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The effect of classical dipole interactions on the paramagnetic to glass phase transition is studied in three-
and quasi-two-dimensional site-disordered Ising spin systems. A field theory is developed using a Gaussian
variational approach to estimate transition temperatures and study phase stability. Long-range dipolar interac-
tions are found to permit a transition to the glass state. An investigation of the role of relative length scales
within the model highlights restrictions on the existence of the glass phase in the two-dimensional case, and
this effect is shown to be sensitively dependent on Ising spin geometry.
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I. INTRODUCTION

It is well known that dipolar interactions can have pro-
nounced effects on long-range ferromagnetic order in spin
systems.1 There is some evidence that these interactions can
also play a significant role in the establishment of glassy
order. Indeed, results from simulations of Ruderman-Kittel-
Kasuya-Yosida coupled classical vector spins suggest that a
spin-glass phase only occurs when dipolar interactions are
present.2 It would appear as though local magnetic anisotro-
pies arising from dipolar shape effects are important for sta-
bilizing the glassy-ordered state.3

Understanding the effect of dipolar interactions on the
spin-glass phase is valuable for experimental studies of di-
lute magnetic alloys. In these systems clustering of moments
is possible and can lead to large effective local moments
which may produce appreciable dipolar fields.4 In particular,
dipolar effects can be significant in insulating alloys where
exchange interactions are generally short ranged. This in-
cludes systems such as EuxSr1−xS,5 EuxSr1−xTe,6

LiHoxY1−xF4,7 LiTbxY1−xF4,8 and certain granular alloys.9,10

For sufficiently dilute systems it is possible for the average
dipole interaction strength per cluster to be comparable to the
direct exchange between neighboring clusters, averaged per
cluster.11

It has been suggested that such clusters may be effectively
modeled as superspins.12 This analogy is convenient since
considerable attention has been paid in recent years to the
existence of a crossover to superspin-glass behavior in three-
dimensional randomly distributed assemblies of single-
domain nanoparticles.13–15 For certain densities and narrow-
size distributions, the requisite frustration invoking such a
transition is attributed to prevailing dipolar interactions,16,17

at least in cases for which the production method ensures
exclusion of the direct exchange between magnetic cores.18

With these examples in mind, we develop a model for a
site-disordered assembly of classical uniaxial �Ising� spins
interacting via classical dipole interactions.

One feature characteristic of the dipolar interaction is a
strong dependence on sample shape. The dipole interaction
energy is given by the expression

Eij = J�1 − 3 cos2 �ij�SiSj/rij
3 , �1�

where J is the coupling constant, Si is the spin variable at site
i, and �ij is the angle subtended by the spin axis and the

vector joining spins at sites i and j, which has magnitude rij.
It follows from the form of this function that ferromagnetic
ordering is preferred along the axial direction and antiferro-
magnetic order in directions perpendicular to the spins.19 The
implications of this shape dependence in the case of a ran-
dom system are twofold. The first is the possibility for frus-
tration between spins which may lead to a glass phase, to
which we have already alluded. The second relates to inter-
esting geometry-related effects in low dimensions; dipoles
aligned perpendicular to the plane of a thin film produce
strong demagnetising fields in contrast to dipoles aligned in
the plane.20 In this paper we concentrate on these two geom-
etries in the context of our Ising model description, which is
appropriate for certain dilute compounds created in a strong
magnetic field.21

The dipolar interactions in two dimensions are approxi-
mated by expressions appropriate to a thin-film geometry
and represent averages of dipolar sources taken across the
thickness of a very thin film. Cutoffs are introduced in the
Fourier expansion of the resultant potential, consistent with
the thin-film approximation, in order to remove a long-
wavelength divergence. These approximations are reasonable
for very thin films and allow us to avoid the appearance of
unbounded fluctuations associated with instabilities that can
exist for two-dimensional �2D� isotropic systems. We inves-
tigate the phase space of this system, focusing on the effects
of these wave number cutoffs.

The paper is organised as follows. The theory is outlined
in Sec. II, based on Refs. 22–24. In our approach a varia-
tional method using a Gaussian trial function provides a
lowest-order quadratic correction to mean-field theory by av-
eraging over fluctuations in the Ising Hamiltonian.25 The
replica-symmetric solution to the resulting set of self-
consistent order parameter equations is examined in Sec. III.
Allowed phases and stability are discussed in terms of a gen-
eral position-dependent potential. The form of the dipolar
interaction potential is derived in Sec. IV by calculating the
second-order correction to the leading-order term in a multi-
pole expansion. Shape and size effects are discussed in clos-
ing.

II. SITE-DISORDER MODEL

The system comprises a finite number N of spins Si placed
randomly at positions ri throughout volume V. The number
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of particles remains the same for each realization of the dis-
order. Interactions are controlled by the pairwise potential J,
which depends solely on spin separation. The Ising Hamil-
tonian takes the standard form

H = −
1

2�
ij

J�ri − r j�SiSj . �2�

This gives rise to a partition function which contains a trace
over all possible configurations of the degrees of freedom, Si.
A Hubbard-Stratonovich transformation allows the partition
function to be expressed as

ZN = �
�S�
� D��det �J�−1/2 exp�−

1

2�
� � ��r�J−1�r − r��

���r��drdr� + �
i

N

��ri�Si� . �3�

An average over the disorder in the partition function is
obtained by integrating over position using the flat measure
1

VN �V�i
Ndri �Ref. 24�. The free energy follows from this ex-

pression, and the problem of averaging over a logarithm is
dealt with by weighting this energy with a Poisson distribu-
tion and employing the replica trick.26 One assumes that the
system has been taken from a larger system of volume V, in
which the spins have mean concentration � and are distrib-
uted according to the probability function

P�N� = e−�V ��V�N

N!
. �4�

The averaged free energy F̄N=−ln ZN /� may then be
expressed38 in terms of the replicated partition function ZN

n ,
which is identified as the product of n identical replicas of
the system, each representing the same realization of disor-
der. The free energy is given by the weighted sum

− �F = − ��
N

P�N�F̄N = lim
n→0

�
N

P�N�� Z̄N
n − 1

n
� , �5�

such that

e−n�F = e−�V�
N

��V�N

N!
Z̄N

n . �6�

Since the interaction potential is position dependent, one
cannot obtain the free energy expression exactly and a varia-
tional approach is taken. This involves defining a variational
free energy, which forms an upper bound for the free energy
and can be solved using a quadratic trial Hamiltonian.

The weighted free energy can be recast in terms of an
average in the trial ensemble,

e−n�F = e−�V	e−�H
��−Ht
����te
−Ft, �7�

where H is the Hamiltonian associated with this free energy
and is given by identifying the right-hand side of Eq. �6�
with e−�V�D�e−H. Ht is the trial Hamiltonian which de-
scribes a system with free energy given by e−Ft =�D�e−Ht.
Note that the ensemble average in Eq. �7� is defined self-

consistently according to this expression. In this case, the
trial Hamiltonian is chosen as

Ht =
1

2
� �

ab


�a�r� − �̄a�Gab
−1�r − r��
�b�r�� − �̄b�drdr�.

�8�

The matrix Gab�r−r��	�a�r��b�r���c is the connected cor-
relation function for which the trial free energy is the gener-
ating functional.27

The expression for the free energy in Eq. �7� can be fur-
ther simplified by invoking the minimum principle28 which
states

	e−�x1−x2�� � e−	x1−x2�. �9�

Using this inequality, the bounded free energy is written as24

n�Fvar = �V + 	H − Ht�t + Ft � n�F . �10�

The averaged term here in Eq. �10� represents the difference
between the Hamiltonian corresponding to the averaged, rep-
licated Ising system and the trial Hamiltonian, averaged in
the trial ensemble. It should be noted that in the resulting
expression for the variational free energy, the trace over
ln �J comprises spatial summation only, whereas the trace
over ln G sums both spatial variables and replicas. This free
energy is

n�Fvar = �V +
1

2�
� � �

a

n


�̄aJ−1�r − r���̄a

+ Gaa�r − r��J−1�r − r���drdr� +
n

2
Tr�ln �J − 1�

− ��
V

�dr −
1

2
Tr�ln G� . �11�

This expression is analogous to the first equality in Eq. �3.3�
of Ref. 24. The third term has been corrected,29 and the
fourth term involves an integral over a reduced partition
function for the system in the Gaussian approximation of the
form

� = �
�S�

exp��
a

�̄aSa +
1

2�
ab

SaGab�r,r�Sb� . �12�

The variational equations are obtained by minimizing the
free energy with respect to the mean field and the matrix
appearing in the trial Hamiltonian. Application of the varia-
tional derivatives

�Fvar

��̄a
=

�Fvar

�Gab
=0 results in expressions for av-

erages over Sa and SaSb,

�̄a

�
J−1�r − r����r − r�� = �V	Sa��, �13a�

��ab

�
J−1�r − r�� − Gab

−1�r − r�����r − r�� = �V	SaSb��,

�13b�

where
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	Sa�� = �
�S�

Sa exp��
a

�̄aSa +
1

2�
ab

Gab�r,r�SaSb� ,

�14a�

	SaSb�� = �
�S�

SaSb exp��
a

�̄aSa +
1

2�
ab

Gab�r,r�SaSb�
�14b�

are the expectation value of the replica-dependent spin,
	Sa��, and the correlation function of spins between replicas,
	SaSb��. These terms are related to the physical operators of
the system. The spin-density operator is defined as

ma�r� = �
i

��r − ri�Si
a �15�

and appears in the replicated, unaveraged action as a source
for the field, �a �Ref. 24�. The Edwards-Anderson spin-glass
operator is analogously written as26

qab�r� = �
i

��r − ri�Si
aSi

b. �16�

The expectation value of this operator indicates the order-
disorder transition.

In order to examine the expectation values of these opera-
tors within the bounds of the Gaussian approximation, it is
convenient to introduce sources for the magnetization and
spin glass operators. A linear response approach circumvents
the problem of being unable to express the relationship be-
tween qab�r� and �a directly. The sources are ha�r� and jab�r�
for the magnetization and spin-glass operators, respectively.
The partition function becomes a generating functional for
the correlation function and the free energy a generating
functional for the connected correlation functions. The only
part of the free energy affected by these sources is the re-
duced partition function

��r� = �
�S�

exp��
a


�̄a�r� + �ha�r��Sa

+
1

2�
ab


Gab�r,r� + �jab�r��SaSb� . �17�

Following Dean and Lancaster,24 the spin density operator
takes the form

ma�r� = −
1

�

��n�Fvar�
�ha�r�

= �V	Sa���r�, �18�

where the function 	Sa���r� is analogous to that defined in Eq.
�14a�. The first variational equation �13a� thus gives ma�r�
= �̄a /�J�0�, which is in fact position independent. The ex-
pectation value of the spin-glass operator is similarly deter-
mined as

qab�r� = −
2

�

��n�Fvar�
�jab�r�

= �V	SaSb���r�, �19�

where the form of the function 	SaSb���r� assumes that of its
source-independent counterpart in Eq. �14b�.

III. ORDER PARAMETERS

Order parameters are derived by examining the replica-
symmetric case in momentum space. The field is taken to be

replica independent �̄a→ �̄ and the matrix G̃ab�k� is param-

etrized to be f̃�k�+ g̃�k� on the diagonal and g̃�k� elsewhere.
In Fourier coefficients, the free energy takes the form

�Fvar = −
�V

2
f�0� − �V�

−	

	 dx
�2


e−x2/2 ln�2 cosh
�̄ + �g�0�x��

+
�̄2

2�
J−1�0� +

V

2�
� ddk

�2
�d 
 f̃�k� + g̃�k��J̃−1�k�

+
V

2
� ddk

�2
�d 
ln �J̃�k� − 1�

−
V

2
� ddk

�2
�d�ln f̃�k� −
g̃�k�

f̃�k�
� . �20�

The variational equations for the replica-symmetric case
give the magnetization expectation value as 	ma�r��→ 	m�
with

	m� =
�̄

�J�0�
= �V�

−	

	 dx
�2


e−x2/2 tanh
�̄ + x�g�0�� .

�21�

The spin-glass order parameter is expressed as 	qab�r��
→ 	q� with

	q� = �V	SaSb��
a�b = �V�

−	

	 dx
�2


e−x2/2 tanh2
�̄ + x�g�0�� .

�22�

The form of the function g�0� is also given by the variational
equations of this system. The variational derivatives with

respect to the components of G̃ab give rise to the relations

f̃�k� =
�J̃�k�

1 − ��V − 	q���J̃�k�
, �23a�

g̃�k� = 	q� f̃�k�2. �23b�

In the long-range limit of small J̃�k�, the function g�0� can
be approximated as

g�0� = 	q� � ddk

�2
�d�2J̃�k�2. �24�

This leading-order term forms the position-dependent
equivalent of the mean-field term in the Sherrington-
Kirkpatrick solution.30 The order parameters can be ex-
pressed self-consistently as

	m� = �V�
−	

	 dx
�2


e−x2/2 tanh
�J�0�	m� + x�g�0�� ,

�25a�
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	q� = �V�
−	

	 dx
�2


e−x2/2 tanh2
�J�0�	m� + x�g�0�� .

�25b�

The behavior of these order parameters can be determined
analytically for some limiting cases, but in general, a numeri-
cal solution is necessary. When 	m�=0, Eq. �25a� has a so-

lution for all J̃�k� and 	q�. Conversely, Eq. �25b� has a solu-
tion where 	q�=0, and there exists a nontrivial solution only
when

� � ��V� ddk

�2
�d J̃�k�2�−1/2

. �26�

Phase diagrams may be constructed by using this result
coupled with the nontrivial solution to Eq. �25a�, which is be
obtained by linearizing both order parameter equations for
small 	m� and 	q� and specifying the form of the interaction.
The phases are paramagnetic with 	m�= 	q�=0, ferromag-
netic with 	m��0, 	q��0, and spin glass with 	m�=0, 	q�
�0.

Stability criteria can also be determined by minimizing
the first variational derivative of the bounded free energy
with respect to the matrix in the reduced partition function

�2Fvar

�G̃ab�k��G̃cd�k��
�Ref. 31�. The important result relates the fact

that the converse of the condition in Eq. �26� forms the sta-
bility criterion in phase space wherever 	m�=0. We interpret

this as indicating that the paramagnetic phase is stable in this
model, regardless of the form of the interaction. It is
bounded below by a critical temperature defining the transi-
tion to an unstable spin-glass phase.

IV. DIPOLAR INTERACTION

The dipole interaction potential is determined by consid-
ering an assembly of dipoles with energy,

E =
1

2
� ddr�0S�r�Î · ���r� , �27�

where �0 is the permeability of free space, Î is a unit vector
in the direction of the Ising-spin axis, and ��r� is the dipole
field potential at r, satisfying the magnetostatic form of Max-
well’s equations,

− �2��r� + � · S�r�Î = 0. �28�

This is solved using a Green’s function g��r ,r��, subject to
the condition

�2g��r,r�� = ��r − r�� , �29�

such that

��r� =� ddr�g��r,r���� · S�r��Î . �30�

The total dipole energy is therefore

E =
�0

2
� ddrS�r�Î · �� ddr�g��r,r����S�r�� · Î . �31�

The Green’s function for the magnetostatic potential can
be expanded in a Fourier series. Using Eq. �29�, the Green’s
function in three dimensions is

g��r,r�� = −� d3k

�2
�3

eik·�r−r��

k2 . �32�

Equating the resulting energy with the Ising Hamiltonian in
Eq. �2� gives the potential in momentum space as

FIG. 1. Scaling function for the finite system with
x�=ak� /
.

FIG. 2. Spin-glass order parameter for the finite system with
x�=ak� /
.
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J̃3�k� = − �2
�3�0� Î · k

k
�2

. �33�

The same problem in a quasi-two-dimensional system is
solved by taking a model system that describes an infinite,
homogeneous film of finite thickness a. The system is as-
sumed to be translationally invariant along the surface, and
g��r ,r�� is expanded in a Fourier series parallel to the
surface.32 In the long-wavelength regime, the relevant fields
are averaged over the thickness of the film under the assump-
tion that the dipole source magnitude and direction across the
film plane is uniform. This means that the spin density func-
tion is constant across the layer and vanishes outside the film
as in the thin-film approximation in Ref. 33. We consider two
types of potential. The first, denoted with subscript �, refers
to the geometry of spins along an axis parallel to the plane of
the film. The second, denoted with subscript �, specifies the
potential for a system with spins perpendicular to this plane.
Both potentials are calculated from

g��r,r�� = −� d2k�

�2
�2eik�·�r�−r���e
−k��r�−r�� �

2k�

. �34�

Equating Eqs. �2� and �31� as before results in the following
expressions:

J̃��k�� = − �2
�2�0�Î� · k��2

ak�
3 �e−ak� + ak� − 1� , �35a�

J̃��k�� = − �2
�2 �0

ak�

�1 − e−ak�� . �35b�

V. RESULTS AND DISCUSSION

We calculate g�0� explicitly by transforming the square of
these functions back into real space as described in Eq. �24�.
Since the dipole interaction diverges rapidly at zero distance,
the minimum separation of spins must be restricted by a
lattice constant, even in a randomly distributed system. Ne-
glecting this minimum cutoff will exaggerate local fluctua-
tions due to randomness.34 We thus restrict the wave number
integration with an upper cutoff ku by assuming that the
separation of spins is determined by the thickness of the

monolayer, a. Then the smallest allowable separation be-
tween spins corresponds to a cutoff of 
 /a.

Similarly, we expect a lower bound k� to apply for inte-
gration over the wave number. In finite systems, this will be
imposed by the size of the sample, since the dipolar interac-
tion is inherently long ranged. We can examine the effects of
this constraint by plotting g�0� as a function of x�=ak� /

when ku=
 /a. After performing the required integration in
Eq. �24�, we find that the length and temperature depen-
dences of all three systems �3D and 2D� is the same, such
that g�0� may be expressed in terms of the following shape-
dependent function:

gd�0;�,�0,a;x� = �2�0
2a−dd�x� , �36�

where d is the dimension. Note that both g2�0 ;� ,�0 ,a ;x�
and 2�x� differ depending on the geometry specified. Figure
1 shows the dependence of this scaling function on the lower
wave number cutoff variable.

We use this relation to investigate the nontrivial solution
to the order parameter function in Eq. �25b�. In Fig. 2, we
plot the behavior of the spin-glass order parameter in the
regime for which net magnetization is zero and �V unity, as
the lower wave number cutoff is varied. The example given
takes parameter values which correspond to those appropri-
ate for a superspin system near the critical region, with
T=50 K and a=50 nm �Ref. 35�. It is clear that in the three-
dimensional case, there is a nonzero solution to Eq. �25b�
corresponding to a transition to spin-glass behavior, for all
lower-wave-number cutoffs k��ku. The two-dimensional ge-
ometries have the effect of rounding out this transition. In
these cases, the spin-glass phase appears to deteriorate and
eventually vanish for smaller lower-wave-number cutoffs, in-
dicating that spin-glass order cannot be sustained in two-
dimensional systems, below a critical system size.

The nontrivial solution to Eq. �25b� with 	m�=0 exists in
all three cases of an infinite system, for which the lower-
wave-number cutoff is zero. It is instructive to examine the
effect of upper cutoff in this particular limit. As a function of
xu=aku /
, g�0� scales in the form given in Eq. �36�, with the
scaling function d�x� resembling those plotted in Fig. 3�a�.
The corresponding dependence of the spin-glass order pa-
rameter on the higher-wave-number cutoff is shown in Fig.
3�b�. The three-dimensional system permits a nonzero solu-

FIG. 3. �a� Scaling function and �b� order parameter for the infinite system with xu=aku /
. The inset in �a� shows the shaded region in
greater detail �albeit on the same axes�.
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tion to the spin-glass order parameter equation, except in the
unphysical case of ku�k�. Again, the sensitive dependence
of the dipole interaction on sample shape is manifest in the
rounding of the transition in two dimensions. Both two-
dimensional geometries exhibit a minimum upper cutoff be-
low which spin-glass ordering cannot exist in the infinite
system. The limiting cutoff in the spin in-plane case greatly
exceeds that in the out-of-plane case, indicating that the spin-
glass phase in the infinite system is more unstable to fluctua-
tions when there are both ferromagnetic and anti-
ferromagnetic competing interactions.

VI. CONCLUSION

The effects of long-range dipolar interactions on the
boundary between paramagnetic and spin-glass phases have
been studied for a site-disordered Ising spin system in a thin-
film geometry. A variational field theory has been used to
construct self-consistent order parameter equations for a sys-
tem characterized by dipolar interactions. Wave number cut-
offs provide a means of avoiding unphysical contributions to
the free energy due to artifacts in the continuum approxima-
tion. In addition, these cutoffs facilitate a study of finite-size
effects associated with the shape dependence of the dipolar
interaction. In particular, our results show that the spin-glass
phase in an infinite quasi-two-dimensional system of site-

disordered Ising spins interacting via a long-range dipolar
potential can only be predicted within this model if one
probes a sufficiently large wave number range. That is, ne-
glecting larger wave numbers can have the effect of sup-
pressing the glass transition. That this effect is more promi-
nent in the spins in-plane case relates the sensitive shape
dependence of the low-dimensional dipolar spin system.

We note that one cannot rule out the possibility that the
Gaussian variational approximation is too severe to accu-
rately describe allowed phases. However, one may consider
this ansatz justified for systems in which each spin interacts
with many effective neighbors, as is the case in high-
dimensional systems or in those with long-range
interactions.24 The variational method becomes exact in the
limit that the number of components of the degrees of free-
dom is infinite.36 In the case of an Ising model, then, the
method is merely an approximation with limited bounds of
validity. Indeed, a stability analysis of this model shows that
the spin-glass state is unstable. The stability of phases in the
replica-symmetric solution in general is not clear,25 but the
behavior of the system above the paramagnetic transition
temperature is exact in this theory.37
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