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Our earlier papers explore the nature of large wave vector spin waves in ultrathin ferromagnets, and also the
properties and damping of spin waves of zero wave vector, at the center of the two-dimensional Brillouin zone,
with application to ferromagnetic resonance �FMR� studies. The present paper explores the behavior of spin
waves in such films at intermediate wave vectors, which connect the two regimes. For the case of Fe films on
Au�100�, we study the wave vector dependence of the linewidth of the lowest frequency mode to find that it
contains a term which varies as the fourth power of the wave vector. It is argued that this behavior is expected
quite generally. We also explore the nature of the eigenvectors of the two lowest lying modes of the film, as a
function of wave vector. Interestingly, as wave vector increases, the lowest mode localizes onto the interface
between the film and the substrate, while the second mode evolves into a surface spin wave, localized on the
outer layer. We infer similar behavior for a Co film on Cu�100�, though this evolution occurs at rather larger
wave vectors where, as we have shown previously, the modes are heavily damped with the consequence that
identification of distinct eigenmodes is problematical.
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I. INTRODUCTION

The nature of spin motions in ultrathin ferromagnetic
films and more generally in magnetic nanostructures is a
fundamental topic, important also from the point of view of
applications. It is the motion of magnetic moments within
ultrathin films that allow giant magnetoresistive read heads
to respond to the bits on hard disks, and more recently in the
elements incorporated into prototype magnetic random ac-
cess memory �MRAM�. Thus issues such as the frequency of
precession of magnetic moments and the damping mecha-
nisms operative in magnetic nanostructures is a topic of in-
terest from the perspective not only of fundamental physics,
but from the point of view of contemporary device technol-
ogy as well. As entities incorporated into devices become
smaller and smaller, the physics of spin motions with spatial
gradients emerges as a central issue. We see this from the
discussions of the injection of spin polarized currents into
ultrathin ferromagnets through use of both point contact de-
vices and spatially resolved optical excitation.1 Useful in-
sight into the influence of finite wave vector effects on the
frequencies, character of spin wave eigenvectors, and damp-
ing may be obtained through the study of finite wave vector
spin excitations in ultrathin ferromagnetic films of infinite
extent.

We have been engaged in theoretical studies of the nature
of spin waves in ultrathin ferromagnets, both free standing
and adsorbed on metal substrates, along with their damping.
These calculations are based on use of an itinerant electron
description of the ferromagnetism in the film, and a realistic
electronic structure of the the film/substrate combination.
Details of our approach may be found in our study of the
Fe�110� monolayer on W�110�.2 We initially concentrated

our efforts on the systematic features of these modes,
throughout the appropriate two-dimensional Brillouin
zone.2–5 A focus was placed on the strong intrinsic damping
of these modes, which increases dramatically as one moves
from the center of the Brillouin zone out to large wave vec-
tors. A striking prediction emerged from these studies. Very
near the zone center, the lowest lying acoustical spin wave
mode has a very long lifetime, whereas even the first stand-
ing spin wave mode suffers substantial damping. For an N
layer film, with N in the vicinity of six or eight, the higher
frequency standing waves are so heavily damped they are
barely perceptible, if at all, in our calculated spectral func-
tions. As one moves out into the Brillouin zone, the damping
becomes so severe that one is left only with a single broad
feature in the spin fluctuation spectrum, whose peak displays
dispersion expected of a spin wave mode. This picture con-
trasts dramatically with that provided by a Heisenberg model
of a film with localized magnetic moments coupled together
by exchange interactions. In such a picture, for each wave
vector in the two-dimensional Brillouin zone, one has N spin
wave modes, and each mode has infinite lifetime. A discus-
sion of the nature of the modes of such a Heisenberg film has
been given by one of the authors some decades ago6 and we
refer the reader to a review article which covers early theo-
retical studies of spin waves at the surface of Heisenberg
magnets and in films.7 In regard to ultrathin metallic ferro-
magnets on metallic substrates, we now have in hand beau-
tiful spin polarized electron loss data which confirm our pre-
dictions regarding the nature of the spin wave modes in such
systems.8 We obtain an excellent quantitative account of both
the dispersion with wave vector of the single, heavily
damped feature found in the experiments, as well as its width
and asymmetric line shape.5
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The damping mechanism operative in these analyses is,
from the point of view of many body physics, a magnetic
analog to the well-known Landau damping process respon-
sible for the heavy damping experienced by plasmons in
simple metals. One sets up a coherent collective mode of the
plasma at time t=0 �the plasmon of metal physics�, and the
amplitude of the collective mode decays with time as its
energy is transferred to incoherent particle hole pairs. Inter-
estingly, for the ideal, collisionless plasma, this transfer does
not involve energy dissipation, and is reversible. Thus one
may observe plasma echos in the presence of Landau
damping.9 In the case of itinerant ferromagnets, the spin
wave is a collective oscillation whose nature is very similar
to the plasmon in a metal, when viewed in the framework of
many body physics.10 This mode may also decay to particle
hole pairs, very much as in the plasmon case. In the ferro-
magnet, conservation of spin angular momentum in the de-
cay process requires the particle hole pairs to be spin triplet
excitations. These are commonly referred to as Stoner exci-
tations in the literature on itinerant ferromagnetism.9 We
pause to remark that an intriguing possibility which emerges
from this analogy is that of observing FMR echoes which
would be the FMR analog of the plasma echos just dis-
cussed. An ideal sample would be an ultrathin ferromagnet
deposited on a nonmagnetic substrate of finite thickness,
with thickness small compared to the spin diffusion length.
An example of such a system would be a Ag film grown on
GaAs �100�, followed by an ultrathin Fe film which is pos-
sibly capped with Ag.

When an ultrathin ferromagnet is adsorbed on a metallic
substrate, in our studies we find that the decay process is far
more efficient than in a bulk ferromagnet with the same
atomic constituents. Hence one finds very short lifetimes for
the large wave vector modes. The decay of the collective
spin wave to the Stoner excitation spectrum of the film/
substrate combination leads to a spin current which trans-
ports angular momentum from the ferromagnetic film into
the substrate, hence leading to a decrease in the transverse
magnetization associated with the spin motion in the ferro-
magnet. This same mechanism has been discussed and ana-
lyzed in the literature on the ferromagnetic resonance line-
widths; in essence one is discussing the lifetime of the
acoustic spin wave mode of zero wave vector. In the FMR
literature, this is referred to as the spin pumping contribution
to the linewidth. Spin pumping was proposed as an important
source of FMR linewidths in ultrathin films by Berger and
Slonczewski, in seminal papers.11 These authors employed a
simple model description of a film of localized, Heisenberg-
like moments coupled to a bath of conduction electrons. Spin
pumping was observed experimentally by Woltersdorf and
his colleagues12 and many others since that time. Subsequent
theoretical studies provided a very good account of the
data.13 In a recent paper, we have explored the predictions
which follow from our approach to spin wave damping. For
Fe films grown on a Au�100� substrate, we obtain an excel-
lent quantitative account of the data in Ref. 14. We also
obtain a very fine theoretical description of systematics of
the linewidth found in trilayers grown on the Cu �100�
surface.15 Thus our method appears to provide a very satis-
factory description of intrinsic linewidths observed in spin

polarized electron energy loss spectroscopy �SPEELS� stud-
ies of large wave vector spin waves in the Co/Cu�100� sys-
tem, and also the linewidth found for the zero wave vector
spin wave in FMR studies of Fe on Au�100�.

The present paper presents studies which address the con-
nection between the very small �zero, essentially� wave vec-
tor modes studied in FMR and the large wave vector regime
addressed in the SPEELS study of the Co/Cu�100� system.
Two issues are addressed here. First, in regard to the spin
pumping contribution to the linewidth, we explore its wave
vector dependence. We also examine the nature of the eigen-
vectors of the low lying spin waves in the film as one moves
away from the zone center into the Brillouin zone. Here we
find behavior for the Fe/Au�100� system that is very strik-
ing. The two lowest lying spin wave modes evolve into
waves in which one �the lowest� localizes on the interface
between the substrate and the film as wave vector increases,
whereas the second mode localizes on the outer surface of
the film. We argue that a very similar picture applies to the
very different Co/Cu�100� system as well, though the phys-
ics is obscured by the heavier damping found in the latter
system, in the relevant regime of wave vector. If, then, one
wishes to interpret the SPEELS data in terms of a simple
picture of spin wave modes in the film, the SPEELS loss
spectrum would receive its dominant contribution not from
the lowest lying mode in the film, as proposed by the authors
of Ref. 8, but rather the second mode in the hierarchy of spin
wave modes of the film. We note that we set forth this pro-
posal in our earlier publication,5 and the results presented in
this paper reinforce this interpretation. The comparison we
make between these two ultrathin films of different crystal
structure suggests in our mind that the behavior we find may
be expected rather generally in the ultrathin ferromagnets.

The outline of this paper is as follows. In Sec. II we
provide the reader with a brief summary of the early theoret-
ical analyses of the nature of low lying spin wave modes in
Heisenberg films. These studies, very relevant to our present
discussion, are not so well-known in the present era so a
reminder of the concepts which follow from these papers
will provide a setting for what emerges from the work re-
ported here. We then present our results in Sec. III, and con-
cluding remarks are found in Sec. IV.

II. SURFACE SPIN WAVES ON HEISENBERG
FERROMAGNETS

We begin by considering an ideal semi-infinite Heisen-
berg ferromagnet. The term ideal here describes a model sys-
tem in which the strength of the underlying exchange inter-
actions in and near the surface assume the same values as
they do in the bulk material. In such a case, one may envi-
sion forming two semi-infinite crystals by beginning with an
infinitely extended crystal, and then cutting all exchange
bonds which cross a mathematical plane between two atomic
planes.

Through study of one particular model surface, Wallis and
co-workers16 pointed out that such an ideal surface can sup-
port surface spin waves, with amplitude that decays expo-
nentially as one moves into the crystal from the surface. The
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properties of the surface wave found by these authors differ
strikingly from those of the more familiar Rayleigh surface
phonons which propagate on crystal surfaces. In the bulk of
the material, and in the long wavelength limit we know well
that the frequency of spin waves varies quadratically with
wave vector. We have ���Q� �=DQ2 in cubic crystals. The
surface spin wave studied in Ref. 16 exists for all wave vec-
tors in the surface Brillouin zone. If one considers the sur-
face spin wave with two-dimensional wave vector Q� �, its
frequency lies below that of the manifold of bulk spin waves
whose wave vector projection onto the plane of the surface
assumes the value Q� �. However, in the long wavelength limit
the frequency of the surface spin wave is ��S�Q� ��=DQ�

2,
with D the bulk exchange stiffness. The binding energy of
the surface spin wave in the long wavelength limit arises
from the terms quartic in the wave vector. In contrast, in the
long wavelength limit, the Rayleigh surface phonon propa-
gates with velocity less than that of any bulk phonon with the
same wave vector parallel to the surface, so the surface wave

and bulk wave dispersion curves differ to leading order in Q� �.
As noted earlier, the amplitude of the surface spin wave dis-
cussed in Ref. 16 decays to zero exponentially as one pen-
etrates into the bulk material. If one describes this by the

expression exp�−��Q� ��lz� where lz labels an atomic plane,

one finds ��Q� �� is proportional to Q�
2 in the long wavelength

limit, whereas for the Rayleigh surface phonon, the decay
constant is linear in Q�. While the authors of Ref. 16 studied
one specific model of an ideal Heisenberg ferromagnet sur-
face, subsequent discussions showed that the features just
discussed are robust and follow for a very wide range of
models of the surface, including those in which exchange
interactions near the surface differ substantially from those in
the bulk.6,7 For the ideal surface, the criterion for the exis-
tence of surface spin waves is as follows.6 When the surface
is formed by the bond cutting procedure described earlier,
one must cut exchange bonds which are non-normal to the
surface.

While we are not concerned in the present paper with the
nature of thermal spin fluctuations at finite temperature in
our model film, interesting issues arise when one discusses
the near surface behavior of thermal spin fluctuations. The
surface spin waves are eigenmodes of the Heisenberg Hamil-
tonian and thus are present as thermally excited spin waves.
However, if one calculates the amplitude of thermal fluctua-
tions in the magnetization near the surface, in the low tem-
perature limit the contribution from the surface spin waves is
exactly and precisely canceled by a deficit in the density of
bulk spin waves which results from the formation of the
surface wave; there is a hole in the density of bulk spin wave
modes that leads to this cancellation. This was demonstrated
first for the model studied in Ref. 16 and later shown to be
robust6,17 and insensitive to the microscopic details of the
surface environment. In the end, one finds the amplitude of
the thermal fluctuations in the surface to be twice that deep
in the bulk of the material, and one may derive an analytic
expression for the dependence of the mean spin deviation as
a function of distance into the material from the surface,6,17

in the limit of low temperatures.

We now turn our attention to films. If we have an isolated
film with two identical surfaces, then of course all the spin
wave eigenvectors must have well-defined parity under re-
flection through the midpoint of the film. Suppose we con-

sider a wave vector Q� � in the surface Brillouin zone suffi-

ciently large that the quantity ��Q� �� introduced above

satisfies ��Q� ��N�1, with N the number of atomic layers
within the film. Then the two lowest lying modes of the film

with wave vector Q� � will have the character of surface spin
waves. One mode �that with the highest frequency, for rea-
sons to be given below� will be odd under reflection through
the film with a displacement pattern that decays exponen-
tially as one moves into the interior of the film from either
surface, and the other will be even parity also with displace-
ments localized near the surfaces. The frequency splitting
between the two modes will be proportional to exp�
−2��Q� ���.

Now suppose, for the film just discussed, we let Q� �→0.
As we proceed with this limit, we enter the regime where

��Q� ��N�1, and the two surface mode eigenvectors must
continuously and smoothly evolve into the two lowest lying

Q� � =0 modes of the finite film. The lowest of these has zero
frequency �in the absence of an applied Zeeman field�, and is
the uniform mode of the film, wherein all spins precess rig-
idly and in phase. This is an even parity mode. The next
highest mode is an odd parity standing wave mode whose
eigenvector vanishes at the midpoint of the film. The perpen-

dicular wave vector assumes the value � /N as Q� �→0, so this
mode has finite, nonzero frequency. The odd parity mode
thus has higher frequency than the even parity mode, and one
thus expects the odd parity mode to have the higher fre-
quency throughout the surface Brillouin zone, though of
course in principle one may have film parameters in which a
crossing of the dispersion curves occurs.

These comments provide us with a setting for the results
we shall present below which, of course, are based on a fully
itinerant electron description of the spin waves in our film.
One important difference between the film we consider here
and the Heisenberg film with two identical surfaces is that in
our case the two surfaces are inequivalent. One is the inter-
face between the film and the substrate upon which it is
absorbed, and the second is the outer surface, with vacuum
above. We shall see that at the center of the Brillouin zone,
we find the lowest mode to be the uniform mode, whose
eigenvector is modified, however, by the enhanced moment
at the film vacuum interface. The next highest mode looks
very much like the first odd parity standing wave. As the
wave vector increases, rather than realize the even and odd
parity surface waves, we shall see that the lower mode local-
izes near the film/substrate interface, whereas the second
mode �not strictly odd parity for our film�, localizes on the
outer surface. In our earlier study5 of the Co film on Cu
�100�, we used adiabatic theory to calculate effective Heisen-
berg exchange interactions between various nearest and next
nearest neighbor moments. As one sees from Table II in Ref.
5, at the outer surface and in the layer against the substrate
the nearest neighbor exchange interactions are enhanced sub-
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stantially over the values deep in the film, with the effective
exchange on the outer surface larger than that at the interface
between the substrate. Such enhanced effective exchange
plays an important role in binding the spin waves to the
surface, and to the film/substrate interface.

III. PROPERTIES OF INTERMEDIATE WAVE VECTOR
SPIN WAVES FOR Fe/Au„100… AND FOR

Co/Cu„100…

As remarked above, we have used the programs devel-
oped for our analysis of the spin pumping linewidth for the
Fe film on Au�100� to explore the nature of the spin waves in
the Fe film and their damping near the center of the Brillouin
zone. We begin by presenting these results, and then we turn
to our considerations for the Co film on Cu�100�. The first
mentioned system was used in the experimental studies of
the spin pumping contribution to the FMR linewidth by Ur-
ban and collaborators,12 and large wave vector spin waves in
the second system were explored in the SPEELS experi-
ments reported by Vollmer and co-workers.8

The results below were extracted from studies of the wave
vector and frequency dependent susceptibility

	+,−�Q� � ,
 ; l , l�� of four and eight layer Fe�100� films ad-
sorbed on the Au�100� surface. From this response function,

we form the spectral density function A�Q� � ,
 ; l��
= 1

�	+,−�Q� � ,
 ; l� , l��. From the spectral density function we
may extract the dispersion relation of the spin wave modes
by following the trajectory with the wave vector of the reso-
nant peaks in this response function, and the linewidth is
obtained from the width of these structures. Information on
the nature of the eigenvectors may be obtained from the
transverse susceptibility itself through a procedure described
below. We refer the reader to Sec. II of Ref. 14 for a discus-
sion of the physical significance of these two quantities.

When we plot the dispersion curves of the two lowest
lying spin wave modes for the Fe film near the center of the
Brillouin zone, we find a most interesting level crossing, as
illustrated in Fig. 1. In Fig. 1�a�, we show the dispersion
relation of these two modes for the four layer Fe�100� film
on Au�100�, for wave vectors along the �11� direction. With
increasing wave vector, the lowest lying mode shows posi-
tive curvature, while the first standing wave mode shows
negative curvature. The two dispersion curves start to cross,
and we see a hybridization gap. We note that the hybridiza-
tion gap is a feature present by virtue of the fact that the two
surfaces of the film are distinctly different; at the outer sur-
face of the film we have an interface with the vacuum, and
the inner surface is the interface with the substrate. In a free
standing film, the low frequency mode would have even par-
ity, the first standing wave would have odd parity, and sym-
metry would then prohibit the mixing that leads to the hy-
brization gap. We remark that, as in our earlier studies of the
spin pumping contribution to the linewidth, we have added a
Zeeman field to our Hamiltonian which renders the fre-
quency of the lowest frequency mode finite in the limit of
zero wave vector. The field we use is unphysically large, but
as discussed earlier14 so long as the spin wave frequencies

are small compared to the energy scale of the one electron
band structure, all the field does is shift all modes upward in
frequency by the Zeeman energy. There are computational
advantages to introducing this shift. Linewidths are linear in
frequency at zero wave vector, as we have shown earlier,14

so when we plot the ratio of the linewidth to the frequency of
the mode, we have a ratio independent of applied field so
long as the spin wave frequencies are low. In Fig. 1�b� we
show dispersion curves for the eight layer film. We see, as
expected, that the exchange contribution to the frequency of
the first standing wave mode is quite accurately four times
less than that found for the four layer film.

In Fig. 2, for the eight layer film we plot the spectral

density function A�Q� � ,
 ; l�� as a function of frequency, for
various layers in the film. The layer labeled I at the top of
each plot is the interface between the film and the substrate,
while the lowest layer labeled S is the outer surface layer.
The leftmost panel shows the spectral densities for zero wave
vector, whereas the rightmost panel gives these for a reduced
wave vector of 0.25. As explained earlier,14 the integrated
intensity of each peak can be interpreted as the square of the
eigenvector of the mode associated with the peak. In the
leftmost panel, we see that the low frequency mode is indeed
the uniform mode of the film. It is the case that the amplitude
in the surface is somewhat larger than in the inner layers.
This is an effect with origin in the enhanced surface moment
at the surface/vacuum interface. The higher frequency mode
is clearly a classical standing wave, with an eigenvector
when squared that has a cosine squared variation layer num-
ber, and a node in the center of the film. The wavelength
perpendicular to the film is twice the film thickness.

As wave vector increases, we see from the rightmost
panel in Fig. 2, the lower mode becomes a localized spin
wave mode, with eigenvector localized at the film/substrate
interface. The high frequency mode evolves into a surface
spin wave, localized on the outer surface. Interestingly, the

FIG. 1. �Color online� For the �a� four layer and �b� eight layer
Fe film on Au�100�, we show the dispersion relation of the two
lowest lying modes of the film as a function of reduced wave vec-
tor, along the �11� direction in the Brillouin zone. As discussed in
the text, a Zeeman field has been imposed so the lowest mode has
finite frequency at the zone center.
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higher frequency mode is narrower than the low frequency
mode. Our previous studies suggest that the broadening at
fixed wave vector parallel to the surface increases with the
gradient in the eigenvector in the direction normal to the
surface. The low frequency mode is considerably more local-
ized than its higher frequency partner, which suggests it
should indeed be broader.

In Fig. 3�a� we show the wave vector dependence of the
linewidth divided by the mode frequency for the four layer
film, and in Fig. 3�b� we show this for the eight layer film. At
zero wave vector, we have the spin pumping contribution to
the linewidth we14 and others11,13 have discussed earlier. This
falls off inversely with the thickness of the ferromagnetic

film. The solid line in these figures assumes that the wave
vector dependent portion of the linewidth scales as Q�

4, and
we see this fits the data very well indeed over a rather wide
range of wave vectors near the center of the Brilluoin zone.

A simple argument shows that the linewidth must vary as
the fourth power of the wave vector, as we find numerically.
We illustrate this for a very simple case, spin waves in an
infinitely extended ferromagnet as described by the random
phase approximation applied to the one band Hubbard
model. It is our view that this conclusion applied to our
much more complex system as well, but the formal analysis
will be very involved. We remark that the argument pre-
sented below is applicable to multiband descriptions of the
spin waves in the bulk, if the Lowde Windsor
parametrization18 of the on site Coulomb interaction is em-
ployed.

For this simple case, the dynamic susceptibility has the
well-known form

	+,−�Q� ,
� =
	+,−

�0� �Q� ,
�

1 + U	+,−
�0� �Q� ,
�

. �1�

If we write 	+,−
�0� �Q� ,
�=	+,−

�0�R�Q� ,
�+ i	+,−
�0�I�Q� ,
�, then the

spectral density function which contains the spin wave sig-
nature is

A�Q� ,
� =
1

�

	+,−
�0�I�Q� ,
�

�1 + U	+,−
�0�R�Q� ,
��2 + �U	+,−

�0�I�Q� ,
��2
. �2�

In the long wavelength limit, the quantity 1

+U	+,−
�0�R�Q� ,
� has a zero at the spin wave frequency 
�Q� �

=DQ2. We then expand 	+,−
�0�R�Q� ,
� as follows:

	+,−
�0�R�Q� ,
� = 	+,−

�0�R�Q� ,
�Q� �� + 	̇+,−
�0�R�Q� ,
�Q� ���
 − 
�Q� ��

+ ¯ . �3�

The imaginary part of 	+,−
�0� �Q� ,
� vanishes at zero fre-

quency, and this function is linear in frequency for small
frequencies. Hence in the limit of small wave vector, we may

write 	+,−
�0�I�Q� ,
�Q� ��=	+,−

�0�I�Q� ,DQ2�=DQ2	̇+,−
�0�I�Q� ,0�. It is

simple to show from the explicit expression for 	+,−
�0� �Q� ,
�

that 	̇+,−
�0�I�0,0� vanishes, and also that 	̇+,−

�0�I�Q� ,0� is an even
function of wave vector. Hence for small values of the wave
vector one may write 	̇+,−

�0� �bQ2 so that we have

	+,−
�0�I�Q� ,
�Q� ���bDQ4. We may then, in the low frequency

long wavelength limit make the replacement

	̇+,−
�0�R�Q� ,
�Q� ��� 	̇+,−

�0� �0,0� in Eq. �3�. The spin wave density
can then be written, in the long wavelength low frequency
limit, as

A�Q� ,
� =
m

�

�Q4

�
 − DQ2�2 + ��Q4�2 . �4�

Here m=n↑−n↓, �=mU2bD, and we have used 	̇+,−
�0�R=

−1/U2m.
It follows from Eq. �4� that for the models of bulk spin

waves encompassed by the above discussion the linewidth

FIG. 2. We plot the frequency variation of the spectral density

A�Q� � ,
 ; l�� as a function of layer index l�, for the eight layer Fe
film on Au�100� and for two selected wave vectors. In the left panel,
we have zero wave vector, and in the right panel the reduced wave
vector is 0.25�2 along the �11� direction. The top entries, labeled I,
are the layers adjacent to the Au substrate, and the lowest entry
labeled S is the outer surface layer of the film.

FIG. 3. �Color online� Linewidths of the lowest mode as a func-
tion of wave vector along the �11� direction in a four layer �a� and
an eight layer �b� Fe film on Au�100�. The solid curves are fittings
to Q4 functions.
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scales as the fourth power of Q very much as we find for our
numerical studies in the ultrathin films. In the film calcula-
tions, we obtain a finite linewidth at zero wave vector by
virtue of the applied Zeeman field. Even if a Zeeman field is
applied to the bulk, at zero wave vector the linewidth of the
uniform mode must vanish by virtue of the Goldstone theo-
rem applied to the Hamiltonian, which is form invariant un-
der spin rotations. As we have argued earlier,14 in the ultra-
thin films, the breakdown of translational symmetry normal
to the surface allows a finite linewidth when the wave vector
parallel to the surface is zero; the mode is not a uniform spin
precession in the entire system of the film substrate combi-
nation.

The spectral density plots shown in Fig. 2 provide infor-
mation on the variation of the square of the eigenvector of a
particular mode, as one scans through the layer number in
the film. We have devised a means for extracting the eigen-

vector itself from the function 	+,−�Q� � ,
 ; l� , l�� �. We first

evaluate, for a selected value of Q� �, the response function at

the frequency 
��Q� �� of the mode of interest. This frequency
is chosen to be the frequency of a selected peak in a spectral
density plot such as those in Fig. 2. Then the eigenvector is
generated from the eigenvalue problem

�
l��

	+,−�Q� �,
;l�,l�� �e��Q� �;l�� � = ��Q� ��e��Q� �;l�� . �5�

The eigenvectors generated by this scheme are in general
complex, with an amplitude and a phase.

In Fig. 4, we show the amplitude and phase of the eigen-
vector associated with the lowest mode in the eight layer Fe
film on Au. The top two panels show the modulus and phase
of the eigenvector at the center of the two-dimensional Bril-
louin zone. We see the mode is indeed nearly uniform across
the film. The increased amplitude in the surface layer has its
origin in the fact that in the outer layer, the moment is larger

than it is in the middle of the film. Notice the phase is zero
across the film, so the various layers precess in phase, as
expected from simple phenomenology. The lower two panels
show the amplitude and phase of the mode at the reduced
wave vector of 0.25 in the �11� direction. The leftmost layer
labeled I is the interface with the substrate, and the rightmost
layer is the outer surface layer. We see the mode is quite
localized near the interface.

We show the same information for the second mode of the
film in Fig. 5. At the center of the Brillouin zone, the ampli-
tude and phase information show a mode whose profile is
rather closely described by the simple standing wave pattern
cos���l�−1� /7� expected for the lowest standing wave
mode in the film, with one-half wavelength trapped between
the surfaces. The profile is distorted a bit from this form by
the enhancement of the amplitude in the outer surface layer,
as in the uniform mode. By the time the reduced wave vector
is 0.25 �two lower panels�, we see that the mode is localized
on the outer surface.

We next inquire if similar behavior is found for the Co
film on Cu�100� which we have studied earlier. When we
explore this issue within the full dynamical theory used
above, we see very similar trends. However, the hybridiza-
tion between the two lowest spin wave modes and also their
tendency to localize at the interface with the substrate or the
surface appears to occur somewhat farther out in the Bril-
louin zone. In this region, the damping has become suffi-
ciently severe that we have not been able to extract clear
eigenvectors for the two modes utilizing the method we have
employed for the case of Fe on Au�100�. To examine this
question for this sytem, we have resorted to calculations
based on the Heisenberg model for this film. In our previous
publication,5 in Table II we provide values for the exchange
interactions between all nearest and next nearest neighbors,
for the eight layer Co film on Cu�100�. Interestingly, we see
strong enhancement of the exchange interactions between
nearest neighbors in both the surface layer and also those
within the layer closest to the interface.

In Fig. 6, the left-hand figure shows the eigenvector of the
lowest mode at zero wave vector �open circles�, and at a
reduced wave vector of 0.6 �triangles�. It should be remarked
that in the Heisenberg model the eigenvectors are real. We

FIG. 4. The amplitude and phase of the eigenvector associated
with the lowest frequency mode of the eight layer Fe film on
Au�100�. The top two panels show the eigenvector of the mode at

Q� � =0, and the bottom two panels give the same for a reduced wave
vector of 0.25 along the �11� direction in the two-dimensional Bril-
louin zone. The layer labeled I is the Fe layer against the substrate,
and the layer labeled S is the outermost surface layer of the film.

FIG. 5. The same as Fig. 4, but now for the second mode of the
film.
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see that once again the lowest mode becomes localized onto
the interface layer with increasing wave vector. The right-
hand panel shows the second mode at the center of the Bril-
louin zone �open circles� and its behavior at the reduced
wave vector of 0.6 �triangles�. We see behavior very similar
to that found for Fe on Au�100�. It is also the case here, for
instance, that the lowest mode is localized more strongly to
the interface than the second mode is to the surface. In Fig.
7, we show the dispersion curve calculated for these two
modes, along the �11� direction in the zone. Despite the very
different character of their eigenvectors, the splitting in fre-
quency of the two modes is rather small throughout the zone.
Thus, except near the zone center, it is difficult for us to
resolve these two modes in the full dynamical calculations.

IV. CONCLUDING REMARKS

We have presented studies of the nature of the spin wave
modes and the wave vector dependence of their damping for

the two low lying modes of Fe films on the Au�100� surface.
The mode excited in FMR, the uniform mode at the center of
the two-dimensional Brillouin zone, evolves into the mode
localized at the interface between the film and the substrate
with increasing wave vector. The next highest mode in fre-
quency, a standing wave spin wave at the center of the Bril-
louin zone, evolves into a surface spin wave with increasing
wave vector. We remark that while there is an extensive lit-
erature on the nature of surface spin waves in Heisenberg
magnets,7 we are unaware of any other study of surface or
interface spin waves within the framework of a discussion
that employs a realistic electronic structure and an itinerant
electron description of the ferromagnet. We do wish to point
out Mathons very interesting studies of surface spin waves
on the �100� surface of a one band Hubbard model.19 In his
first paper, he makes explicit contact with properties of sur-
face spin waves generated from Heisenberg models, and in
the second paper a discussion is given in terms of adiabati-
cally calculated exchange integrals, generated from the itin-
erant electron picture. To return to the results presented here,
we see also that with increasing wave vector, the wave vector
dependent contribution to the damping rate of the lowest
mode in the film increases as Q4. We find very similar be-
havior for the two lowest lying spin wave modes for the
eight layer Co film on Cu�100�, though since the localization
phenomenon takes place farther out in the Brillouin zone, we
have had to resort to a Heisenberg model description of these
waves. These two examples for films with a very different
structure suggests to us that this behavior may be expected
for other systems as well.

There are two implications of the results discussed above.
First, in the SPEELS study of the spin waves for Co on
Cu�100�, Vollmer et al. suggested that their spectra received
its dominant contribution from the lowest lying spin wave
mode of the film. The results here suggest this is not so, since
the lowest mode appears to localize at the film/substrate in-
terface with increasing wave vector, with the consequence
that its amplitude in the surface layer sampled by the
SPEELS electrons is in fact very small. It is the second mode
which appears to localize on the outer surface. Thus if one
wishes to interpret the spectra in terms of a single mode, the
lowest lying mode of the film is not the correct choice. Of
course, as we have emphasized earlier,2–5 except rather near
to the zone center, the damping of the spin wave modes in
these ultrathin films is sufficiently strong that it is difficult to
assign the single very broad structure found in the spectral
density to a selected mode.

A second implication follows from the wave vector de-
pendence we find for the linewidth. In Ref. 1 where finite
wavelength spin waves were excited in an ultathin ferromag-
net, it was argued that the data indicates the damping to be
strongly wave vector dependent. These authors argued that
two magnon scattering20,21 was responsible for the wave vec-
tor dependence inferred from this data. The films in Ref. 1
were grown on exchange biased substrates. We note that in
earlier work, direct measurements of the wave vector depen-
dence of the spin wave linewidth in such samples were re-
ported and found to be in remarkable agreement with the
theory of two magnon damping.22 We show here that there is
also a strong wave vector dependence to the spin pumping

FIG. 6. �Color online� We show eigenvectors for Co on Cu�100�
calculated using the Heisenberg model, as described in the text. The
left panel shows the behavior of the lowest mode at the center of the
Brilluoin zone �open circles� and at the reduced wave vector of 0.6
along the �11� direction in the Brillouin zone �triangles�. The right
panel gives the same information for the second mode. The layer
labeled I is the layer of Co spins adjacent to the Cu�100� substrate,
and the layer labeled S is the outer surface layer.

FIG. 7. �Color online� The dispersion relation of the two lowest
lying modes in the Co film on Cu�100�. The wave vector is directed
along the �11� direction in the two-dimensional Brillouin zone.
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contribution to the linewidth of long wavelength spin wave
modes in the itinerant ferromagnetic films. However, because
of the Q4 variation we have found, the effect is small until
one reaches wave vectors in the range of 107 cm−1. Thus for
the purposes of the data in Ref. 1 which explore much longer
wavelength modes, one can regard the spin pumping contri-
bution to the wave vector dependence of the damping rate to
be quite negligible. Our results thus reinforce the interpreta-
tion offered in Ref. 1.

However, if one wishes to discuss the damping of finite
wavelength spin motions in ultrathin films, if the wavelength
is in the 10 nm range, then the wave vector dependence
found here must be taken into account. Extrapolation of the
widely used Landau Lifschitz Gilbert equation into this
length domain will result in serious quantitative errors.

Our results are also relevant to the analysis of the velocity
of thin domain walls in materials such as we study. If w is a

measure of the wall thickness, then wave vector dependent
damping such as studied here should be employed in model
studies of domain wall motion, if 1 /w falls into the range
where we find the Q4 term is quantitatively important. Typi-
cal domain wall thicknesses in the 3d ferromagnets are not
far from this range. A full analysis of this issue is beyond the
scope of this paper.
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