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Perturbation theory for localized solutions of the sine-Gordon equation: Decay of a breather and
pinning by a microresistor
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We develop a perturbation theory that describes bound states of solitons localized in a confined area.
External forces and the influence of inhomogeneities are taken into account as perturbations to exact solutions
of the sine-Gordon equation. We have investigated two special cases: a fluxon trapped by a microresistor and
decay of a breather under dissipation. We have also carried out numerical simulations with the dissipative
sine-Gordon equation and made a comparison with the McLaughlin-Scott theory. A significant distinction
between the McLaughlin-Scott calculation for a breather decay and our numerical result indicates that the
history dependence of the breather evolution cannot be neglected even for a small damping parameter.
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I. INTRODUCTION

Solitons or solitary waves are among the most interesting
objects in nature. Observation of a solitary wave on water
was first documented more than one and a half centuries ago.
Besides, solitons occur naturally in many other substances
like optical fibres,! nonlinear lattices,? and hot and cold
plasma® and are even claimed to be responsible for Jupiter’s
red spots* and energy transfer in DNA.> Most intensively
solitons have been studied in long Josephson contacts. The
matter is that switching from the superconducting to the re-
sistive state of the Josephson junction is related to the ap-
pearance and motion of solitons in these contacts which are
known also as Josephson vortices or fluxons. Such solitons
or fluxons are well described by the sine-Gordon equation.

In the ideal case, when the Josephson junction is infinitely
long and narrow, Josephson solitons can be described ana-
lytically by well-known exact solutions of the sine-Gordon
equation. However, there is always dissipation associated
with quasiparticle current through the Josephson junction
and inhomogeneities associated with its width and thickness.
Moreover, real physical systems are always subjected to the
influence of external forces. All these factors may have a
significant impact on soliton behavior.

Although the strictly one-dimensional sine-Gordon equa-
tion is integrable,®’ perturbations to this equation associated
with external forces and inhomogeneities spoil its integrabil-
ity and the equation cannot be solved exactly. Nevertheless,
if their influence is small, the solution can be found pertur-
batively. The perturbation theory for solitons was described
in detail by Keener and McLaughlin,® while their interaction
by McLaughlin and Scott.® Later, in application to the dy-
namics of vortices in Josephson contacts, perturbation analy-
sis of the sine-Gordon equation was developed by McLaugh-
lin and Scott.!”

Many applications deal with localized oscillatory solu-
tions of the sine-Gordon equation: for instance, when a Jo-
sephson vortex is pinned by an inhomogeneity or there is a
bound state of a vortex and antivortex known as a breather.
Breathers may appear as a result of collision of a fluxon with
an antifluxon or even in the process of measurements of
switching current characteristics.!! The role of breathers is

1098-0121/2006/74(21)/214303(5)

214303-1

PACS number(s): 05.45.Yv, 03.75.Lm, 85.25.Cp, 74.45.+c

ambiguous. Depending on our expectations, they can be
parasitic excitations or, vice versa, a good generator of THz
waves. Recently we proposed a device that may deliberately
generate and trap breathers.!?

There have been many theoretical and numerical studies
dedicated to continuous sine-Gordon breathers.'3"!7 In par-
ticular, the decay of a breather into a fluxon and antifluxon
induced by an external current has been studied by many
authors.'® Moreover, it was shown'# that a breather can be
stabilized by an ac drive even in the presence of energy
losses. Also, the influence of the boundaries on breather
dynamics'® has been investigated and quantization of its en-
ergy spectrum' has been predicted.

Nevertheless, despite numerous theoretical studies, the
dynamics of a breather under dissipation has not been fully
understood. McLaughlin-Scott theory gets overcomplicated
when applied to nontrivial solutions such as breathers,
whereas its simplifications fail to predict the correct dynam-
ics. We have performed numerical simulations of breather
dynamics and found that there is a significant discrepancy
with the McLaughlin-Scott calculation. In particular, it mani-
fests itself in the dependence of the breather energy on time,
Fig. 1. The thin line is the dependence following from the
McLaughlin-Scott calculation [formula (5.5) in Ref. 10], and
the solid line represents our numerical simulations. This dis-
crepancy stimulated us to look into this problem once again
and develop a perturbation theory that is designed especially
for localized solutions of the sine-Gordon equation. We have
found that at the construction of such theory it is very im-
portant to take into account the history dependence of the
breather evolution. Also, we have carried out direct numeri-
cal simulations with the dissipative sine-Gordon equation.
The numerical results appear in perfect agreement with our
theory.

II. PERTURBATION THEORY FOR LOCALIZED
SOLUTIONS

Consider the (1+1)-dimensional sine-Gordon equation
¢_§Dxx+SiH(P=O' (1)
The equation possesses solutions in the form of solitons (an-

tisolitons):
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FIG. 1. Dissipative dynamics of a sine-Gordon breather: Depen-
dence of the energy H5C of a breather on time 7 calculated according
to the McLaughlin-Scott formula (5.5) from Ref. 10 is presented by
the thin solid line. Dependence of the energy H3C of a breather on
time ¢ calculated by direct numerical simulations of sine-Gordon
equation with damping is shown by the thick solid line. The damp-
ing constant is a=0.01.

—ut
¢@(x,1) =4 arctan exp(i %) ) (2)
VI—u

The peculiar feature of solitons is that they keep their shapes
while moving and even restore their shapes after collision.
The attractive forces® between a soliton and antisoliton allow
their bound state—a sine-Gordon breather®!? (sometimes
called doublet or bion),

o(x,t) =4 arctan| ——— |, (3)

which_oscillates periodically in time with frequency o
=u/\1+u?.

The reason why the McLaughlin-Scott formula for
breather decay [formula (5.5) in Ref. 10] fails to predict cor-
rectly the dissipative dynamics of a breather is the following.
The breather is an oscillatory solution that is characterized
by some “phase” that depends on the history of the evolu-
tion. In their general formulation McLaughlin and Scott treat
this difficulty by introducing the history-dependent term
I ﬁou(t’)dt’ and allowing additional time-dependent modula-
tion of the free parameters (such as initial positions of flux-
ons or phases of breathers) in the nonperturbed solution.®!”
The modulation of the free parameters is governed by addi-
tional differential equations. Obviously, this leads to addi-
tional complications because of the coupled differential
equations for the modulated parameters. Moreover, with such
a modulation the original solution no longer satisfies the non-
perturbed sine-Gordon equation exactly so that additional
perturbation terms appear.'? Here we describe a method that

PHYSICAL REVIEW B 74, 214303 (2006)

does not involve the modulation of free parameters, but cor-
rectly deals with the time-dependent dynamics due to an ap-
propriately chosen ansatz of the nonperturbed sine-Gordon
solution.

Consider a solution of the sine-Gordon equation (1) in the
form @(g(u)x,g(u)ut,u) with g(u)=1/\1+u?. Such a param-
etrization is natural for the sine-Gordon equation and obvi-
ously comprises the special cases of a soliton (2) and a
breather (3). The sine-Gordon Hamiltonian is a functional of
the field variable ¢,
¢

o) 2 2
H[¢] = dx{—+ﬂ+l—cos (p:|. 4)

a0 22
Substitution of ¢=@(g(u)x,g(u)ut,u), gives the effective en-
ergy as a function of a single parameter u,

H3(u) = HS (g (u)x, g(w)ut,u)].

The second argument of ¢(g(u)x,g(u)ut,u), which we
call here a phase T(r)=g(u)ut, can be written in different
ways, such as T(r)=g(u)[qudt’ or T(t)=[{g(u)udt’. Obvi-
ously, in the case of u independent of time these cases are
equivalent and the choice does not make any difference.
However, this definition of the phase is very important when
taking into account the influence of perturbations, as will be
shown below.

In the presence of perturbations we assume that the domi-
nant effect is to modulate the parameter u=u(r). In other
words, with an appropriate choice of u(r) we may satisfy the
perturbed sine-Gordon equation

qb_(pxx'i-Sin(P:Ef

by the function ¢=¢@(g(u(r))x,T(¢),u(r)). Here, we take the
perturbation ef in a general form

€f=- E i 0(x — x;)sin @ — y— a¢,

l

which may include pointlike inhomogeneities u; that modify
locally the critical current density of a Josephson junction,
external bias 7y, and damping characterized by parameter a.
In contrast to the case of constant u, the choice of nonper-
turbative solution is not unique anymore. Indeed, depending
on the choice of the phase 7(r), we come out with different
functions of 7. We will show that with the appropriate choice
of the phase T(¢) we may correctly describe the time evolu-
tion of localized sine-Gordon solutions in the presence of
perturbations. We describe the dynamics by a single modu-
lated parameter u=u(r) without introducing additional modu-
lation of the free parameters. This gives considerable simpli-
fication and improvement because the other free parameters
such as initial location of solitons or initial phases of breath-
ers remain fixed and do not result in auxiliary differential
equations like those introduced in Ref. 10.
Consider the ansatz

@(g(u()x, T(1),u(r)), (5)
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T(t) = f gu(t"))u(t)dr',
0

where function ¢ is an exact solution of nonperturbative
sine-Gordon equation (1). In further consideration we omit
highlighting the explicit dependence of the functions u
=u(r) and T=T(z) for typographical convenience. Obviously,
the drawback of the time modulation of u affects the time
derivative of ¢,

. d . )
¢= d—t<p(g(u)x, T,u) = @18,Ux + @rgu + @3id,

where ¢;, ¢,, and @5 are derivatives of ¢ with respect to the
first, second, and third arguments correspondingly. As we
consider localized solutions confined in some area |x|<C,
the term ¢,;g’(u)ux is of the order of O(e). The third term
also can be neglected as it does not contain explicit linear
terms in x and ¢. Therefore, denoting ¢;= ¢,, we get

¢=@rgu+0(e), (6)

which remains valid even in the limit of large times, #— .
Obviously, another choice of T(¢) would spoil this equation
with terms explicitly dependent on time 7; e.g., for T(r)
=g(u(r))[ou(t')dt' we would have

t
@(g(w)x, T,u) = @18,4ix + @rgu + @28t f u(t')dt' + gsii,

0
which contains a nonzero term [(u(z')dt’ proportional to 7.
Thus, in this case the dynamics would not be correctly de-
scribed on large time scales #— . Mclaughlin and Scott
overcome this problem introducing additional modulation of
free parameters. Substituting Eq. (6) into Eq. (4) we obtain
the effective energy as a function of u(z),

HT (g (u(0)x, T(1),u(t))] = Hygu(0)), ()

which is valid for any values of 7. It is important to note that
this expression coincides exactly with the effective energy of
nonperturbed solution (4) and depends on time indirectly
only via u(z).

In the presence of external forces, we may write the full
Hamiltonian,

H=H+H"

and take into account the dissipative perturbations affecting
the energy dissipation rate:'?

dH

il f_w agdx. (8)

The Hamiltonian H” serves to describe nondissipative per-
turbations induced by external potential forces. This could be
microshorts, microresistors, or applied driving current:

HF = f“ (E u;0(x — x;)(1 = cos @) + 'yqo)dx.

—00

Thus, from Eq. (8),
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dHSG
dt

:—f (E i 0(x — x;)@ sin ¢ + yp + a¢2>dx.
-0 i
Substituting (7), we obtain the equation for parameter u,

SG
u'dHeff
du

- f (E Hi6(x = x;) @ sin @ + yP + aqbz)dx,

)

where ¢=¢(g(u)x,T) and ¢= @;g(u)u should be substituted.
Equation (9) is coupled to the equation for 7,

T=g(u)u. (10)

In some cases it can be convenient to rewrite this system of
differential equations for independent variable 7,

HS G

d d -
ﬁ=—(7;ﬁg(u)u> fx( : M;8(x = x;) @ sin @ + y¢

+ a¢2)dx,

= [t (11)

The dynamics is described by u(7(¢)), where T(¢) is an in-
verse function of #(7).

II1. PINNING BY A MICRORESISTOR

Let us consider the following ansatz for a single soliton
solution:

o(g(u)x,T) =4 arctan exp[g(u)x - T], g(u) =1/ \N1-u?,

subjected to the attractive potential of a microresistor repre-
senting an inhomogeneity with locally decreased critical cur-
rent density of a Josephson junction. Then the appropriate
term, sin ¢, of the sine-Gordon equation (1) is modified with
the perturbation

€f =— no(x)sinp, ©<0,

which represents the local change of the critical current den-
sity. Here the parameter u describes the relative change of
the critical current density on the microresistor. The energy
of a soliton is equal to

8
B = ==

V1-u

From Egs. (9) and (10) we obtain the next system of coupled
differential equations,

li = %M(l — u?)sech’[T(1) Jtanh[T(z)],

= —— (12)
VI—u?
We have found that after some simplifications, the

McLaughlin-Scott formula (4.3) from Ref. 10 can be reduced

214303-3



D. R. GULEVICH AND F. V. KUSMARTSEV

u

1.4
1.2

1
0.8
0.6
0.4
0.2

T
2 4 6 8 10

FIG. 2. The dependence of the speed u(7) on the phase T cal-
culated using perturbation theory for localized sine-Gordon solu-
tions at different damping rates. The top curve corresponds to the
damping constant @=0.05, the middle curve to @=0.01, and the
lower curve to a=0.005.

to exactly the same system of differential equations. Al-
though both approaches lead to exactly the same result,
McLaughlin and Scott’s formulation is, obviously, more
cumbersome.

IV. DECAY OF A BREATHER
Consider a breather solution

sin T )
u cosh[g(u)x]/’

with g(u)=1/y1+u?. As a perturbation we consider a dissi-
pative term in the form

o(g(u)x,T,u) =4 arctan(

€f =— a¢.

Such a term may describe a normal current in the Josephson
junction and, therefore, it is responsible for Ohmic losses.
The effective energy is

16
HS(u(r)) = —.
) = o

From Eq. (11) we obtain the next system of coupled differ-
ential equations,

sin T )
Vsin? T+ u?

f
sin Tsin? T + u?

2
u” arctanh
du (14 u?)? cos®> T (

=«
dr sin® T+ u?

b}

dt \s"l +u?

, 13
dar u (13)

where u=u(T(z)). This is a result that may not be obtained
from the McLaughlin-Scott theory by straightforward ma-
nipulation. The system can be solved numerically. For an
illustration we present the solution of these equations in Figs
2 and 3. There the initial conditions are taken as u(0.1)

PHYSICAL REVIEW B 74, 214303 (2006)

50
40
30
20
10

T
2 4 6 8 10

FIG. 3. The dependence of the time 7 on the phase T calculated
using perturbation theory for localized sine-Gordon solutions at dif-
ferent damping rates. The top curve corresponds to the damping
constant a=0.005, the middle curve to «=0.01, and the lower curve
to the highest damping a=0.05.

=0.1 and #(0.1)=0.1. One may notice the steplike character
of the dependence u(T); see Fig. 2. The size of the steps
increases with damping, indicating the importance of the in-
troduction of the phase T(r). This phase has also nontrivial
dependence on time . Its inverse function #(7) is presented
in Fig. 3. One may notice that at some values of T there is a
fast change of the slope. Obviously this is related to the
steplike character of the dependence u(T). The dissipative
dynamics of a breather is also well reflected by the time
dependence of its energy, Fig. 4. The results are in agreement
with our numerical simulations using the complete sine-
Gordon equation with dissipative term.
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FIG. 4. Dissipative dynamics of a sine-Gordon breather: Depen-
dence of the energy H5C of a breather on time ¢ calculated using
perturbation theory for localized sine-Gordon solutions (thin line).
Dependence of the energy H5C of a breather on time ¢ calculated by
direct numerical simulations of the sine-Gordon equation with

damping is shown by the thick solid line. The damping constant is
a=0.01.
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In the case of Josephson junctions, which are usually de-
scribed by the sine-Gordon equation, the time parameter ¢ is
normalized to the plasma frequency w,. Our results indicate
that the breather lifetime is about 1/(aw),). Typically, w,
=10'2 s7! for Josephson junctions implemented with Nb and
w,,:lO“ s~! for high-temperature superconductors such as
BSCCO (bismuth strontium calcium copper oxide). Thus, the
lifetime of a breather excitation in Josephson junctions made
from Nb or BSCCO characterized by the level of dissipation
constant «=0.01 would be of the order of nanoseconds.

V. CONCLUSION

In summary, we have shown that our perturbation theory
describes well the dynamics of localized excitations sub-
jected to the influence of external forces such as various
inhomogeneities and damping associated with quasiparticle
current. In particular, we have described a fluxon trapped in
a potential well which could be related to a microresistor in
the Josephson junction. Here the equations derived with the
use of our method coincide identically with equations de-
rived by McLaughlin and Scott.!” However, the derivation of
these equations obtained by our method is significantly sim-
pler. Second, we have described the decay of the breather
under dissipation. In this case, the equations describing such
a decay are different from McLaughlin and Scott’s.' More-
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over, according to our calculation, the one-dimensional sine-
Gordon breather decays significantly faster, see Fig. 1. In
order to resolve this difference we have performed numerical
simulations with the dissipative sine-Gordon equation. The
results of these numerical simulations are in close agreement
with our theoretical results. The comparison of our perturba-
tion theory with the McLaughlin-Scott calculation'® indicates
that the history dependence of the breather evolution has a
strong influence on its dynamics even at low damping.

To conclude, we have developed a perturbation theory
which perfectly describes the localized-in-space solutions of
the sine-Gordon equation. Such a study can be important for
new devices such as fluxon colliders or other devices'? based
on the recently discovered flux cloning effect'® where the
dissipative dynamics and the breather excitations may play a
key role. The theory may allow generalization to higher di-
mensions. This can be of use to study localized pulsating
solutions of the sine-Gordon equation in two spatial
dimensions."”
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