q=0 mode �i.e., the uniform magnetization�,
since some triples of ordering vectors add to zero. This cou-
pling will be further investigated in Sec. V B. Here, we only
notice that for the bcc1 and bcc2 states, h	,q=0=0. This result
can be understood in terms of the symmetry of these states.
In the case of bcc1, the point group symmetry is too high to
support a nonzero axial vector h	,q=0. Therefore, bcc1 and
bcc2 do not create a spontaneous net magnetization. The next
set of wave vectors which can be reached by adding three
ordering vectors are along �001� �with �q�=�2Q�. However
for bcc1 and bcc2, direct calculation shows h	=0 for these
modes. As before, this can be understood in terms of sym-
metry. Higher harmonics along �001� would have the struc-
ture of a sc spin crystal. We have seen in Sec. III A, that the
point group symmetry of sc is lower than that of bcc1. There-
fore, bcc1 cannot create such an exchange field h	. We con-
clude that bcc1 creates no secondary Bragg peaks at �0, 0,
�2Q�, etc. The same is true for bcc2. The shortest wave-
vectors which are created by bcc1 or bcc2 as higher harmon-
ics are along �112� �with �q�=�3Q�. Others are at �110� ��q�
=2Q�, �013� ��q�=�5Q�, �111� ��q�=�6Q�, and �123� ��q�
=�7Q�.

V. RESPONSE TO CRYSTAL ANISOTROPY, MAGNETIC
FIELD AND DISORDER

A. Effect of crystal anisotropy

So far, our free energy has been completely rotation in-
variant. In the magnetically ordered states, full rotation sym-
metry is spontaneously broken, but any global rotation of the
spin structure leaves the energy invariant. This degeneracy is
lifted by an additional anisotropy term Fa, which couples the
magnetic crystal to the underlying atomic lattice. The crystal
anisotropy energy is small and may be treated as a perturba-
tion which merely selects the directional orientation, but
does not otherwise affect the magnetic state.

1. Single-spiral state

In the case of a single-spiral state, crystal anisotropy is a

function Fa�k̂�, where k̂ is the spiral direction. The function

Fa�k̂� may depend on various parameters, it should be sym-
metric under the point group of the �atomic� crystal lattice

and satisfy Fa�k̂�=Fa�−k̂�. For concreteness, we assume the
cubic point group T, relevant for the B20 crystal structure.

We further assume that Fa�k̂� is a slowly varying function,
since a singular or rapidly oscillating function in reciprocal
space would translate into a �nonlocal� interaction between
magnetic moments and the atomic crystal. Such a function

Fa�k̂� generally has its minimum at either �100� or �111�,
which can be shown in two different ways.

The first argument is based on combining symmetry with
Morse’s theory of critical points.41 Morse theory implies that

maxima − saddles + minima = 2 �27�

for a function on the unit sphere. Symmetry requires that

Fa�k̂� has stationary points �points with vanishing first de-
rivative, i.e., maxima, minima or saddles� at �100� �six direc-
tions�, �111� �eight directions�, and �110� �12 directions�. If

Fa�k̂� is slowly varying, we suspect that these are the only
stationary points, since adding more maxima, minima, and
saddles means that the function is more rapidly oscillating.
Under this hypothesis, it follows from Eq. �27�, that the �110�
directions are saddle points and that the extrema are at �111�
and �100�. For �110� to be minima, Fa�k̂� needs to have
additional stationary points �e.g., saddles� at nonsymmetric,
parameter-dependend locations. We conclude that an aniso-
tropy which favors �110� would need to be more rapidly
oscillating than required by symmetry.

The second argument is based on an expansion of Fa�k̂�
in powers of the directions cosines k̂x , k̂y , k̂z:

TABLE II. Transformation for the 	 variables of sc under rotations. Rz and Rx are � /2 rotations, R�111� is
a 2� /3 rotation, and R�11̄0� is a � rotation around the indicated axis.

Rx Ry Rz R�111� R�11̄0�

	1� i	1 −i	3 	2
* 	3 −	2

*

	2� 	3
* i	2 −i	1 	1 −	1

*

	3� −i	2 	1
* i	3 	2 −	3

*
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Fa�k̂� = ��k̂x
4 + k̂y

4 + k̂z
4� + ��k̂x

2k̂y
2k̂z

2 + . . . , �28�

where we retained the first two terms allowed by cubic sym-
metry. Because of the smallness of the wave vector sphere Q,
one typically expects ����� ��� and subsequent terms even
smaller. It is easily checked that for most values of the pa-
rameters � ,��, Eq. �28� has its global minima at either �100�
�for ��min�0,�� /18�� or �100� �for a
�max�2�� /9 ,�� /18��. Only in the narrow parameter regime
0���2�� /9, the minima are indeed at �110�.42 We con-
clude that crystal anisotropy which favors �110� may only
appear in a narrow regime between two phases which favor
�111� and �100�, respectively.

Accordingly, �111� or �100� are the selected spiral direc-
tions in all cubic helimagnets known so far.3,7,8 The preferred
direction in MnSi at low pressure is �111� and in FexCo1−xSi,
it is �100�. In FeGe, there is a phase transition between these
two directions,8 but no intermediate phase with �110� spiral
orientation has been reported. However, the neutron scatter-
ing data15 in the partially ordered phase of MnSi clearly
show a maximum signal along the �110� crystal directions.
While it is initially tempting to interpret the partially ordered
state of MnSi as a single-spiral state that has lost its orienta-
tional long-range order by some mechanism, one would still
expect a maximal scattering intensity in the energetically
preferred lattice direction. Theories of the partially ordered
state in terms of disordered helical spin-density waves17,20

thus depend on a crystal anisotropy that prefers spiral direc-
tions along �110�. As we have shown, this seems very un-
likely.

2. Helical spin crystals

For multimode spin crystals, Fa is no longer determined

by a single direction k̂, so the arguments of Sec. V A 1 do
not apply. Rather, the anisotropy energy depends on three
Euler angles, which rotate the full three-dimensional mag-
netic structure relatively to the atomic crystal. In other
words, Fa is a function of the rotation group SO�3�. Relative
to some standard orientation k j of the mode directions, the
leading-order anisotropy term is

Fa�R� = a�
j

g�Rk̂ j��	 j�2, �29�

where R is a rotation operator and g�k̂�= k̂x
4+ k̂y

4+ k̂z
4. As be-

fore, we have assumed a cubic point group symmetry.
In the case a�0, the modes of the bcc spin crystals get

locked to the �110� directions. The orientation of sc is four
times degenerate if a�0. The four minima of Fa are ob-
tained from the standard orientation along �100� through a

� /3 rotation around any of the four space diagonals, such
that the three spiral modes point along �122�.

In the opposite case �a�0�, sc is oriented along �100�.
This time, it is the bcc spin crystals that get rotated by � /3
around any �111� axis to reach one of the four stable orien-
tations. Under such � /3 rotations, three of the six modes
remain along �110� and three move to �114�. Each individual
�114� direction appears only in one of the four solutions but
each �110� direction appears in two of four solutions.

If there is more than one degenerate orientation, the
sample typically breaks up into domains such that full cubic
symmetry is restored in the neutron scattering signal. Table
III lists the directions of magnetic Bragg peaks for the dif-
ferent cases. Out of the three prominent phases in our phase
diagram, the bcc1 spin crystal is the only one that can ex-
plain the neuron-scattering peaks along �110� in the partial
order phase of MnSi. It does so most naturally for the case
a�0, which is the known sign of the anisotropy in MnSi at
low pressure.

In order to compare the energy scale of Fa �i.e., the lock-
ing energy� for the different magnetic states, we note the
following. At the phase boundary between two equal-
amplitude spin-crystal phases �one phase with amplitudes

�	1�= ¯ = �	N� and the second phase with �	̃1�= ¯ = �	̃Ñ�� the
amplitudes of the two neighboring phases are related by

N�	 j�2 = Ñ�	̃ j��
2. �30�

In the vicinity of the phase boundary, the anisotropy term is

therefore proportional to the mode-average 1/N� jg�Rk̂ j�.
Using this result, we find that the effective anisotropy energy
is smaller for the bcc spin crystals than for the single-spiral
state by a factor of 4–4.5.43 For the sc state, the locking
energy is anisotropic. Certain rotations are equally costly in
energy as for the single-spiral case while some small rota-
tions about the minimum for a�0 are softer than for the
single spiral by a factor of 4.5.

B. Effect of magnetic field

A uniform external magnetic field H couples to the q=0
mode of the magnetization, m= �M�, via Zeeman coupling.
The uniform magnetization, in turn, couples to the helical
modes 	 j through

F = �F�m=0 + r0m2 + U�0,0,0�m4 − h	�0�m

+ 2�
j

�U�k j,− k j,0�m2 + U�k j,0,0�m�,j
2 ��	 j�2,

�31�

where m�,j =m− �m · k̂ j�k̂ j and we have used Eqs. �5� and

TABLE III. Crystal directions of magnetic Bragg peaks and number of degenerate orientations for three
magnetic structures, sc, bcc, and single-spiral, with crystal anisotropy given by Eq. �29�.

Spiral No. bcc No. sc No.

a�0 �111� 4 �110� 1 �122� 4

a�0 �100� 3 �110�, �114�a 4 �100� 1

aWhen averaged over domains, Bragg peaks along �110� are 2 times as intense as peaks along �114�.
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�25�. Plumer and Walker44 argued that U�0,0 ,0��U�k j ,
−k j ,0��Us, which we will use in the following for simplic-
ity.

1. Response of the single-spiral state

The behavior of the single-mode spiral state under a mag-
netic field has been studied both experimentally3,8–10,12 and
theoretically.45,44 It is characterized by a strongly anisotropic
susceptibility, induced by the last term in Eq. �31�. For a
fixed spiral direction k, the susceptibilities parallel and or-
thogonal to the spiral direction are given by

�� � �−1,

�� � 	� + 2
U�

Us
�r�Q��
−1

, �32�

where �=2�r0−r�Q��=2JQ2 and U�=U�k ,0 ,0�. Well below
the critical ordering temperature, ��2�r�Q�� and therefore
�� ���. This strong anisotropy leads to a spin reorientation
transition at H=Hsr, where the spiral axis gets oriented along
the field direction. The value of Hsr depends on the aniso-
tropy �Eq. �28�� and the field direction. For ��0 and
H � �100�, Plumer and Walker obtained

Hsr
2 =

4�

�� − ��

� 4�� , �33�

where we have used �� ����0. Once the spiral is oriented,
the susceptibility is large �equal to ���.

The spiral amplitude decreases as a function of the exter-
nal field and vanishes at

Hc = �	0�� , �34�

where �	0�2= �r�Q�� / �2Us�. Above Hc, the magnetization is
uniform.

2. Response of the bcc1 spin crystal

In the bcc spin crystal states, the linear response is isotro-
pic, because their symmetry group does not allow for an
anisotropic susceptibility tensor. As a consequence, there is
no orientation of the bcc state towards the magnetic field at
the level of linear response �i.e., from energies up to order
H2�. However, there is a subleading contribution to the en-
ergy ��MxMyMz�HxHyHz. This contribution splits the degen-
eracy between the S=1 and S=−1 states and it may lead to a
reorientation of the bcc crystal towards the field.

In terms of the six 	 variables of bcc, the exchange field
h	�0�, which enters Eq. �31�, amounts to

h	�0� = − � Re��5 − �2i�h̃	� , �35�

where �=U�k j1
,k j2

,k j3
� for k j1

+k j2
+k j3

=0 and

h̃	 = 	1	3
*	6

*�1

1

1
� + 	1

*	4	5�− 1

− 1

1
�

− 	2	4
*	6�− 1

1

− 1
� − 	2

*	3	5
*� 1

− 1

− 1
� . �36�

The �isotropic� inverse spin susceptibility �see the Appen-
dix� in the bcc1 state is composed of three contributions

�bcc1
−1 = �bare

−1 + �phase
−1 + �amp

−1 . �37�

The first term

�bare
−1 = 2	r0 +

Us + 2
3U�

Ubcc1
�r�Q��
 , �38�

where Ubcc1=1/6�Us+Vp�� /4�+4Vp�� /6�−�nt�, can be de-
rived in analogy to the single-spiral case. In fact, �bare is a
“mixture” of �� and ��, determined geometrically by the
angles between the mode directions k j and the magnetic
field. It follows that �bare���, provided Ubcc1�Us �the two
couplings are equal at the phase boundary between single
spiral and bcc1�. The remaining terms in Eq. �37�,

�phase
−1 = −

�2�r�Q��
3Ubcc1�nt

,

�amp
−1 = −

25�2�r�Q��
12Ubcc1�Us − Vp��/4� + �nt�

, �39�

stem from the response of the bcc magnetic structure to the
field. That is, they originate from the adjustments of relative
phases and amplitudes, respectively, of the helical modes as
a result of the term −h	�0� ·m in Eq. �31�. The effect of �phase

and �amp, which are necessarily negative, is to increase the
susceptibility of the bcc1 state.

The change in the relative amplitudes and phases of the
six interfering spirals as a function of the magnetic field may
be calculated �see the Appendix�. For example, the linear
response of the amplitudes of bcc1 is

�

�	1�

�	2�

�	3�

�	4�

�	5�

�	6�

� =
5�S

4�Us − Vp��/4� + �nt��
− mz

mz

− mx

mx

my

− my

� . �40�

This response should be observable by neutron scattering, if
it is possible to prepare the sample in a single-domain state
�i.e., without mixture of the two time-reversal partners�. For
example, a field in ẑ direction affects �	1� and �	2�, the am-
plitudes of the modes propagating orthogonally to ẑ �Fig. 5�,
which get enhanced and suppressed by the magnetic field,
respectively.

The expected effects of external magnetic field on the
resistivity of bcc spin crystal are presented elsewhere.38
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VI. EFFECT OF IMPURITIES: A POSSIBLE ROUTE TO
PARTIAL ORDER

While the helical spin crystal states are expected to show
Bragg spots at particular wave vectors, a variety of effects
such as thermal or quantum fluctuations or disorder can de-
stroy the long range order while preserving the helical spin
crystal structure at shorter scales. Here, we investigate in
more detail the effect of nonmagnetic disorder on helical
spin crystal structures.

Although the experimentally studied helimagnets are very
clean from the electrical resistivity point of view, the helical
magnetic structures are sensitive to disorder at a much longer
length scale. In addition, the low energy scales required to
distort them means that one needs to consider disorder ef-
fects. An observation that can immediately be made is that
for the physically relevant case of nonmagnetic disorder
�Vdis�r��, the single-spiral state and the spin crystal states
respond very differently. By symmetry, the coupling of dis-
order to the magnetic structure is given by Fdis
= �Vdis�r��M�r��2�. Hence, single-spiral states which are
unique in having a spatially uniform magnitude of magneti-
zation ��M�r��=constant� are unaffected by this coupling; in
contrast the spin-crystal states necessarily have a modulated
magnitude23 and hence are affected by nonmagnetic disorder.
Therefore the neutron scattering signal of the spin-crystal
state is expected to have more diffuse scattering than the
single mode state. This is consistent with the experimental
observation that the high pressure phase has diffuse scatter-
ing peaked about �110� while the low pressure phase has
sharper spots, consistent with identifying the two as spin-
crystal and single-spiral states, respectively.

The effect of disorder on the spin-crystal state is closely
related to the problem of the ordering of an XY model in the
presence of a random external field. The phase rotation sym-
metry of the XY model captures the translational invariance
of the spin crystal in the clean state. Disorder destroys this
invariance and behaves like a random field applied to the XY
system. Using the insights from the study of that problem in
three dimensions,46 one expects that for weak disorder a
Bragg glass will result, where although true long range order
is destroyed, power law divergent peaks at the Bragg wave
vectors remain, and the elastic constants remain finite. For
stronger disorder one expects this algebraic phase to also be
destroyed, and recover a short range correlated phase without
elasticity. Nevertheless, for the case of the bcc1 and bcc2
crystals, due to time reversal symmetry �T� breaking in these
states, the disordered states also spontaneously break time-
reversal symmetry, and hence a phase transition is expected
on cooling despite the absence of long range order. It is
difficult to predict which of these two scenarios �Bragg glass
or only T breaking� is more appropriate for MnSi. In the
latter case one may estimate the spreading of the Bragg spots
due to disorder by considering the energetic cost to deform
the spin-crystal state in different ways.

Ignoring elastic contributions, there are two distinct types
of deformations—ones that involve a change in the magni-
tude of the ordering wave vectors 
q� and others that do not
change the wave vector magnitude but rotate the structure

from its preferred orientation, 
q�. The second is expected to
be low in energy because rotations of the structure are locked
by the crystal anisotropy term, which is weak. From Eq.
�28�, we obtain the energy cost to shift the ordering vector by

q� along the sphere �q�=Q,


F� =
4�

3�
	
q�

Q

2

, �41�

where �=1 for the single spiral. For multimode spin crystals,
the energy cost of rotation is reduced, as explained in Sec.
V A 2. Thus, ��4 for the bcc spin crystals. In contrast, de-
formations that change the magnitude of the ordering wave
vectors, must contend with the DM interaction scale, and
hence pay a higher energy penalty


F� =
1

2
��	0�2	
q�

Q

2

. �42�

Assuming the disorder couples to these deformations equally,
we can estimate the ratio of their amplitudes in the limit of
weak deformations, by equating Eqs. �41� and �42�. It fol-
lows

	
q�


q�

2

=
3���	0�2

8�
. �43�

Using Eqs. �33� and �34�, we can relate this ratio to the
experimentally known ratio between the critical magnetic
fields for, respectively, reorienting and polarizing the single-
spiral state


q�


q�

��3�

2

Hc

Hsr
. �44�

We can now apply these results to the case of MnSi and
test the hypothesis that the partial order state is in fact a
disordered bcc spin crystal. Setting in �=4 and the experi-
mentally measured12 critical fields for MnSi, Hc=0.6 Tesla
and Hc1=0.1 Tesla, one obtains 
q� /
q� �15. Neutron scat-
tering experiments do indeed find that the transverse broad-
ening is larger than the longitudinal broadening, but since the
latter is resolution limited, this only gives us a lower bound
that is consistent with the estimate above �
q� /
q��expt

�2.3. Nevertheless, the trend that the width of the spot is
greater along the equal magnitude sphere than transverse to it
is clearly seen in the experimental data.

Thus, weak nonmagnetic disorder of the atomic crystal is
expected to destroy magnetic long range order in multimode
helical spin crystal states and lead to a neutron scattering
signal compatible with the observations in the partial order
phase of MnSi. However in the case of bcc spin crystals,
time-reversal symmetry breaking is expected to persist even
in the presence of disorder. The scenario of interpreting par-
tial order in MnSi as a bcc1 state disordered by impurities
thus predicts quasistatic local magnetic moments and implies
a finite temperature phase transition on cooling into this
phase.
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VII. CONCLUSION

We have analyzed the magnetic properties of noncen-
trosymmetric weak ferromagnets subject to DM spin-orbit
coupling. This problem falls into the general class of systems
where the low energy excitations live on a surface in recip-
rocal space rather than on discrete points. The addition of
DM interactions to a ferromagnetic state produces a large
degeneracy of magnetic states characterized by arbitrary su-
perpositions of spin helices of a fixed helicity and fixed wave
vector magnitude. This enormous degeneracy is broken by
interactions between modes, and the single-spiral state is re-
alized for slowly varying interactions, by virtue of its unique
property of having a spatially uniform magnitude of magne-
tization. For more general interactions, multimode helical
spin crystal states are obtained. We show that for the model
interactions considered, the phase diagram is largely deter-
mined just by considering the interactions between pairs of
modes. The phase that is eventually realized may be readily
deduced from the range of angles in which this interaction
drops below a critical value. In particular, the bcc structure is
stabilized by virtue of the fact that its reciprocal lattice, fcc,
is a close packed structure. These results may also be rel-
evant in other physical situations where crystallization oc-
curs, such as the Larkin-Ovchinnikov-Fulde-Ferrel instabil-
ity in spin-imbalanced superconductors, which may
potentially be realized in solid state systems,47 cold atomic
gases,48 and dense nuclear matter.49

Helical spin crystals typically give rise to complicated
real space magnetic structures which we discussed in this
paper. In particular, topological textures like merons and an-
tivortices can be seen about special axes in particular real-
izations, although these are not expected to be stable given
the order parameter and spatial dimensionality of the system.
We show here that such topological structures exist as a con-
sequence of symmetry, which also dictates the absence of
certain higher Bragg reflections, which a naive analysis
would predict.

The response of helical spin crystals to crystalline aniso-
tropy and applied magnetic field are considered with a spe-
cial emphasis on the bcc structures which are contrasted
against the response of the single helix state. An unusual
transfer of spectral intensity in the presence of an applied
magnetic field, which is strongly dependent on the direction
of applied field is noted for the bcc structures. This is a
consequence of broken time-reversal symmetry in the ab-
sence of a net magnetization �which is symmetry forbidden�.
The unusual magnetotransport in such a state, a linear in field
magnetoresistance and quadratic Hall effect, has been dis-
cussed briefly in Ref. 23 and was elaborated upon in Ref. 38.

Helical spin crystals exhibit Bragg peaks at specific wave
vectors, and hence are not directly consistent with the experi-
mental observation of partial order. The point of view taken
in our earlier work23 is that the short distance and short time
properties are captured by the appropriate helical spin crystal
structure. Studying the properties of helical spin crystals with

long range order is a theoretically well-defined task with di-
rect consequences for a proximate disordered phase with
similar correlations up to some intermediate scale. The
mechanism that leads to the destruction of long range helical
spin crystal order is unclear; in Ref. 23, this was assumed to
be the coupling to nonmagnetic disorder. Then, as elaborated
in this paper, beginning with a bcc helical spin crystal a
neutron scattering signature consistent with that of partial
order may be obtained. However, within the simplest version
of this scenario, one also expects a finite temperature phase
transition where time-reversal symmetry breaking develops,
and static magnetic order which may be seen in nuclear mag-
netic resonance or muon spin rotation experiments. Other
mechanism for the destruction of long range order of the bcc
spin-crystal state, such as thermal or quantum fluctuations
may also be considered, but are left for future work.
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APPENDIX: LINEAR RESPONSE

Let the free energy F depend on real internal variables
x= �x1 , . . . ,xn� �related to various order parameters� and on
m= �m1 ,m2 ,m3�, which couples linearly to the external field
H. The internal variables are chosen such that for m=0, the
minimum energy shall be at x=0. Expanding F to second
order in x and m yields

F = 1
2xTAx + mTBx + 1

2mTCm , �A1�

where A, B, and C are matrices, A=AT, C=CT. All eigenval-
ues of A are positive. Equation �A1� can be written as

F = 1
2 �x − xm�TA�x − xm� + 1

2mT�−1m , �A2�

where xm=−A−1BTm and �−1=C−BA−1BT. It follows that
under the influence of an external field H, the equilibrium
internal variables get shifted to x=xm and the linear response
is given by m=�H. Thus, there are two contributions to the
inverse susceptibility: �bare

−1 =C and �x
−1=−BA−1BT. The latter

comes from the internal response of the x variables to the
magnetic field.

These general results are applied in Sec. V B 2, where the
internal variables x1 , . . . ,x9 are the deviations from their
equilibrium value at m=0 of six amplitudes �	 j� and three
phases �holding the other three phases fixed�. In this case, �x
leads to both the phase and amplitude related terms in Eq.
�39�.
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