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When a 1064 nm laser pulse is focused at the surface of silicon, it has been observed that the material
contracts whereas heating should produce expansion. In addition to the usual thermal acoustic source, a
nonthermal sound generation results of photoexcitation of electron-hole pairs. To describe the optoacoustic
effect in semiconductors, it is thus necessary to account for thermoelastic and other deformation sources
simultaneously. The acoustic signal is then strongly dependent on the nature of the space-time evolution of
both the photoexcited charge carriers and temperature. In this paper, assuming line focusing of the laser pulses,
a model is implemented that accounts for the two-dimensional �2D� character of charge carrier motion and heat
conduction. Relevant differential equations are coupled together and with the wave motion equation to describe
acoustic diffraction. Three sets of equations are linearized in a 2D Fourier domain and solutions are found with
an appeal to convenient boundary conditions. The conditions for 2D diffraction of plasma, thermal, and elastic
waves are analyzed. Experiments are performed on a 5 mm thick silicon plate with a Nd:yttrium aluminum
garnet laser that delivers 20 ns pulses. Signals are measured for epicenter and off epicenter positions. Very
good agreement is obtained with calculated signals for both positions demonstrating that both sound generation
mechanism and anisotropy are accurately taken into account. In addition to the expected material contraction
accompanying quasilongitudinal bulk acoustic waves, the other remarkable feature is the change in the shape
of the signals observed for a same angle, but for two laser energies. The results emphasize the nonlinear
photoacoustic response of the material, with respect to the laser energy. It is accurately represented by the
calculations, assuming prevailing of Auger electron-hole recombination process and nonlinear dependency of
charge carrier lifetime with respect to its density.
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I. INTRODUCTION

The volume contraction of a silicon crystal under intense
illumination by laser light has been the motivation to study
the ultrasound generation by the concentration-deformation
mechanism in semiconductors.1 It was shown that the lattice
contraction can be interpreted in terms of the semiconductor
crystal’s volume dependence on the occupation of the elec-
tronic energy levels. The density of excess electrons in the
conduction band, thus of holes in the valence band, is con-
nected with the derivative of the band-gap energy with re-
spect to pressure. The contraction effect comes from the
negative sign of the derivative for silicon. These phenomena
have been deeply studied, but to our knowledge, the aniso-
tropic diffraction of the so-generated acoustic waves, and its
connection with charge carriers and temperature diffusion,
has never been analyzed. To this purpose, the space and time
evolution of laser-induced plasma in semiconductors, to-
gether with its link to temperature rise, must be correctly
accounted for.

The physical processes that occur during and after light
absorption by semiconductors have been extensively
studied.2–5 These processes start with the direct absorption of
a photon from the incident pulse by an electron which makes
a transition from the valence to the conduction band. Such a
transition is allowed when the energy of the photon is greater
than the direct band gap. Free carriers absorption is the pro-
cess in which an electron once in the conduction band makes
a transition to a state higher in that band by means of the
simultaneous absorption of a photon and the emission of a

phonon. An identical process occurs for holes in the conduc-
tion band. Electrons located high in the conduction band may
relax within that band by phonon emission. The effect of this
relaxation is to reduce the electron temperature and increase
the lattice temperature. Neither free carrier absorption nor
electron relaxation changes the number of free carriers. At
the reverse, recombination processes, either radiative or non-
radiative, reduce the number of charge carriers. The nonra-
diative recombination in which a plasmon is emitted does not
prevail at the large time scale considered in this paper. The
radiative recombination of an electron in the conduction
band with a hole in the valence band by means of the simul-
taneous emission of a photon and of a phonon is important.
The subsequent dynamics of the dense electron-hole plasma
was extensively explored.6 The carriers’ ambipolar diffusion
was also studied to determine the extent of the heated zone,
which can be much larger than the array in which light
penetrates.7 For pulses of ns time duration, a model was
developed to describe the kinetic of the laser-induced plasma
in germanium and silicon. It takes into account the processes
mentioned above, and also the carrier concentration and the
temperature gradient.8 For light pulses in the ps range, van
Driel9 proposed equations to describe the kinetic of dense
plasma. Using coupled equations, the carrier density and the
temperature were calculated. In addition, Auger recombina-
tion process, occurring when a high density of free carriers is
generated, was analyzed with modulated photoreflectance.10

In this context, the free carrier lifetime is no longer consid-
ered as a constant, but it is proportional instead to the inverse
of the square of charge density.11
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The absorption of light by a semiconductor provokes the
increase of carrier density and also the rising of both the
lattice and carrier temperatures. In situations where ns laser
pulses with high power density interact with the semiconduc-
tor, it is generally acknowledged that the carrier and lattice
temperatures are essentially the same.12 However, Lietoila
and Gibbons13 have proposed a calculation of these three
quantities for ns laser pulses. They have shown that free
carrier absorption plays a major role with 1.06 �m radiation
and that Auger recombination coefficient is not sensitive to
temperature.

In most materials, the photoacoustic generation results
from photothermal and thermoacoustic mechanisms. The
heating of a volume of the material and subsequent dilatation
acts as an acoustic source. The acoustic strain may in turn
yield heating that is generally neglected. Temperature diffu-
sion equation and acoustic wave equation are thus partly
coupled. However, in semiconductors, the changes in carrier
density involve strain. The so-called electron-deformation
mechanism can thus act as an additional acoustic source. The
generated acoustic strain may in turn generate plasma waves,
acting as a thermal source itself. Thus electronic, thermal,
and acoustic waves are coupled. Their couplings have been
under the scope of several studies. Stearns and Kino14 have
proposed a partial coupling between the electronic, thermal,
and acoustic phenomena. In their unidimensional modeling,
the recombination mechanism is not considered in the carrier
diffusion equation, and neither is the coupling with tempera-
ture and strain. The temperature diffusion equation is also
considered without taking into account the acoustic source.
They have shown from both theoretical and experimental
results that the electron-deformation mechanism may domi-
nate in the photoacoustic response. Another more complete
unidimensional modeling, still including partial coupling,
was proposed by Akhmanov and Gusev15 and Gusev and
Karabutov.16 They have considered a linear carrier diffusion
equation including nonradiative recombination, ambipolar
diffusion, and optic absorption, without coupling effect with
temperature and strain. However, coupling with the nonradi-
ative recombination is included in the temperature diffusion
equation in addition to the thermal source resulting of the
absorption of light. Stress associated with electron-
deformation is introduced as a source term in the acoustic
equation together with the thermal stress. The important ef-
fect of Auger recombination was pointed out. They have also
performed a complete frequency analysis allowing one to
identify the dominating terms in these equations at different
time scales. It was shown that the electron-deformation pro-
cess may dominate the acoustic response also when fs pulses
are used. For such short pulses, the dynamics of both bulk
and surface recombination mechanisms, and of temperature
and carrier diffusion, can be neglected with respect of ul-
trafast acoustic response.17 When subnanosecond pulses are
considered, it was demonstrated that the coupling between
plasma and acoustic waves may yield broadening of the
acoustic pulses.18 In addition, Todorovic et al.19–21 have pro-
posed a quantitative analysis of the coupling effects and they
have analyzed the conditions in which the complete coupling
between carrier, temperature, and acoustic equations can be
neglected. Recently, Dixon et al.22 have illustrated experi-

mentally the changes in the shape of the longitudinal acous-
tic signal with the fluence of the laser pulses in silicon.
Whereas a negative pulse corresponding to contraction is
measured at low intensity, dilatation yields positive pulses
for higher intensities, and bipolar signals are measured in the
intermediate regime.

In this paper, a two-dimensional �2D� model for the pho-
toacoustic transduction in anisotropic semiconductors is con-
sidered to calculate the acoustic waves diffracted in the ma-
terial when the laser beam is focused on its surface. The
theoretical results mentioned above have allowed introduc-
ing 2D linear wave equations for carrier density, temperature,
and acoustic displacement vectors. These partly coupled
equations and their solving are presented in Sec. II together
with the boundary equations. In Sec. III, the conditions in
which 2D diffraction of plasma, thermal, and acoustic waves
occurs are discussed on the basis of analytic results derived
in the frequency-wave number domain. Then, in Sec. IV,
experimental and calculated results obtained for ns pulses
and for various laser intensities show the influence of Auger
recombination time on the polarity and shape of both the
quasilongitudinal and quasishear diffracted acoustic waves.

II. 2D WAVE EQUATIONS FOR SEMICONDUCTORS

A homogeneous semiconducting material is considered.
The material elasticity, thermal conductivity, and charge car-
rier diffusivity are assumed to show orthotropic symmetry in
the same �x1, x2, x3� axes. The sample is a parallel-sided plate
of thickness h and it is cut such that axis x1 lies along the
normal to the plate.

The optical axis of the incident laser radiation is x1, and
the incident light is focused at the surface x1=0 along a line
in the direction x3. Neglecting the laser beam expansion due
to focusing or to optic dispersion, the volume and time den-
sity of the energy brought by the incident light inside the
medium is given by

Q�x1,x2,t� = �I�1 − R�g�x2�f�t�e−�x1, �1�

where I is the incident energy by unit of length, R denotes
the optical reflectivity, and � stands for the optical absorp-
tion coefficient. For semiconductors under laser illumination,
it has been observed that the reflectivity increases with light
intensity, and so does the optical absorption. However, this
effect is not considered in this paper, assuming that the op-
tical penetration does not depend on plasma density, or on
temperature. This assumption allows one to consider that the
optical absorption remains uniform along the sample surface
also. In Eq. �1�, g�x2� and f�t� represent the normalized space
and time distributions of the line source radiation, respec-
tively.

In the following, the energy E of each incident photon is
supposed to be greater than the semiconductor energy band-
gap Eg. Therefore electrons are extracted from the valence
band of the crystal to the conduction band, and electron-hole
pairs are generated. The equations used to describe their dif-
fusion are now presented.
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A. Plasma wave equation

The dynamics of electrons and holes are not dissociated in
this paper. The time and space dependency of the plasma
density N is governed by the 2D electron diffusion and by
the nonradiative electron-hole recombination. Assuming Au-
ger recombination is the dominant recombination mecha-
nism, the corresponding diffusion equation is7

�N

�t
− � · �Λ � N� +

1

�R
N =

Q�x1,x2,t�
E

. �2�

Here Λ stands for the ambipolar �carrier� diffusion tensor.
Since this equation has been essentially used up to now for
only one-dimensional �1D� plasma diffusion, an appeal to
this second-order tensor instead of the usual ambipolar dif-
fusion coefficient is not common. In Eq. �2�, the nonradiative
Auger recombination is taken into account by the third term
in the left-hand side. There, �R represents the lifetime of
charge carriers, the so-called Auger recombination time.
Since lifetime depends on the recombination probability, it is
inversely proportional to the square of charge density, �R
�N−2.23,24 This gives to Eq. �2� a nonlinear nature. However,
a characteristic value of N, not depending on space and time
but proportional to the incident light intensity, can provide a
good estimate for �R.16 The right-hand side of Eq. �2� de-
scribes the photogeneration of charge carriers; it expresses
that each photon creates one electron-hole pair. One should
notice that the interaction of temperature or phonons with
charge carrier density is neglected in Eq. �2�.

Let us now pay attention to the boundary condition for the
plasma field. Since recombination is enhanced at the air-
material interface, lifetime of charge carriers at the surface is
smaller than in the bulk of the semiconductor material. Con-
sequently, charge carrier density is smaller at the surface,
giving rise to diffusion from the bulk of the material toward
its surface. Therefore, the boundary condition expressing that
the charge flux through the surface is null, i.e., that the sur-
face recombination at high speed S is balanced by the sub-
sequent bulk to surface diffusion, is12

�Λ11
�N

�x1
− SN�

x1=0
= 0. �3�

Assuming that the optical penetration depth, as well as the
diffusion length during characteristic times, is small with re-
spect to the sample thickness, it is not necessary to take into
account the boundary condition at the rear surface x1=h.

At this point, interest is turned to the thermal field, which
strongly depends on the time and space evolution of the
plasma density.

B. Thermal wave equation

At ns time scale, it is generally acknowledged that the
lattice and carrier temperatures are equal.12 The temperature
field T�x1 ,x2 , t� inside the material results of both optother-
mal and optoelectronic effects. It satisfies the following dif-
fusion equation:

�Cp
�T

�t
− � · �� � T� = �E − Eg�

Q�x1,x2,t�
E

+
Eg

�R
N , �4�

where � stands for the mass density, Cp denotes the specific
heat, and � is the thermal conductivity tensor.

As already mentioned, each photon brings one electron
from the valence band to the conduction band. It immedi-
ately falls down to the minimum of the conduction band. The
energy released for thermalization is then E−Eg. Therefore,
the first term in the right-hand side of Eq. �4� quantifies the
amount of the incident energy that is directly thermalized.
The last term describes crystal heating from the energy re-
leased by the charge carriers that recombine during Auger
time.

The left-hand side of Eq. �4� is similar to that of the
classical parabolic Fourier diffusion equation, assuming that
the temperature rise follows instantaneously the source rise.
Since the characteristic rise time is of the order of ps for
most metals and semiconductors, this assumption is valid for
these materials when the thickness is of the order of milli-
meter. For thinner samples, the hyperbolic diffusion equation
in either of its form should be preferred.25

The heat boundary equation is now considered, assuming
adiabatic conditions at the surface. Owing to the high recom-
bination rate at the surface, electrons release energy for ther-
malization, so generating heat flux at the surface. Taking also
into account heat flux resulting from temperature diffusion,
one gets the following boundary equation:

��11
�T

�x1
+ EgSN�

x1=0
= 0. �5�

As for the diffusion of charge carriers, it is assumed here
that the temperature diffusion length during characteristic
times is small with respect to the sample thickness. There-
fore, the boundary condition at the rear surface x1=h is not
considered.

Once basic equations describing the 2D diffusion of
charge carriers and temperature are stated, one can investi-
gate the acoustic wave propagation equation in semiconduct-
ing materials.

C. Acoustic wave equation

The acoustic wave equation accounting for thermoelastic
and electronic deformation mechanisms, is written as

�
�2u

�2t
− � · �C:�su� = − λ � T − D � N , �6�

where u stands for the displacement vector at any position
and time, and C denotes the fourth order stiffness tensor.
λ=C:� is the thermal rigidity tensor in which � is the ther-
mal expansion tensor of the material. The coupling between
plasma density and stress is introduced by mean of the tensor
of electroacoustic coupling D=C :d,14 accounting for the dif-
ference in deformation potential of the conduction and va-
lence bands. The parameter d quantifies the changes with
stress of the band gap energy Eg. Instead of the scalar ex-
pression that was used up to now with the scalar wave propa-

TWO-DIMENSIONAL DIFFRACTION OF PLASMA,… PHYSICAL REVIEW B 74, 214304 �2006�

214304-3



gation equation,16 we introduce the following components
for tensor d:

dij = −
�Eg

��ij
, i, j = 1 . . . 3, �7�

where �ij are components of the stress tensor.
Boundary conditions for the displacement field must also

be stated since they are derived to obtain analytic and nu-
merical results discussed in the following sections. Since
light is focused along a line lying along a principal direction
of the material symmetry, free loaded conditions lead to null
values of stiffness components �11 and �12 only. Moreover,
owing to negligible acoustic attenuation in crystals at the
considered ultrasonic frequencies, waves reflected at the in-
terfaces may propagate forth and back through the plate. The
two interfaces are thus considered in the following boundary
equations:

�C11
�u1

�x1
+ C12

�u2

�x2
− 	1T − D1N�

x1=0,h
= 0,

C66� �u1

�x2
+

�u2

�x1
�

x1=0,h
= 0. �8�

In these equations and in the following, the abbreviated sub-
script notations are used for components of tensors C, λ, and
D.

D. Calculations of 2D plasma, thermal, and acoustic fields

As mentioned in Sec. II A, the plasma wave equation is a
nonlinear equation of N. However, this feature vanishes
when the Auger combination time is approximated to a con-
stant value that depends on the incident light intensity. With
this assumption, the 2D plasma, thermal, and acoustic fields
can be calculated using Fourier transformations on space, x2,
and time variables. Let k2 and 
 denote the Fourier dual
variables, respectively. Applying these transforms yields a
set of linear partial derivative equations with respect to the
depth x1 only. The solution is composed of a sum of expo-
nential functions of x1. For a fixed �k2 ,
�, solving dispersion
equations associated with propagation Eqs. �2�, �4�, and �6�
provides components jΠ, jΓ, and k1, along x1, of plasma,
thermal, and acoustic waves vectors, respectively. The am-
plitudes are obtained with an appeal again to propagation
Eqs. �2�, �4�, and �6�, and also with the help of boundary Eqs.
�3�, �5�, and �8�.

The displacement u at a given position x2 and time is
calculated in the sequel by numerical inversions of the spa-
tiotemporal Fourier transformations of the solution ũ calcu-
lated in the �k2 ,
� Fourier space. Note that the temperature
T�x2 , t� and plasma density N�x2 , t� would also have been
mapped using the same calculation scheme. Moreover,
acoustic displacement can be calculated on either side x1
= ±h /2 of the plate.

The above calculations were presented for a line source
along a principal direction for the purpose of clarity. How-
ever, a line source along any direction could be considered as

well. Moreover, when the anisotropic material symmetry is
limited to axisymmetries with respect to axis x1, a point
source can be considered in the modeling without bringing
additional numerical burden, so long as the space Fourier
transform is changed in a Hankel transform.

In the next section, interest is focused on some analytic
expressions obtained in the Fourier domain for the three

fields of interest: Ñ�k2 ,
�, T̃�k2 ,
�, and ũ�k2 ,
�.

III. SPECTRAL ANALYSIS FOR SILICON

A spectral analysis of the prevalence of the physical phe-
nomena involved in the plasma and temperature waves gen-
eration and diffusion has been under the scope of several
previous papers.15,16 Further analysis is brought in this sec-
tion to state the conditions on the incident laser intensity, the
source size, and the frequency ranges for which the plasma
or thermal field are diffracted in two dimensions by the optic
source.

In the context of the assumptions mentioned in Sec. II, the
expressions detailed in the followings are general for semi-
conductors. However, since quantitative discussions will
now be based on numerical applications for silicon, let us
draw the main features of the considered sample.

A. Silicon sample

The cut of the silicon plate is such that its normal, axis x1,
lies along the crystallographic direction �1,1,0�. Directions x2
and x3 belonging to the sample surface, correspond to crys-
tallographic axes �−1,1 ,0� and �0,0,1�, respectively. Since
silicon crystal exhibits a cubic symmetry, axes x1 and x2 are
principal axes. Accordingly, with the sample axes, the mate-
rial shows a tetragonal symmetry and its stiffness coefficients
can be calculated from reference values for silicon. On using
contracted subscripts convention, the stiffness coefficients
are such that the stiffness tensor can be written in the follow-
ing matrix form:

C =�
194.36 35.24 63.90

194.36 63.90 0

165.70

79.56

sym. 79.56

50.90

�
in GPa. �9�

The material mass density is �=2.332 g cm−3, and the plate
thickness is h=5 mm. The anisotropy of acoustic waves ve-
locity is mapped in Fig. 1 where the group velocities of
quasilongitudinal �L� and quasishear �T� waves are plotted in
the plane �x1, x2�. High anisotropy leads to the characteristic
shape of the quasishear mode, which contains cuspidal edges
where the curve folds back on itself. A third acoustic mode
with polarization along the x3 direction may propagate. It is
not shown in Fig. 1 since this mode is not generated when a
line source is oriented along the axis x3.
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Let us now accurately state the optic, electronic, and ther-
mal properties considered in the remainder. Note that owing
to the cubic symmetry of silicon the ambipolar diffusion,
thermal expansion, and thermal conductivity tensors, which
are of order 2, have a spherical form in the crystal axes, and
in the sample axes as well. The material optic properties are
R=0.33 and �=1.4 mm−1 at a laser wavelength of 1064 nm;
the material thermal coefficients are Cp=757 J Kg−1 K−1, �i
=1.2�10−5 K−1, and �i=150 Wm−1 K−1, i=1. . .6; and the
scalar electronic parameters are Eg=1.12 eV, and S
=102 ms−1. Let’s remark that great dispersion exists in the
values found in the literature for the surface electron-hole
recombination velocity S, ranging from 10 ms−1 to 104 ms−1,
since this parameter is highly sensitive to the surface rough-
ness. The electronic tensor components are
Λi35�10−4 m2 s−1, and di=−9.5�10−24 cm3, i=1. . .6.
The latter components are the scalar values used in the lit-
erature to describe 1D charge carriers diffusion in
silicon.14,16 The negative sign of di is a characteristic feature
of electroacoustic effects in silicon. As a consequence, com-
ponents of tensors λ and D have opposite signs, and the
acoustic sources in the right-hand side of Eq. �6� have oppo-
site effects: cold plasma acoustic generation yields material
contraction, whereas temperature rise generates expansion.

Once the material properties have been stated, the condi-
tions for 2D diffraction of plasma and temperature fields are
discussed quantitatively in the following paragraphs.

B. Spectral analysis of plasma field

Solving the plasma wave equation as described in Sec. II
yields the following explicit form for the charge carriers field

Ñ in the �k2 ,
� domain:

Ñ =
Q̃

EΛ1�Π2 − �2�
�e−�x1 −

Λ1� + S

Λ1Π + S
e−Πx1� . �10�

In this equation,

Q̃ = �I�1 − R�g̃�k2� f̃�
� , �11�

where g̃�k2� and f̃�
� stand for the Fourier transforms of the
space and time distribution of the line source radiation, re-
spectively; and Π is such that

Π2 =
1

Λ1
�Λ2k2

2 +
1

�R
+ j
� . �12�

The 2D character is driven by the latter equation. Diffraction
has to be considered �i� when �R

−1 is negligible with respect to
Λ2k2

2, or of the same order as Λ2k2
2:�R

−1�Λ2k2
2; and �ii� for

frequencies such that 
�Λ2k2
2+�R

−1. Since the Auger recom-
bination time �R is correlated to the incident laser intensity, it
should be noticed at this stage that the 2D character of carrier
diffusion depends not only on the frequency but also on the
light intensity.

On noting that k2�2/a, where a denotes the width at
midheight of the source, condition �i� can be rewritten as
	Λ2�R�a /2, expressing that the plasma diffusion length in
direction x2 during Auger time must be greater, or of the
same order, than half the source aperture. In other words,
writing condition �i� as �R�a2 /4Λ2, it appears that the Auger
recombination time must be greater, or of the same order as
the time for plasma to diffuse in direction x2 at a distance
equal to half the source width. Focusing the incident laser
beam to an extremely small width a=1 �m, one gets diffu-
sion time of the order of 71 ps. Auger recombination time is
greater for laser intensities currently used for most experi-
ments. The limit value turns to 0.71 �s when the laser beam
is focused to an easily achievable spot size of 0.1 mm. As
illustrated later is Sec. IV, Auger time can be on either side of
this limit, depending on light intensity. Let us underline that
condition �i� does not depend explicitly on frequency and
that directivity of the plasma field can be driven by light
intensity.

When the later condition on Auger time is provided, con-
dition �ii� yields a relationship that is currently encountered
in diffusive phenomena. It relates the spot size and the fre-
quencies, 
�4Λ2/a2. This condition is achieved for fre-
quencies up to 1.4 MHz for silicon when the spot size is
about 0.1 mm.

C. Spectral analysis of temperature field

Solving the thermal wave equation as described in Sec. II

with the expression for Ñ given in Eq. �10� yields the fol-

lowing explicit form for the temperature field T̃ in the �k2 ,
�
domain:

T̃ = ATe−�x1 + BTe−Πx1 −
1

Γ
��AT + ΠBT�e−Γx1. �13�

In this equation,

AT =
Q̃

�Cp�1�Γ2 − �2�
E − Eg

E
−

Eg

EΛ1�R�Π2 − �2�� ,

BT = −
Eg

�R

Q̃

�Cp�1�Γ2 − Π2�
1

EΛ1�Π2 − �2�
�Λ1� + S�
�Λ1Π + S�

,

�14�

and Γ is such that

FIG. 1. Group velocity curves �km/s� in the plane �x1 ,x2� of the
silicon sample.
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Γ2 =
1

�1
��2k2

2 + j
� �15�

on noting �i=�i /�Cp, i=1,2.
The 2D character of the temperature is driven by the con-

ditions discussed above for Π, and by the following for
Γ:
��2k2

2, which is general for 2D thermal diffusion. It ex-
presses that the source size must be small with respect to the
distance the temperature diffuses in the direction x2 during
characteristic times 
−1. This condition is satisfied for fre-
quencies below 0.34 MHz for a spot size around 0.1 mm. If
the laser intensity is such that condition �i� on �R is satisfied,
then for frequencies between 0.34 MHz and 1.4 MHz the 2D
character of the temperature field comes only from the 2D
diffusion of electrons during Auger recombination time. The
existence of such a bandwidth can be generalized to other
semiconducting materials since for most of them �2 is
greater than �2, and these two parameters are in general in a
ratio of about 100.

D. Lateral extent of the acoustic source

The 2D expansion of the plasma and temperature fields
obviously influences the shape of the photoacoustic source
and the quantitative description is not straightforward. How-
ever, a rough limit condition for the diffraction of quasilon-
gitudinal and quasishear acoustic waves is that the lateral
extent aA of the acoustic source be such that k2TaA�1, where
k2T denotes the wave number of the quasishear mode along
the interface. Since carrier diffusion is a faster phenomena
than temperature diffusion, the lateral extent of the source
can be approximated with the diffusion length of plasma
along the interface, aA=	Λ2�R. For acoustic frequencies in
the MHz range, the rough condition requires that �R be
smaller than 0.1 ms for silicon, which is far satisfied in our
experiments.

IV. CALCULATION AND EXPERIMENTAL RESULTS

A. Experimental setup

Let us briefly describe the experimental setup. A
Nd:YAG �yttrium aluminum garnet� laser is used to provide
photons with an energy of 1.17 eV, above the indirect band
gap Eg=1.11 eV of silicon at room temperature. At this
wavelength, a large portion of the absorbed energy may be
expected to produce electron-hole pairs. The laser delivers
pulses of about 20 ns in duration, and the maximum output
energy is about 300 mJ per pulse. The laser beam is focused
on the front surface, x1=−h /2, of the semiconducting
sample. A convenient set of lenses is used to form a line
illumination. The length and width of the line are about 2 cm
and 0.1 mm, respectively. By making use of a system com-
posed of moveable mirrors, the setup allows the displace-
ment of the source along the surface in a direction normal to
the line.

A doubled Nd:YAG laser at 532 nm is used in a laser
interferometer,26 which is focused into a point at the rear
surface of the sample, x1=h /2. It measures the normal sur-
face displacements, allowing one to detect the acoustic wave

arrivals. As shown in Fig. 2, the angle � between axis x1 and
the source to detector direction defines the observation angle
of the 2D waves diffraction, with respect to the plate normal.
Signals are downloaded from a digital oscilloscope into a
computer, where they are stored for postprocessing.

B. Calculated and experimental signals

The component normal to the interface of the acoustic
displacement was measured for several source-receiver di-
rections � and for several laser intensities I. The wave forms
recorded for the epicenter position �=0 and a nonepicenter
position �=35°, and for two laser intensities I1 and I2 are
shown in Fig. 3. The signals calculated for the same two
angles are also displayed in Fig. 3. The only calculation pa-
rameter that was tuned to fit experimental data was the inci-
dent laser intensity. Values of I1=7.5 mJ m−1 and I2
=200 mJ m−1 were so identified. They are in agreement with
the ability of the experimental device. The corresponding
Auger recombination times, calculated16 with the Auger con-
stant for silicon �=4�10−31 cm6 s−1 are �R1

=17 �s and
�R2

=24 ns, respectively. Very good agreement between the
calculated and experimentally recorded signals was obtained
for intensity I1, Figs. 3�a� and 3�b�. Agreement is also good
for the highest intensity I2, Figs. 3�c� and 3�d�, despite slight
experimental artifacts that may be due to surface burning.
Comparison of the wave forms allows us to bring the com-
ments detailed in the following section.

C. Result analysis

The first remarkable feature emphasized in Fig. 3 is that
the acoustic displacement associated to the first longitudinal
wave arrival has a negative amplitude for both laser energies
I1 and I2, i.e., the surface firstly moves towards the bulk of
the sample. At the reverse, signals calculated for a very high
energy, not plotted in Fig. 3, are opposite in shape to the
signals shown in Figs. 3�a� and 3�b�. However, such wave
forms cannot be experimentally recorded since the relevant
energy is higher than the surface ablation threshold for sili-
con, and the actual process would be neither electronic nor
thermal but it results from the ejection of a gas plasma gen-
erated by the melting of the sample surface. The material
contraction observed in Fig. 3 underlines that for these weak
laser energies the electronic volume effect dominates the
thermoacoustic generation.

The second remarkable point is the change in the shape of
the signals observed for a same angle, but for two laser en-
ergies. This change emphasizes the nonlinear response of the

FIG. 2. Pulsed and CW lasers location with respect to the
sample geometry.
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material, with respect to the laser energy. It is in agreement
with the predictions also provided in Refs. 15 and 16 for
plane longitudinal and Rayleigh acoustic waves. The change
comes from the nonlinear dependency of the Auger recom-
bination time with respect to laser energy. For very weak
laser energies, �R1

is extremely large compared to the time
scale in Fig. 3. Therefore, the time evolution of the electroa-
coustic source is approximately a Heaviside step function. At
the reverse, for a larger energy, the lifetime �R2

of the pho-
toexcited electron-holes is so small that the electroacoustic
source can be assimilated to a delta function in time. As a
consequence, the shape of the wave forms in Figs. 3�a� and
3�b� is the time derivative of that in Figs. 3�c� and 3�d�,
respectively.

Owing to the small lateral size of the acoustic source,
both longitudinal and shear waves are diffracted by the
source. Moreover, as another result of diffraction, the waves
associated with shear modes have a nonzero component in
the direction normal to the film surface and thus, their nor-
mal amplitude can be measured by laser interferometry even
at the epicenter position, as shown in Figs. 3�a� and 3�c�.
Successive echoes of waves propagating back and forth
through the plate provide observations of the acoustic field at
increasing travel distances from the source. From the near
field to the far field, amplitude of the shear wave increases.27

For a source width of approximately 0.1 mm and an Auger
time of �R1

=17 �s, the condition �R�a2 /4�2, Sec. III B, is
verified and 2D diffraction of plasma field occurs. At the
reverse, this relation is not satisfied for �R2

=24 ns. As a con-
sequence, the amplitude of the shear waves 3T, 5T are
slightly weaker, with respect to their longitudinal counter-
parts 3L, 5L, in Fig. 3�c� than in Fig. 3�a�.

Large waves denoted D in Figs. 3�b� and 3�d� appear
between the quasilongitudinal L and quasishear wave T for
an observation angle of �=35°. However, only two waves
should be observed for this direction according to the energy
radiation diagram shown in Fig. 1, since it does not belong to
the cusp sector. This third acoustic wave arrival is not pre-
dicted by ray theory. In order to explain the existence of such
wave, the finite wavelength of the acoustic waves must be
considered. Indeed, diffraction occurs at the extremities of
the cusp, and ultrasounds are detected in directions for which
no acoustic ray can be calculated. Maris has described this
diffraction phenomenon in the geometrical shadow, extrapo-
lating for the study of phonon focusing28 the works of
Pearcey performed in electromagnetism.29 The phenomenon
was also experimentally observed at ultrasonic frequencies
using focused monochromatic acoustic sources.30 Its obser-
vation when a broadband laser source is used, and its effect
on materials characterization, was discussed in Ref. 31. This

FIG. 3. Experimental �up� and
calculated �down� signals in sili-
con for two source-receiver direc-
tions: �=0 �a� and �c� and �=35°
�b� and �d�; and two incident
laser energies: I1=7.5 mJ m−1 �a�
and �b� and I2=200 mJ m−1 �c�
and �d�.
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wave D is the signature of the diffraction of the quasishear
mode propagating in an anisotropic medium. Waves T and D
in Figs. 3�b� and 3�d� provide great evidence of the acoustic
diffraction of the waves generated by the cold plasma elec-
troacoustic process.

V. CONCLUSIONS

A model that takes into account simultaneously the gen-
eration and diffusion of dense electron-hole plasma and of
thermal field in semiconductors was developed to represent
the anisotropic scattering of the so-generated acoustic waves.
It was successfully applied to represent the wave forms gen-
erated with ns laser pulses in a 5 mm thick silicon crystal.
The nonlinear response of the material with respect to the

incident light intensity was demonstrated for epicenter and
nonepicenter measurement positions. For incident intensity
less than the ablation threshold, the electron deformation
generation mechanism prevails on the thermoacoustic pro-
cess. Measurement and modeling of the acoustic diffraction
of both quasilongitudinal and quasishear waves generated by
the cold plasma electroacoustic process is an unprecedented
result. It opens opportunities for the nondestructive evalua-
tion of electron-hole diffusion parameters in semiconductors.

Work underway is focused on the propagation of acoustic
waves generated with ultrashort laser pulses in micrometer
thick semiconductors. Correct understanding of the propaga-
tion of the so-generated acoustic waves in such materials is
of great importance for the application of picosecond ultra-
sonics to the nondestructive control and evaluation of assem-
bly in the microelectronic industry.
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