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We study equilibrium properties of disc-shaped ferromagnetic elements with perpendicular anisotropy and
quality factor less than unity. A vortex is a static state for sufficiently thin particles. For thicker particles we find
a continuous transition to a bidomain state which is stable for a range of particle diameters. This bidomain state
is akin to a magnetic “bubble” where the magnetization is directed along the symmetry axis at the center of the
disc and it is oppositely magnetized at the periphery. The magnetization profile of the bidomain state presents
the same winding around the symmetry axis as the vortex. Its signature is its magnetostatic field which consists
of two concentric regions of opposite sign above the particle top surface. Higher-order states of multiple
concentric domains with alternating magnetization direction are also found for particles of sufficiently large
lateral dimensions. Finally, we explain how these ideas apply to particles with a very small perpendicular
anisotropy.
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I. INTRODUCTION

Magnetic materials with a uniaxial magnetocrystalline an-
isotropy perpendicular to the surface of the magnetic element
are becoming increasingly important in many areas of ap-
plied and theoretical research. Recently, mesoscopic ele-
ments with perpendicular anisotropy have been found to dis-
play a rich variety of magnetization patterns. In a series of
experiments with cylindrical cobalt dots magnetic domains
were often observed to form remarkably regular patterns.1

The magnetic domain structure of nickel dots was found to
present similar patterns,2 which were also revealed in micro-
magnetic studies.3 It thus appears that the situation for high-
symmetry magnetic domain states is significantly richer in
perpendicular anisotropy particles compared to isotropic
ones. Therefore these constitute an excellent system for the-
oretical studies. The interest in the subject is also due to the
potential for applications, mainly in the context of magnetic
recording technology. High-density magnetic recording will
be based on perpendicular anisotropy materials, which allow
for a substantial increase of storage densities.

Most of the past research effort on mesoscopic magnetic
elements has focused on materials with negligible or with a
small in-plane anisotropy where the vortex appears to be
dominant.4 Permalloy is an example of a widely used mate-
rial in this research area. The situation appears to change
dramatically for permalloy dots with a very weak deposition
induced perpendicular anisotropy which were studied in Ref.
5. Instead of a single vortex, a variety of domain patterns
were observed which have an MFM �magnetic force micros-
copy� signature similar to the one in higher anisotropy
dots.1,2 This indicates that the perpendicular component of
the magnetization is significantly more complicated than the
simple vortex state observed in dots of similar size but with
a vanishing anisotropy.

Circular magnetic domains of high symmetry were ob-
served in many of the above-mentioned experiments and
these appear to be akin to magnetic bubbles which have been

thoroughly studied in high perpendicular anisotropy continu-
ous films.6 The relevance of a magnetic bubble for mesos-
copic magnetic elements has been pointed out in Ref. 7
where it was argued that this can form the ground state of
disc-shaped particles with high perpendicular anisotropy. A
systematic study of the domain patterns and the magnetic
states in perpendicular anisotropy elements, such as the ones
used in the experiments mentioned above, has not been given
yet. In this paper we study disc-shaped particles with a qual-
ity factor less than unity. A vortex can be found in suffi-
ciently thin particles. Thicker particles can sustain highly
symmetric bidomain and multidomain states. We discuss the
relation of bidomain states to magnetic bubbles while axially
symmetric tridomain states are viewed as their generaliza-
tions.

The paper is organized as follows. In Sec. II we describe
in detail a vortex in a very thin disc-shaped particle. In Sec.
III we study axially symmetric bidomain and tridomain
states in particles with a quality factor as in hcp Co and in
the tetragonally distorted Ni�001�. In Sec. IV we show the
relevance of our ideas for the permalloy dots studied in Ref.
5. Finally, Sec. V contains our conclusions.

II. VORTICES IN THIN DOTS

We consider a disc-shaped particle of thickness t and ra-
dius R. We suppose a uniaxial magnetocrystalline anisotropy
with the easy axis along the symmetry axis of the particle
which is taken to be the z axis. Statics and dynamics of the
magnetization M are described by the Landau-Lifshitz equa-
tion. A natural length scale in the equation is the exchange
length �ex=�A /2�M0

2, where A is the exchange interaction
constant and M0 is the saturation magnetization. Another im-
portant quantity is the dimensionless quality factor Q
=K /2�M0

2, where K is the uniaxial anisotropy constant. The
quality factor is a measure of the relative strength of the
magnetostatic and anisotropy interactions. It also enters in
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the calculations of the domain-wall width, �ex/�Q. In the
following we shall use �ex as the unit of length and all fields
will be scaled to 4�M0 �and energy per volume to 4�M0

2�.
We define

m �
M

M0
, h �

H

4�M0
, �1�

as the normalized magnetization and magnetostatic field, re-
spectively. We use cylindrical coordinates, where the magne-
tization components are m= �m� ,m� ,mz� and correspond-
ingly h= �h� ,h� ,hz�. Important in the following is the
anisotropy energy which is typically considered to be mod-
elled by an on-site term and, following our scaling conven-
tions, it has the form

Ea =
Q

2
� �1 − mz

2�dV , �2�

where the integration extends over the particle volume.
Our aim is to find the equilibrium magnetic states in the

particle, which are the static solutions of the Landau-Lifshitz
equation. As a starting point we take the limit of a very thin
particle. This has been rigorously defined in Ref. 8, where it
is proved that the magnetization does not vary along the
thickness. One needs to minimize a two-dimensional Hamil-
tonian, which is achieved by substituting an effective perpen-
dicular anisotropy term Em

�eff�= t /2�mz
2dxdy for the nonlocal

magnetostatic energy term. Therefore, in the very thin limit,
the energy includes the following total effective anisotropy
term:

Ea + Em
�eff� =

1 − Q

2
t� mz

2dxdy + const. �3�

We consider throughout this paper that Q is positive and less
than unity, Q�1. Thus Eq. �3� implies that z is a hard axis,
and the lowest energy state is a uniform magnetization state
with m lying on the �x ,y� plane.

Numerous experiments have reported a vortex in disc par-
ticles. Observations of vortices were reported in Refs. 9 and
10, and vortices and antivortices in rectangular particles were
reported in Ref. 11. Vortex states in cubic particles have been
studied in Ref. 12, and a theoretical study of the stability of
a vortex in a disc particle was given in Ref. 13. Studies on
vortices or swirls in particles are reviewed in Ref. 14.

We assume here that a vortex is a static solution even in
the very thin limit. The radius of the vortex core is inversely
proportional to the root of the effective anisotropy constant
Rcore��ex/�1−Q. One can obtain a more precise result by
employing Eq. �A3� given in the Appendix. If we use the
simple model for the vortex ��0 a parameter�,

m� = 0, m� = tanh��/�0�, mz = 1/cosh��/�0� , �4�

and substitute in Eq. �A3�, we find

�0 = 0.85/�1 − Q . �5�

In order to verify the above results but also to calculate
the vortex away from the very thin limit we solve the
Landau-Lifshitz equation by our numerical code which ex-

plicitly imposes axial symmetry, thus being ideal for calcu-
lating static axially symmetric states in a disc particle. We
thus suppose

m� = m���,z�, m� = m���,z�, mz = mz��,z� , �6�

which implies

h� = h���,z�, h� = 0, hz = hz��,z� . �7�

In our numerical simulations we have chosen Q=0.4 which
corresponds to both hcp Co and to tetragonally distorted
Ni�001�. We note, however, that these materials have differ-
ent exchange lengths �ex=2.85 and 8.3 nm, respectively. Our
algorithm converges to a static axially symmetric vortex
when the particle is thin �t�5�ex� and has a radius much
larger than the vortex core. The results are consistent with
Eq. �5� although satisfying this to a good accuracy would
require an extremely thin particle �t��ex�. We present in Fig.
1 the numerical result for a vortex in a particle with thickness
t=3.1 and radius R=15.1. The magnetization at the top sur-
face of the disc is shown and there is only little variation of
m across the particle thickness, as is expected in the very
thin limit. Approximating the profile in Fig. 1 by the model
�4� we find �0=1.9, which is much larger than the value �5�
obtained in the very thin limit. We thus stress that the vortex
core radius increases significantly with the particle thickness.
The virial relation �A2� is satisfied by all numerically calcu-
lated vortex solutions presented here. This serves also as a
check for the accuracy of our numerical results.

The profile of the vortex in Fig. 1, as well as all magnetic
configurations presented in this paper, satisfy the parity rela-
tions

m���,z� = − m���,− z�, m���,z� = m���,− z� ,

FIG. 1. The vortex profile at the top of a disc particle with
radius R=15.1, thickness t=3.1, and quality factor Q=0.4. The ar-
rows show the projection of the magnetization vector m on the
�x ,y� plane while the third component of the magnetization �mz� is
coded in gray scale. The magnetization at the center is mz=−1.
There is little variation of the magnetization across the thickness. In
this and following figures length is measured in exchange length
units.
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mz��,z� = mz��,− z� . �8�

Of significant practical importance is the magnetostatic
field produced by the vortex. We plot in Fig. 2 its two non-
vanishing components h�, hz above the top particle surface.
The component hz has an extremum at the vortex center,
while h� has a significant value at the tail of the vortex core,
while it vanishes at the center. The magnetostatic field van-
ishes away from the vortex core, as expected.

We conclude this section by considering the vortex for
varying particle radius. For large radii it is clear that the
vortex remains a solution and its core remains unchanged.
On the other hand, as the radius of the particle becomes very
small and comparable to the vortex core size the vortex is
reduced to its core and it actually becomes similar to a single
domain �SD� along the symmetry axis. This situation is fur-
ther discussed in Sec. IV.

III. BIDOMAIN STATES

We now consider particles of increasing thickness and
investigate how the picture described in the previous section
is modified. Figure 3 shows the result of a numerical calcu-
lation for radius R=15.1 and thickness t=11. We have two
concentric domains: the central domain points down and the
outer domain points up �the state obtained by m→−m is a
solution, too�. The domain wall between the two domains is
Bloch-like at the central plane �upper panel�. The magneto-
static �stray� field causes the magnetization to develop a
large m� component at the domain wall near the top and
bottom surfaces where this becomes Néel-like and its width
is on the order of the particle radius �lower panel�. Figure 3
shows that this bidomain state retains many of the features of
a vortex. In particular, the magnetization vector winds
around a full circle about the symmetry axis z. A cross sec-
tion of the dot is shown in Fig. 4. Since this is an axially
symmetric configuration the three-dimensional picture is
generated by a revolution of the figure around the z axis.

This bidomain state has been observed in Ni dots.2 For the
case of hcp Co, states of weak circular stripe domain as the
one in Fig. 3 have been studied numerically in Ref. 15. Fi-
nally, we note that the virial relation �A2� is satisfied for our
solution, and for all subsequent calculations presented in this
section, to an accuracy better than 2%.

We shall call the magnetic state in Fig. 3 a “monobubble”
since it can be viewed as a single magnetic bubble in a par-
ticle. Magnetic bubbles have been discussed extensively in
the context of films with perpendicular anisotropy where
they exist only in the presence of an external magnetic bias
field.6 On the other hand, it has been shown in Ref. 7 that
magnetic bubbles exist in particles with high perpendicular
anisotropy �Q�1� also in the absence of any external bias
field. In the present case �Q�1� the bidomain state profile
differs from the above-mentioned cases in that it is here
dominated by the domain wall which extends over an area on
the order of the particle size.

FIG. 2. The magnetostatic field h of the vortex in Fig. 1 just
over the top particle surface. The field is axially symmetric and we
present the two nonzero components h�, hz as functions of the radial
coordinate �.

FIG. 3. The bidomain state �“monobubble”� illustrated in the
middle plane �upper panel� and at the top �lower panel� of a disc
particle with radius R=15.1, thickness t=11, and quality factor Q
=0.4. The picture at the bottom surface is inferred by Eq. �8�. The
magnetization is mz=−1 at the center and mz�1 in the outer do-
main. The arrows show the projection of the magnetization on the
�x ,y� plane, while the third component �mz� is coded in gray scale.
Note that the gray scale code adopted here is different from that in
Fig. 1.
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The magnetostatic field of the monobubble of Figs. 3 and
4 is presented in Fig. 5. We plot the two nonvanishing com-
ponents h�, hz above the top particle surface. The third com-
ponent hz has opposite signs between the central and the
outer domain reflecting the perpendicular component of the
magnetization. The sign of hz is also shown in Fig. 4 coded
in black and gray color in the bar over the particle. The radial
component h� has a significant value at the monobubble do-
main wall and near the particle side surface.

In order to explore the transition from a vortex to a
monobubble we have numerically calculated the magnetic
states for a particle radius R=15.1 and thickness range 2
� t�11. We find a vortex for t�5 and a monobubble for t
�7. For 5� t�7 the state is intermediate between the two.
The smooth transition between the two states is made obvi-
ous in Fig. 6 where we plot the total magnetization per unit
volume along the symmetry axis �V=�R2t is the particle
volume�

� �
1

V
� mzdV , �9�

for varying thickness t of the particle. For t�5 only the
vortex core magnetization has an out-of-plane component

and contributes to � which has a small value. According to
our conventions mz�0 at the vortex core and thus ��0. In
the case of the monobubble the magnetization is out of plane
across the particle. The central region is smaller than the
outer region due to the domain-wall tension.7 As a result the
total magnetization has a significant net magnetization �
�0. In Ref. 16 a theory was developed for the critical thick-
ness for the tilting of the spins out of plane in a continuous
film with perpendicular anisotropy. For Q=0.4 the critical
thickness was calculated to be 6�ex. This number is indeed in
the region where the vortex is turning to a monobubble ac-
cording to Fig. 6.

We complete the discussion of this section by considering
the effect of varying the particle lateral dimension. In Fig. 7

FIG. 4. A cross section across the particle diameter for the
monobubble shown in Fig. 3. The arrows show the projection of the
magnetization on the cross section �m� and mz shown�. The bar on
the top color codes the sign of hz just over the top dot surface. Black
indicates negative and gray indicates positive values.

FIG. 5. The magnetostatic field h of the monobubble in Figs. 3
and 4 just above the top particle surface. The field is axially sym-
metric and we present the two nonzero components h�, hz as func-
tions of the radial coordinate �.

FIG. 6. The total magnetization � 	in units of Ms, defined in Eq.
�9�
 of a particle with radius R=15.1 and varying thickness t �in
units �ex�. We have a vortex for t�5, a monobubble for t�7, and
an intermediate state for 5� t�7.

FIG. 7. Energy per unit volume �in units of 4�M0
2� of the single-

domain �SD, dotted line�, the monobubble 	bidomain �BD�, solid
line
, and the three-ring state 	tridomain �TD�, dashed line
 as a
function of disc radius R. The disc thickness is t=11, and the qual-
ity factor Q=0.4. The critical radii Rc1, Rc2 �see text� correspond to
the intersections of the dotted and solid lines, and solid and dashed
lines, respectively.
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we present the energies of the various axially symmetric
magnetic states supported in the particle of thickness t=11 as
a function of radius R. A single-domain �almost uniform�
state, pointing along z, is the lowest energy state for small R
�dotted line in figure�, but its energy increases rapidly with
R. The monobubble state �solid line in figure� exists for radii
in the range 7�R�31, while it has energy lower than the
single domain for R�Rc1=9. A similar behavior has been
discussed in Ref. 7 for high anisotropy particles; however,
the present monobubble state does not exist for very large
radii: as indicated in Fig. 7, the solid line terminates at R
=31.

For particles of sufficiently large lateral dimensions we
find higher-order multidomain states. An axially symmetric
tridomain state is shown in Fig. 8 and it will be called a
“three-ring” state. The sequence of three-ring states for t
=11 is denoted by a dashed line in Fig. 7. They exist for R
�R2=22, they become the lowest energy states for R�Rc2
=25.5, and they should cease to exist for a larger radius �not
presented here�. Multidomain states in Co dots have been
observed in Ref. 1 and the sequence of concentric multido-
main states has been further studied and discussed in Refs. 3
and 17.

IV. VERY WEAK ANISOTROPY

Experiments with Ni81Fe19 disc particles have been re-
ported in Ref. 5 where bidomain and tridomain states resem-
bling those described in the previous section were observed.
The permalloy is known to have a very weak deposition
induced perpendicular anisotropy.18 The diameters of the
dots ranged in half integer and integer multiples of the stripe
domain size in unpatterned films and the thickness was
190 nm. The magnetic structures were observed with MFM
and were found to be dependent on the field history of the
samples. Particles with diameters 750 and 850 nm, roughly
twice the stripe period width observed in unpatterned
samples, show remanent states of two and three concentric

domains of alternating contrast, respectively. This indicates
that the perpendicular component of the magnetization is sig-
nificantly more complicated than the simple vortex state ob-
served in dots of similar size without the perpendicular an-
isotropy.

In order to investigate the effect of a low anisotropy we
have repeated the procedure of the previous section using
now small quality factors. Given an exchange length �ex
�5.7 nm for the permalloy we have chosen a thickness t
=33.5�ex for the particles in order to match the experiment.5

We have tried several values for the quality factor and have
concluded that Q=0.05�±0.01� give the best agreement with
the experimental results. For this Q the results of Ref. 16
suggest a critical thickness for the magnetization tilting out
of plane of 23�ex. We note that previous studies on permalloy
films with the composition Fe82Ni18 have reported the critical
thickness for stripe domain nucleation to be 280±30 nm,19

and this implies a quality factor Q=0.012 according to nu-
merical results.20

We have performed numerical calculations for radii R
�85��1 �m�. We present in Fig. 9 a cross section of a
particle with radius R=59.25 �diameter 680 nm� in a bido-
main �monobubble� state. This is in many respects similar to
the one shown in the previous section in Fig. 4, although in
the present case the magnetization vector is tilted only
slightly out of plane near the particle top and bottom sur-
faces. Despite the small tilting of the magnetization the mag-
netostatic field over the particle surface varies significantly.
The perpendicular component �hz�, which is important for
MFM measurements, changes sign across the particle diam-
eter as shown in black-gray code in Fig. 9. The magnetostatic
field components over the particle surface are shown in Fig.
10. The value of hz is small �hz� ±0.02 in units of 4�Ms�
over most of the disc surface but it is large at the particle
center.

An overview of our results is given in Fig. 11 which
shows the energy per unit volume of all magnetic states
found as a function of the particle radius. A single-domain
state exists for small radii �dotted line in the figure�. The
bidomain state �solid line� is stable for R�66 �diameter
750 nm� while its energy has a minimum at R=45 �diameter
510 nm�. A tridomain state �dashed line� is composed of
three concentric domains, similar to the one shown in Fig. 8,
and it is stable for R�55 �diameter 630 nm� �it should cease

FIG. 8. A tridomain �three-ring� state illustrated at the top sur-
face of a dot with thickness t=11, radius R=24.6, and a quality
factor Q=0.4. Arrows show the projection of the magnetization on
the plane and mz is coded in gray scale.

FIG. 9. The bidomain state profile in a cross section across the
dot diameter for a particle with radius R=59.25, thickness t=33.5,
and quality factor Q=0.05. The arrows show the projection of the
magnetization on the cross section �m� and mz shown�. The bar on
the top color codes the sign of hz just over the top dot surface. Black
indicates negative and gray indicates positive values.
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to exist for some radius larger than 85, not presented here�.
These results are in agreement with the experimental results
in Ref. 5 where the bidomain state was observed in dots with
diameters of 600 and 750 nm, while the three-ring state was
observed in dots with diameters 850 nm.

We complete this section with a discussion of the details
of the solid curve in Fig. 11. The energy density shown by
the solid curve increases significantly for small R and this is
associated with a qualitative change of the bidomain state.
For R�20 its outer domain is reduced and the state re-
sembles a vortex with a small flux closure domain. Further
reducing the radius �R�10� the vortex tail is reduced and
eventually the magnetic state is almost uniform along the
disc axis, and could thus be described as a single domain.

For R�10 the solid curve approaches the dotted one �SD�
but the two lines do not join. As a result, for small radii the
solid and dotted curves represent two similar but distinct
single-domain states. In order to test whether these two states
can actually be distinguished in magnetic elements, we sug-
gest that they should behave differently under the application
of an external field along the symmetry axis: one should
remain almost uniform while the other should give a vortex
whose core is shrinking as the field intensity increases.

V. CONCLUSIONS

We have presented an extensive study of the domain
structure of mesoscopic magnetic dots with perpendicular
anisotropy corresponding to quality factor �Q� values typical
for hcp Co or tetragonally distorted Ni�001�. A vortex is
typically found in thin dots while the magnetic structure be-
comes richer in thicker particles where the magnetization
tilts out of plane across the particle. A bidomain state is
found which is akin to a magnetic bubble, and multidomain
states of concentric rings with alternating magnetization are
found in dots with larger lateral dimensions. The picture is
similar in dots of permalloy with a very small deposition
induced perpendicular anisotropy, but the out-of-plane struc-
tures are weak and are observed only in thick dots. We have
elaborated on the fact that the magnetization profile of the
bidomain bubble state presents the same winding around the
symmetry axis as the vortex. This is particularly evident in
the permalloy case where a vortex is continuously transform-
ing to a bidomain bubble as the lateral dimensions of the dot
increase.

Our study applies to small enough particles as indicated,
e.g., in Fig. 7 which shows dot radii R�40�ex. On the other
hand, the situation in particles with large lateral dimensions
is expected to be similar to continuous films where stripe
domains prevail. The latter domain structure can be consid-
ered as the large radii limit of the problem. However, we
have not attempted to study the details of the transition from
one limit to the other.

The magnetization configuration of each of the states dis-
cussed in this paper presents a certain complexity �as evi-
denced, e.g., from Figs. 3 and 8�, and we have discussed the
analogies of the present structures with the magnetic vortex.
In particular, both vortices and bubbles are characterized by
a topological number. The latter is linked to the magnetiza-
tion dynamics which, in turn, has proved surprising and in-
teresting in many experimental and theoretical studies of vor-
tex dynamics and of related spin waves and eigenmodes.21–26

It would be interesting to study the dynamics of the
monobubbles and three-ring states discussed in the present
paper. The scope of such studies could eventually prove sig-
nificantly wide. In addition to the structures discussed in this
paper one could also envisage bubble states with various
topological numbers including zero. Such complicated
bubbles would present a varying number of Bloch lines, i.e.,
they present domain walls of different types. Vortex states
with Bloch lines have been observed in ring-shaped particles
in Ref. 27.

FIG. 10. The magnetostatic field h over the top particle surface
for the state shown in Fig. 9 as a function of the distance from the
center � of the dot.

FIG. 11. Energy per unit volume �in units of 4�M0
2� of the

single-domain �SD, dotted line�, the bidomain �BD, solid line�, and
the three-ring state �TD, dashed line� as a function of disc radius R,
for thickness t=33.5 and a quality factor Q=0.05.
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APPENDIX: VIRIAL THEOREM

A generalization of the well-known Derrick relation for a
ferromagnet was derived in Ref. 28 which is now valid for
axially symmetric solutions in disc-shaped ferromagnetic el-
ements of any size. We repeat here the result in the form that
is used in the present paper. We denote by

We =� wedV, we =
1

2
�im · �im ,

Wa =� wadV, wa =
Q

2
�1 − mz

2� ,

Wm = −
1

2
� h · mdV , �A1�

the exchange, anisotropy, and magnetostatic energies, re-
spectively. Using Eq. �8� the Derrick relation reads

We + 3�Wa + Wm� = 2�R2�
SR

�we + wa − h · m −
1

2
m�

2�dz

+ t�
S±

�we + wa − h · m −
1

2
mz

2�2��d� ,

�A2�

where SR is the side surface of the disc, and S± is either of the
top or bottom disc surfaces.

In the very thin limit, we suppose that there is no variation
along the z axis; also h�=0, hz=−mz,

8 and m���=R�= ±1,
which we substitute in Eq. �A2� to obtain

� mz
22��d� =

�

1 − Q
. �A3�

This equation can also be obtained by employing a result
given in the Appendix of Ref. 29.
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