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I. INTRODUCTION

The quasicontinuum �QC� method1–3 is one of the most
successful multiscale techniques for simulating static proper-
ties of crystalline solids. It combines continuum and atomis-
tic descriptions of solids in a rather seamless way, thus al-
lowing for an efficient description of the system with
accuracy comparable to that of the atomistic model but at a
much smaller cost. This is implemented in the setting of a
piecewise linear finite element method through two main
steps: kinematically by introducing representative atoms
�rep-atoms� to reduce the number of degrees of freedom in
regions where the atomic displacement is smooth; energeti-
cally by introducing the simplified summation rule based on
the so-called Cauchy-Born �CB� hypothesis to approximately
compute the total energy of the system. According to
whether CB rule is used, the computational domain is di-
vided into local and nonlocal regions. In the local region the
summation is done element-wise using CB rule. This corre-
sponds to a continuum approach of nonlinear elasticity with
the stored energy functional obtained from CB rule. Full
atom summation is used in the nonlocal region. In addition,
QC uses an adaptive mesh refinement strategy in order to
adaptively select the representative atoms and decide
whether a more continuum-like or atomistic-like approach
should be used locally.

QC is a typical example of a multiscale method that uses
multiple levels of physical descriptions, here the atomistic
and continuum models of the system. Such a methodology
raises questions regarding their accuracy and stability. For
QC, this problem is manifested by the existence of the so-
called “ghost force” At the equilibrium state the forces on the
atoms are not zero, thus the equilibrium state is no longer at
equilibrium in a QC description. This is a typical problem for
such an energy-based multi-physics methodology, shared, for
example, by all the QM-MM methods that combine quantum
mechanics and molecular mechanics descriptions �see, for
example, Ref. 4�. Even though such forces can always be
corrected by hand �for example, by introducing some dead
load, as is suggested in Ref. 3�, typically such correction
schemes are not done at the level of the energy. One excep-

tion is the work of Shimokawa et al.5 which we will return to
later.

The issue of “ghost force” is just one aspect of the prob-
lem of accuracy. More generally, what we need is a frame-
work under which issues of accuracy for such coupled meth-
odologies using multi-levels of physical descriptions can be
discussed. This is the main purpose of this series of papers.
In this first paper, we will focus on QC with classical atom-
istic models. In subsequent papers, we will discuss QM-MM
as well as nonlocal QC methods using various models of
quantum mechanics, such as the tight-binding model and
density functional theory.

As we will see later, there are two sources of inconsis-
tency between the continuum and the atomistic models when
computing the total energy in QC. One is that the continuum
approach using the Cauchy-Born rule is purely local, de-
pending only on the nearest vertices on the finite element
mesh, whereas the full-atom summation is usually nonlocal
depending on the range of the atomic interaction. The other
is that the continuum approach is naturally an element-based
summation rule, whereas the full-atom summation is more
naturally associated with each of the atoms. Our strategy in
this paper is to treat the two problems separately, by intro-
ducing two interfaces where the two transitions take place, a
local/nonlocal interface and an atom-based/element-based in-
terface. The second interface is inside the local region. Be-
tween the two interfaces, we will introduce an atom-based
summation rule which is a natural modification of the con-
tinuum approach based on the Cauchy-Born rule.

In this paper, we will introduce a way of calibrating the
local truncation error in nonlocal QC. We will discuss how
one can achieve uniform first-order accuracy by modifying
the way energy is computed at the local-nonlocal interface.
As we will demonstrate, this problem can be reduced to that
of a reconstruction problem: At the local/nonlocal interface,
how do we reconstruct the local environment in order to
compute the energy of the representative atoms? We will
formulate a condition, which is both necessary and sufficient,
on the reconstruction scheme in order to guarantee that the
local truncation error is uniformly first order. This condition
can be roughly stated as follows: If we group together pairs
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of atoms that in the equilibrium configuration lie on the same
line and with the same distance apart, then for uniformly
deformed configurations, the dependence of their recon-
structed positions on any other fixed atom cancels out. The
quasi-nonlocal reconstruction scheme can be viewed as a
simplified form of this condition �which is then sufficient but
no longer necessary� in which each pair of atoms form their
own group. Our extension of this condition puts together the
pairs of atoms that are co-linear and with the same distance
apart. We will then discuss a general reconstruction scheme
under which the local truncation error is uniformly first or-
der. In the end, we will show briefly that for finite-range
atomic potentials, one can, in principle, sum the energy ex-
actly in O�Nrep� cost, bypassing the CB rule and thus elimi-
nating the errors in the summation step.

II. THE QUASICONTINUUM METHOD

We start with a brief review of the QC method and nota-
tions used in the following sections. QC starts with an un-
derlying atomistic model of the material which is considered
to be accurate. This could, in principle, be a quantum-
mechanics based description such as a tight-binding model
or models based on the density functional theory �DFT�, but
in the present paper we will focus on atomistic models using
empirical potentials.

We denote by yi and xi the positions of the ith atom in the
deformed and undeformed configurations, respectively. For
simple crystalline solids, the undeformed state can be repre-
sented as the collection of points with the form

x = n1A1 + n2A2 + n3A3, �1�

where A1, A2, and A3 are the basis vectors, and n1, n2, and n3
are integers. The displacement vector for the ith atom is de-
fined as

ui = yi − xi. �2�

The total energy of the system can be written as a sum
over the energy of each atom,

Etot�y� = �
i=1

N

Ei�y� = �
i=1

N

Ei��y1,y2, . . . ,yN�� , �3�

where Ei is the energy associated with the ith atom, which
depends on the positions of the other atoms in the deformed
configuration and has finite range, N is the number of total
atoms in the solid.

If some external load is applied to the system, the total
energy of the system can be written as

��y� = Etot�y� − �
i=1

N

fiyi, �4�

where −fiyi is the work done by the external load fi on atom
i.

The actual displacement of the atoms can, in principle, be
found by minimizing the above total energy functional. In
practice, this is often very expensive and uninformative: Not
only is the computational cost quite large, the information of

interest is often buried together with a huge amount of unin-
teresting data. In QC, one makes the observation that in re-
gions where the atomic displacement is rather smooth, there
is no need to include the position of every atom as an inde-
pendent degree of freedom, since the deformation in these
regions can be represented with satisfactory accuracy by a
much smaller set of representative atoms. This idea is imple-
mented in QC through a set of kinematic constraints—
reducing the number of degrees of freedom by introducing
representative atoms �rep-atoms� and represent the displace-
ment of all other atoms in terms of the displacement of the
representative atoms.

Representative atoms are selected using an adaptive mesh
refinement procedure over finite element meshes. The repre-
sentative atoms are vertices of the underlying triangulation.
Piecewise linear finite elements are used. This restricts the
method to first order accuracy.

The kinematic constraint for the displacement of the at-
oms is given by:

uh�xi� = �
j=1

Nrep

Sj�xi�u j , �5�

where Sj�x� is the basis function of the underlying finite
element space associated with the jth rep-atom, and Nrep is
the number of rep-atoms, Nrep�N.

The total energy of such a system is now a function of the
positions �displacements� of the rep-atoms only. However, to
compute this energy by direct summation using the original
atomistic model would still require visiting all the atoms. QC
bypasses this by introducing approximate summation rules.

A. Element-based summation rule

In QC, the computational domain is divided into local and
nonlocal regions according to the smoothness of the dis-
placement field uh. Inside the nonlocal region where defor-
mation is large, all the atoms are rep-atoms, hence the energy
associated with these atoms can be computed using direct
summation.

Inside the local region, the total energy is computed
element-wise by using the Cauchy-Born rule on each ele-
ment. For simple crystals, the CB rule works as follows
�there is a simple generalization to complex crystals, see
Refs. 6 and 7�: Let F=�u be the deformation gradient tensor
of a uniform deformation, and E0�F� be the energy of the
unit cell in a deformed lattice when its lattice vectors are
deformed according to F,

ai = FAi. �6�

Here ai and Ai are the lattice vectors in the deformed and
undeformed configurations, respectively. The strain energy
density at F is given by

WCB�F� =
E0�F�

�0
, �7�

where �0 is the volume of the unit cell in the equilibrium
state. The total energy associated with an element is simply
this energy density evaluated at the deformation gradient as-
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sociated with this element �Fe� and multiplied by the volume
of this element ��e�. The total potential energy in the local
region is simply the sum of the energies on each element,

Elocal = �
e=1

Nelement

�eWCB�Fe� . �8�

The total potential energy of the system for the QC method is
the sum of the energy of the local and nonlocal regions,

EQC
tot = Elocal + Enonlocal. �9�

This formulation of the summation rule introduces an in-
consistency across the local/nonlocal interface: The energy in
the local region is computed for each element, whereas the
energy in the nonlocal region is naturally computed for each
rep-atom. Formally, the energy of the local region can be
rewritten as a sum over all the rep-atoms:

Elocal = �
j

� jEj
el, �10�

where the energy associated with each local atom is defined
as

Ej
el =

1

� j
�

e

� j,eWCB�Fe� . �11�

One possible way to obtain the weights � j,e is using Voronoi
diagram associated with the triangulation. � j is the total
weight,

� j = �
e

� j,e. �12�

However, transition between these two formulations may
also introduce inconsistency at the interface where this tran-
sition takes place.

B. Cluster-based summation rule

Knap and Ortiz8 proposed an alternative way of approxi-
mating the energy by introducing a class of summation rules
using clusters of atoms. The energy function is sampled on
clusters �neighborhoods� of the rep-atoms. Each cluster may
be regarded as a representative crystal where the state and
behavior of the crystal are sampled.8 More specifically, de-
note by Cj the cluster around the jth rep-atom, Ej

cluster is
approximated by

Ej
cluster =

1

�Cj�
�

k�Cj

Ek, �13�

where �Cj� is the number of atoms in the cluster Cj, and Ek is
the atomic energy of the kth atom �not necessarily a rep-
atom�. Then the local energy is computed as

E = �
j

� jEj
cluster. �14�

The clusters are chosen so that they are separated from each
other.

This summation rule introduces an approximation to the
energy and forces in the local region. This approximation can
be improved by increasing the cluster size.

C. General summation rules

In general, the energy of the system can be expressed as

EQC
tot = �

j

� jEj . �15�

In this form, the problem reduces to the computation of Ej.
The element-based and cluster-based summation rule are ex-
amples of different choices of Ej, using CB rule and cluster
sampling, respectively. The energy associated with each rep-
atom Ej depends on the local environment of the rep-atom.
Therefore, the real issue is how to reconstruct the local en-
vironment of each rep-atom. Well inside the nonlocal region,
this is not a problem since, naturally, we will use the exact
positions of nearby atoms, each of which is a rep-atom. But
in the local region and on the interface between the two
regions, one needs to reconstruct the relative atomic posi-
tions with respect to the rep-atom.

The error in QC comes from two main sources. In the
local region the error comes mainly from the kinematic con-
straint and the CB rule used. This source of error can be
understood following the work of E and Ming.7,9 More inter-
esting is the error introduced at the interface of the local and
nonlocal region, where the “ghost forces” are. As is well-
known and is shown again below, both the element-based
and the cluster-based summation rule will, in general, intro-
duce the so-called “ghost forces”, i.e., the forces on the rep-
atoms are not zero in the undeformed state.

III. THE ISSUE OF GHOST FORCE

Let us start with simple examples to illustrate the issue of
“ghost forces”. We will first show that element-based sum-
mation rule generates “ghost forces”. This is a manifestation
of the inconsistency between the summation rules used in the
local and nonlocal regions.

Consider a one-dimensional chain shown in Fig. 1. Let
atom 0 be the interface between the local and nonlocal re-
gions, with the local region on the right and the nonlocal
region on the left. For simplicity, we also assume that all
atoms are rep-atoms. We will also assume that the atoms
interact with each other with a pairwise potential. It is easy to
see that if the interaction is limited to the nearest neighbors,
CB is the same as direct summation. In this case, the
element-based summation rule is exact, and there is no ghost
force. However, if the interaction range contains the second
nearest neighbors, according to the summation rule, we have

E3̄ =
1

2
„V�r5̄3̄� + V�r4̄3̄� + V�r3̄2̄� + V�r3̄1̄�… ,

E2̄ =
1

2
„V�r4̄2̄� + V�r3̄2̄� + V�r2̄1̄� + V�r2̄0�… ,

E1̄ =
1

2
„V�r3̄1̄� + V�r2̄1̄� + V�r1̄0� + V�r1̄1�… ,

FIG. 1. 1D chain.
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E0 =
1

2
„V�r2̄0� + V�r1̄0� + V�r01� + V�2r01�… ,

E1 =
1

2
„V�2r01� + V�r01� + V�r12� + V�2r12�… ,

E2 =
1

2
„V�2r12� + V�r12� + V�r23� + V�2r23�… . �16�

Therefore, the forces on the atoms with index 1̄, 0, and 1 are
given by

f 1̄ = − V��r3̄1̄� − V��r2̄1̄� + V��r1̄0� +
1

2
V��r1̄1� ,

f0 = − V��r2̄0� − V��r1̄0� + V��r01� + 2V��2r01� ,

f1 = −
1

2
V��r1̄1� − 2V��2r01� − V��r01� + V��r12� + 2V��2r12� .

�17�

In the equilibrium state, we have

f 1̄ = −
1

2
V��2�� ,

f0 = V��2�� ,

f1 = −
1

2
V��2�� , �18�

where �=x1−x0 is the lattice constant.
From this example, we see that ghost force arises due to

the asymmetry in calculating the energies in the local and
nonlocal regions. The energy associated with the atom in-

dexed by 1̄ depends on y1, but the energy associated with the
atom indexed by 1 does not depend on y1̄.

Similarly, cluster-based summation rule also generates
“ghost force.” Consider a one-dimensional chain shown in
Fig. 2. Let us assume that all the atoms except atom 0 are
rep-atoms with cluster size 1, i.e., the cluster for each rep-
atom contains simply the rep-atom itself. Assume that the
atoms interact via a pairwise potential whose interaction
range is limited to the nearest neighbors. According to the
cluster-based summation rule, we have

E1̄ =
1

2
�V�r2̄1̄� + V�1

2
r1̄1	
 ,

E1 =
1

2
�V�1

2
r1̄1	 + V�r12�
 ,

E2 =
1

2
„V�r12� + V�r23�… ,

E3 =
1

2
„V�r23� + V�r34�… . �19�

It is clear that �1̄=�1= 3
2 and �i=1 for i� ±1. When the

system is at equilibrium, the force acting on atom 1 is

f1 = −
1

2
V���� . �20�

Thus, by symmetry

f 1̄ =
1

2
V���� . �21�

This is a “ghost force.” However, it is expected that the
“ghost force” decreases as cluster size increases.

At the heart of the matter, the existence of “ghost force” is
a manifestation of the well-known problem of compatibility
between different physical descriptions at the interface. The
problem discussed here is the simplest of its kind. Next we
discuss how such “ghost forces” can be eliminated and uni-
form accuracy can be achieved by using more sophisticated
summation rules.

IV. THE QUASI-NONLOCAL METHOD

In order to overcome the difficulty with “ghost forces,”
Shimokawa etc.5 introduced the notion of quasi-nonlocal at-
oms at the local-nonlocal interface. The concept of quasi-
nonlocal atoms is very simple: In the energy computation,
these atoms act as local atoms when interacting with local
atoms and as nonlocal atom when interacting with nonlocal
atoms. Therefore quasi-nonlocal atoms are limited to a
neighborhood of the interface between the local and nonlocal
regions.

Let us revisit the 1D chain example using the formulation
of quasi-nonlocal atoms, see Fig. 1. Again we assume pair-
wise potential V with second nearest neighbor interaction.
Now atom 0 and 1 are quasi-nonlocal atoms. All the atoms
on the left are nonlocal atoms and those on the right are local
atoms. The energy associated with atom 0 can be written as

E0 =
1

2
„V�r2̄0� + V�r1̄0� + V�r01� + V�2r01�… , �22�

which is the same as that of an interface atom in the QC
method. However, the energy associated with atom 1 is now

E1 =
1

2
„V�r1̄1� + V�r01� + V�r12� + V�2r12�… , �23�

which is different from that in the QC method—there the
term V�r1̄1� is replaced by V�2r01�. The energies associated
with the local and nonlocal atoms are calculated in the same
way as in the original QC method. It is easy to show that this
eliminates the “ghost forces.”

In order to eliminate “ghost force” using the quasi-
nonlocal approach, the size of the interaction range has to be

FIG. 2. 1D chain with cluster-based summation rule.
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limited. More precisely, the interaction range is limited to
second, third, fourth, fourth, and third nearest neighbors for
1D, 2D triangular, 3D h.c.p., f.c.c., and b.c.c. lattices,
respectively.5

V. GENERAL CONSIDERATIONS OF ACCURACY

The existence of “ghost force” is just one manifestation of
the lack of accuracy at the interface between different levels
of physical description. Our goal is to introduce quantitative
measures to calibrate the accuracy at the such interfaces and
to construct coupling methods that are uniformly accurate.

Definition 1. Consider a crystal with displacement ui
=u�xi� where u is a smooth function, i.e., yi=xi+ui. Let uh

be the piecewise linear interpolation of u over the finite ele-
ment triangulation used in QC, and yi

h=xi+ui
h. Let f��y� be

the force on rep-atom � computed from the full atomistic
model, and let f�

QC�yh� be the force on rep-atom � computed
using QC. We say that the local truncation error of QC is
uniformly first order, if

�f��y� −
f�

QC�yh�
��

� � C� , �24�

where � is the largest diameter of the elements and � · �

=max��·� is the L� norm �maximum norm� of discrete func-
tions defined on the finite element mesh.

Remark. We can similarly define “locally uniform first
order accuracy” by restricting the L� norm to a subset of the
whole mesh. In particular, we will be interested in locally
uniform first order accuracy at local/nonlocal interface.

The next lemma plays the role of the well-known
Bramble-Hilbert lemma in approximation theory.

Lemma 2. The condition (24) is equivalent to requiring
that for uniformly deformed state, f�

QC=0.
Proof. Necessity is obvious. For sufficiency, consider a

fixed �. Let uh,� be the uniform deformation determined by
atom �:

uh,��x� = uh�x�� + �uh�x�� · �x − x�� �25�

and

yi
h,� = xi + ui

h,�. �26�

As discussed in Ref. 7, we have

�f��y� − f��yh,��� � C� , �27�

since �y−yh,�� is locally second-order and the interaction has
finite range. By a similar argument, we also have

1

��

�f�
QC�yh� − f�

QC�yh,��� � C� . �28�

From the assumption, we know that f�
QC�yh,��=0, since by its

definition, yh,� is a uniformly deformed state. Also, we have
f��yh,��=0 due to the symmetry of the potential. Therefore,
�24� follows from �27� and �28�. �

As we have seen earlier, computing the energy for the
system is equivalent to computing Ei for each rep-atom. For
this purpose, it suffices to reconstruct the local environment

of each rep-atom. We can then compute the associated en-
ergy using the atomic potential. The summation rules we
have discussed in this paper all correspond to specific recon-
struction schemes for the environment of the rep-atoms.

We denote by R j�k� the reconstruction of the relative po-
sition of the atom k with respect to the atom j. Well inside
the nonlocal region, reconstruction is not a problem: We may
simply use the exact position of nearby rep-atoms. We de-
note the reconstruction scheme using the exact position as
R j

a�k�=yk−y j. Inside the local region and at the local-
nonlocal interface, one needs to reconstruct the relative
atomic positions with respect to the rep-atom.

The reconstruction scheme that corresponds to the
element-based summation rule is as follows. To compute Ej,
for each element e whose vertices contain j, we use the local
deformation gradient Fe to reconstruct the positions of
nearby atoms, by assuming that the system is locally under
uniform deformation. We denote the relative position of atom
k with respect to j by R j,e

CB�k�, since it depends on the rep-
atom j as well as the element e considered.

For our purpose, it is helpful to consider the following
reconstruction scheme associated with a rep-atom, which is
obtained by combining the reconstruction schemes from the
surrounding elements. This is done as follows. The whole
space is divided into sectors by extending the surrounding
elements of the rep-atom radially. If the atom k is located in
the sectorial extension of element e, we define the recon-
struction of the position of atom k by R j,e

CB�k�, see Fig. 3. In
this way, we define a modified reconstruction operator, R j

CB,
which only depends on atom j but not on the element.

This reconstruction scheme also corresponds to a summa-
tion rule: Once the local environment of the rep-atom is con-
structed, one can compute the energy associated with that
rep-atom by direct summation. We call this summation rule
the atom-based summation rule.

The quasi-nonlocal approach also corresponds to a modi-
fication of the reconstruction scheme corresponding to the
original QC method: For a quasi-nonlocal atom i, we define

Ri
QN�j� = Ri

a�j� , if j is nonlocal atom,

Ri
CB�j� , otherwise.

� �29�

The reconstruction operators for other atoms are kept un-
changed.

FIG. 3. �Color online� Modified reconstruction scheme based on
the CB rule.
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To better understand the reconstruction scheme, let us re-
visit the 1D chain example, Fig. 1. We will focus on the
reconstruction operator R0 and R1, since atom 0 and 1 are
quasi-nonlocal atoms. When atom 1 is considered,

R1
QN�1̄� = R1

a�1̄� = y1̄ − y1, �30�

since atom 1 is a quasi-nonlocal atom and atom 1̄ is nonlo-
cal. However, in the original QC method,

R1
CB�1̄� = 2�y0 − y1� . �31�

Therefore, the term V�2r01� appears in the energy formula-
tion. As we have shown, the reconstruction scheme for quasi-
nonlocal approach eliminates the “ghost forces.”

The origin of the “ghost force” and inconsistency comes
from two sources. One is the difference in the reconstruction
schemes: Inside the local region, the reconstruction operator
only depends on the nearest neighbor rep-atoms. The other is
the difference between the atom-based and the element-
based summation rules. To better understand the nature of
each of these two inconsistencies, we will introduce two in-
terfaces on which the two transitions take place separately:
The transition between the atomistic and CB-based recon-
struction takes place on the local/nonlocal interface, and
there is an additional interface inside the local region on
which the transition between the atom-based and the
element-based summation rules takes place.

VI. ACCURACY AT THE LOCAL/NONLOCAL INTERFACE

We first discuss accuracy at the local/nonlocal interface.
Without loss of generality, we will assume that each atom is
a rep-atom.

A. Geometrically consistent reconstruction schemes

We now discuss the general condition on the reconstruc-
tion scheme which guarantees uniform accuracy in the local/
nonlocal interface region. From Lemma 2, we see that this
condition has to be invariant under uniform deformation,
namely if the condition holds for a reconstruction scheme at
the equilibrium state, it continues to hold at any uniformly
deformed state. Observe that under uniform deformation,
even though some symmetries of the crystal are broken, the
translational and point inversion symmetry are preserved.
Therefore, we will divide all the atom pairs �i , j� into differ-
ent groups accordingly: The vectors connecting the pairs
within each group will have the same distance Rn and are
parallel to the same direction 	m in equilibrium. Notice that
the pairs �i , j� and �j , i� are generally different. It is clear that
this grouping is invariant under uniform displacement.

Definition 3. The reconstruction scheme is geometrically
consistent if for all k, n, and m,

�
�ri�j��=Rn

ri�j��	m

sgn�ri�j� · 	m�
�Ri�j�

�yk
= 0, �32�

where ri�j�=x j −xi denotes the relative position of atom j
with respect to atom i in the equilibrium state.

This condition depends only on the geometry of the crys-
tal. We will consider the class of potentials that satisfy the
following conditions:

�1� the potentials are invariant under translation: For ev-
ery constant vector r,

Ei�y� = Ei�y + r� , �33�

where y+r= �y1+r ,y2+r , ¯ ,yN+r�.
�2� the potentials are invariant under point inversion with

respect to the equilibrium lattice points:

Ei�y� = Ei„Ij�y�… , �34�

where Ij defined by Ij�y�= �2y j −y1 ,2y j −y2 , ¯ ,2y j −yN� is
the inversion operator with respect to atom j.

These conditions are satisfied by all the well-known po-
tentials such as the Lennard-Jones potential, Morse potential,
EAM potentials,10,11 Tersoff potential,12 Stillinger-Weber
potential,13 etc.

Next, we show that if the reconstruction scheme satisfies
this condition, then the resulting QC method is locally uni-
form first order accurate at the local/nonlocal interface.

Proposition 4. If the reconstruction scheme is geometri-
cally consistent, the resulting QC is locally uniform first or-
der accurate at the local/nonlocal interface.

Proof. Using Lemma 2, we only have to show that in
uniformly deformed states, the forces acting on the atoms all
vanish. We consider the force acting on atom k,

fk =
�Etot

�yk
= �

i

�Ei

�yk
= �

i,j

�Ei

�y j

�Ri�j�
�yk

= �
n,m

�
�ri�j��=Rn

ri�j��	m

�sgn�ri�j� · 	m�
�Ei

�y j
� · �sgn�ri�j� · 	m�

�Ri�j�
�yk

� .

�35�

According to the symmetry of the interacting potentials
�33� and �34� for fixed n ,m,

Bn,m = sgn�ri�j� · 	m�
�Ei

�y j

is independent of i and j in the uniformly deformed states.
We have

fk = �
n,m

Bn,m �
�ri�j��=Rn

ri�j��	m

sgn�ri�j� · 	m�
�Ri�j�

�yk
= 0. �36�

The last equality follows from �32�.
Next we show that geometric consistency is also a neces-

sary condition for local uniform first order accuracy at the
local/nonlocal interface.

Proposition 5. If for any potential satisfies (33) and (34),
the local truncation error is of uniform first order at the
local/nonlocal interface, then the reconstruction scheme
must be geometrically consistent.

Proof. Suppose that the condition �32� is not satisfied.
Then there exist k, n�, and m�, such that
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�
�ri�j��=Rn�
ri�j��	m�

sgn�ri�j� · 	m��
�Ri�j�

�yk
� 0. �37�

According to the same logic as in the proof of Proposition
4,

fk = �
n,m

Bn,m �
�ri�j��=Rn

ri�j��	m

sgn�ri�j� · 	m�
�Ri�j�

�yk
, �38�

where Bn,m=sgn�ri�j� ·	m�
�Ei

�y j
. By choosing a pairwise poten-

tial,

Vij = �y j − yi� , �ri�j�� = Rn�,ri�j� � 	m�,

0, otherwise,
� �39�

which certainly satisfies the condition �33� and �34�, we have

Bn,m = �sgn�ri�j� · 	m�
y j − yi

�y j − yi�
, n = n�,m = m�,

0, otherwise,
� �40�

which is indepent of i and j in the uniformly deformed state.
Therefore,

fk = Bn�,m� �
�ri�j��=Rn�
ri�j��	m�

sgn�ri�j� · 	m��
�Ri�j�

�yk
� 0. �41�

�

B. Analysis of the quasi-nonlocal method

The quasi-nonlocal approach is a special case of the gen-
eral consideration. To understand the connection, let us in-
troduce the following definition.

Definition 6. The reconstruction scheme satisfies the reci-
procity condition if

�Ri�j�
�yk

=
�R j�i�

�yk
, ∀ k � i, j . �42�

In the example of the 1D chain, according to the notion of

quasi-nonlocal atom, we have R1�1̄�=y1̄−y1 and R1̄�1�=y1

−y1̄, therefore,

�R1�1̄�
�y0

= 0 =
�R1̄�1�

�y0
. �43�

However, in the original QC method, since R1�1̄�=2y0−2y1,
the reciprocity condition is violated.

From the definition, it is obvious that if the reconstruction
scheme satisfies the reciprocity condition, it is geometrically
consistent. The difference is that in the reciprocity condition,
each group contains only two pairs of atoms, namely the
pairs �i , j� and �j , i�.

Proposition 7. If the reciprocity condition holds, the re-
sulting QC is locally uniform first order accurate at the
local/nonlocal interface.

Proof. This is a corollary of Proposition 4. �
The quasi-nonlocal reconstruction scheme uses the posi-

tions of the nearest neighbor atoms to reconstruct the relative
position of other atoms. Therefore, the method is limited to
case that along each line, the interaction only involves the
second nearest neighbors. If the interaction range is larger,
for example if it involves the third nearest neighbors along a
line, the reciprocity condition is violated. In Fig. 1, the re-
construction of atom 3 starting from atom 0 will use the
position of atom 1. However, the reconstruction of atom 0
from atom 3 does not involve atom 1, since it is not the
nearest neighbor of atom 3. Consequently, for the reciprocity
condition to hold, the interaction range is limited to second,
third, fourth, fourth, and third nearest neighbors for 1D, 2D
triangular, 3D h.c.p., f.c.c., and b.c.c. lattices, respectively.

C. Examples of geometrically consistent reconstruction
scheme

To find reconstruction schemes that are geometrically
consistent, instead of using either Ri

a�j� or Ri
CB�j�, we allow

linear combinations of Ri
a�j� and Ri

CB�j�,

Ri�j� = Ci�j�Ri
a�j� + �1 − Ci�j��Ri

CB�j� , �44�

where the Ci�j�’s are the coefficients to be determined. The
original QC and the quasi-nonlocal approach corresponds to
the case when Ci�j� equals to either 0 or 1. We further re-
quire that away from the interface, in the local region,
Ci�j�=0 in accordance with the CB rule and in the nonlocal
region, Ci�j�=1 in accordance with the atomistic reconstruc-
tion. Using these boundary conditions, we can solve the lin-
ear equation system �32� to determine the coefficients Ci�j�.
We now consider some examples.

First we go back to the example of the 1D chain, see Fig.
1. We will limit ourselves to interactions that involve upto
the fifth nearest neighbors. We do not need to specify 	m here
since there is only one direction. For the nth nearest neigh-
bors of atom i, we let

Ri�i ± n� = Ci�i ± n�Ri
a�i ± n� + �1 − Ci�i ± n��Ri

CB�i ± n� .

�45�

For boundary conditions, we let Ci�j�=1 for i
−5 and
Ci�j�=0 for i�5. This leaves a sufficiently wide transition
region for interactions that involve upto the fifth nearest
neighbors.

FIG. 4. �Color online� 2D triangular lattice, a1= �1/2 ,�3/2� and
a2= �1,0�.
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There is more than one solution of �32�. Table I shows
one set of possible solution with high symmetry. For simplic-
ity, we have replaced the notations Ci�i−n� and Ci�i+n� by
Ci

− and Ci
+, respectively. Note that the coefficients for n

=1,2 is nothing but the corresponding values used in the
quasi-nonlocal approach.

As a second example, we look at the 2D triangular lattice,
see Fig. 4. In this example, we assume that the interface is
along the a2 direction and is labeled i=0. The bottom half
uses the atomistic model and top half uses the continuum
model. By translational symmetry, the set of coefficients are
invariant along the interface. Now there are different direc-
tions for the same bond length. We plotted three directions of
bonds connecting the fourth nearest neighbors, and the other
three can be obtained by reflection with respect to a1+ 1

2a2.
Table II shows the coefficients along each direction for

different interaction ranges. Again, we select only one solu-
tion for each case here. As expected, up to the third nearest
neighbor, the coefficients are the same as the corresponding
values in the quasi-nonlocal formulation.

In Table III we give the coefficients for the face-centered
cubic �f.c.c.� lattice structure. One of the �111� planes is
taken to be the interface, see Fig. 5. Every atom on the same
�111� plane has the same set of coefficients.

Let us look at the fifth nearest neighbors of the atom i.
They stay on five layers of �111� planes which are labeled by

ABCAB from top to bottom, consistent with the fact that
f.c.c. lattices have ABC packing. There are only two different
types of directions in the current case. All the other possible
directions can be reached by rotation with respect to the
�111� direction and shift according to a vector within the
�111� plane. Along each direction, the atoms that interact
with atom i are labeled by counting the number of layers
separating them.

Again one can see that the coefficients we choose in Table
III up to the fourth nearest neighbor are the same as the
corresponding values in the quasi-nonlocal approach.

VII. TRANSITION BETWEEN ATOM-BASED
AND ELEMENT-BASED SUMMATION

In the analysis presented above, we have assumed for
simplicity that every atom in the system is a rep-atom. In
practice, this is, of course, not the case. In order to reduce the
computational cost, the element size should become larger
where the deformation is smoother. The summation rule used
in the last section essentially uses the local environment of
rep-atoms �which are vertex atoms� to determine the energy.
However, for large element, the environment of the vertex
atoms is not representative and the summation rules dis-
cussed will introduce large errors. Instead bulk atom �the
atom inside the element� dominates and we should use

TABLE I. Coefficients for 1D chain.

Rn C−5
− C−5

+ C−4
− C−4

+ C−3
− C−3

+ C−2
− C−2

+ C−1
− C−1

+ C0
− C0

+ C1
− C1

+ C2
− C2

+ C3
− C3

+ C4
− C4

+ C5
− C5

+

First 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

Second 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

Third 1 1 1 1 1 1 1 1 1 2/3 1 0 1 0 1/3 0 0 0 0 0 0 0

Fourth 1 1 1 1 1 1 1 5/6 1 1/2 1 0 1 0 1/2 0 1/6 0 0 0 0 0

Fifth 1 1 1 1 1 9/10 1 7/10 1 2/5 1 0 0 0 3/5 0 3/10 0 1/10 0 0 0

TABLE II. Coefficients for 2D triangular lattice.

Rn 	 C−4
− C−4

+ C−3
− C−3

+ C−2
− C−2

+ C−1
− C−1

+ C0
− C0

+ C1
− C1

+ C2
− C2

+ C3
− C3

+ C4
− C4

+

First �0,1� 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

First �1,0� 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

Second �1,1� 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Second �2,−1� 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

Third �0,2� 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Third �2,0� 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

Fourth �1,2� 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Fourth �2,1� 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

Fourth �3,−1� 1 1 1 1 1 1 1 2/3 1 0 1 0 1/3 0 0 0 0 0

Fifth �0,3� 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Fifth �3,0� 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0

Sixth �2,2� 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

Sixth �4,−2� 1 1 1 1 1 5/6 1 1/2 1 0 1 0 1/2 0 1/6 0 0 0

Seventh �1,3� 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Seventh �3,1� 1 1 1 1 1 1 1 2/3 1 0 1 0 1/3 0 0 0 0 0

Seventh �4,−1� 1 1 1 1 1 5/6 1 1/2 1 0 1 0 1/2 0 1/6 0 0 0
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element-based summation rule. Therefore, we need to con-
sider a second problem, which is the transition between
atom-based summation rule, which is more appropriate for
atoms near the local-nonlocal transition region, to element-
based summation rule, which is more appropriate well inside
the local region

Let us first examine the effect of changing one rep-atom
from atom-based summation to element-based summation.
Since the transition occurs in the local region, we can assume
without loss of generality that the interaction is limitted to
the nearest neighbor �in fact, the positions of the other neigh-
boring atoms depend on the the nearest neighbors since the
CB reconstruction is adopted�. We illustrate the issue by con-
sidering a 2D triangular lattice and the case that every atom
is a rep-atom. As shown in Fig. 6, the energy associated with
atom 0 is changed from atom-based summation to element-
based summation. For the atom-based summation, the energy
of atom 0 is

E0 = V�y0;y1,y2,y3,y4,y5,y6� , �46�

where V is the potential. For the element-based summation,
the energy is computed element-wise, and can be written as

E0
el =

1

6�
k

E0,ek
, �47�

where E0,ek
is the energy associated with the element ek. To

compute that energy, we use the three vertices of that ele-

ment to determine the positions of all the atoms. It is easy to
check that

�E0
el

�y0
=

�E0

�y0
= 0. �48�

To compute the force acting on atom 1, we observe that only
E0,e1

and E0,e6
depend on the position y1,

E0,e1
= V�y0;y1,y2,y0 − y1 + y2,2y0 − y1,2y0 − y2,y0 + y1 − y2�;

E0,e6
= V�y0;y1,y0 + y1 − y6,2y0 − y6,2y0 − y1,y0 − y1 + y6,y6� .

Therefore,

�E0
el

�y1
=

2

3
V6� +

1

3
V3� +

1

3
V5� � V6� =

�E0

�y1
, �49�

where

Vi� =
�E0

�yi
. �50�

TABLE III. Coefficients for 3D f.c.c. lattice.

Rn No. of layer C−2
− C−2

+ C−1
− C−1

+ C0
− C0

+ C1
− C1

+ C2
− C2

+

First 0 1 1 1 1 0 0 0 0 0 0

First 1 1 1 1 1 1 0 1 0 0 0

Second 1 1 1 1 1 1 0 1 0 0 0

Third 0 1 1 1 1 1 0 0 0 0 0

Third 1 1 1 1 1 1 0 1 0 0 0

Third 2 1 1 1 1 1 0 1 0 0 0

Fourth 0 1 1 1 1 1 0 0 0 0 0

Fourth 2 1 1 1 1 1 0 1 0 0 0

Fifth 1 1 1 1 1 1 0 1 0 0 0

Fifth 2 1 1 1 1 1 0 1 0 0 0

FIG. 5. �Color online� f.c.c. lattice.

FIG. 6. �Color online� All atoms except atom 0 �the circle one�
use atom-based summation, while atom 0 uses element-based
summation.
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By symmetry, if the energy of atom 0 changes from atom-
based summation to element-based summation, the nearest
neighbors of atom 0 will be subject to a nonzero force, even
if the system is at equilibrium. Here, we demonstrate that the
inconsistency between atom-based summation and element-
based summation introduces another source of error in the
computation of the force, i.e., a source of “ghost force.” This
will pose a restriction on the geometry of the interface of
transition from atom-based summation to element-based
summation. If the interface has a corner, for example as
shown in Fig. 7. According to the above calculation, it is
obvious that the force acting on atom 0 is not zero, since the
third nearest neighbors of atom 0 adopt element-based sum-
mation.

One possible solution to this problem is to use special
planes for this interface, as shown in Fig. 8. One can show

that in this case, the force on each atom is zero if the system
is under uniform deformation.

VIII. ACCURACY OF ELEMENT-BASED SUMMATION
RULE IN THE LOCAL REGION

In this section we discuss the accuracy of the element-
based summation rule inside the local region.

A. Piece-wise linear approximation of the displacement field

Under the assumption that the displacement field is piece-
wise linear, the CB rule makes an additional error by treating
every atom inside the element as having the same local en-
vironment as the bulk atoms. As illustrated in Fig. 9, atoms
in an element can be divided into bulk atoms, edge atoms,
and vertex atoms in 2D. For the 3D case, we have bulk
atoms, surface atoms, edge atoms, and vertex atoms accord-
ing to their relative position within one element. Without loss
of generality, we will consider the 2D case where only bulk,
edge, and vertex atoms appear.

First we examine the error of the energy calculation for an
edge atom. To estimate the magnitude of this error, let us first
consider a simplified problem shown in Fig. 10. The crystal
is homogeneously deformed with different deformation gra-
dients F1 and F2 on both sides of the interface. Denote by 	
the tangent direction of the interface. Then we have

F1	 = F2	 . �51�

Now we calculate the energy of a strip with width Lstrip.
Formally, the difference between the energy with full atom-
istic calculation and that with the CB rule is

FIG. 7. �Color online� Solid atoms use atom-based summation,
while circle atoms use element-based summation.

FIG. 8. �Color online� Flat interface. Solid atoms use atom-
based summation, while circle atoms use element-based
summation.

FIG. 9. �Color online� Illustration of different atoms.

FIG. 10. Edge atoms.
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�Estrip = Estrip − E1
tot,CB − E2

tot,CB, �52�

where Estrip is full atomistic energy of the strip, the last two
terms are the energy computed using CB rule for the two
regions, respectively. Although all three terms in the above
expression are infinite, the energy difference �Estrip is finite,
and only depends on atoms whose distance at the deformed
state to the interface are smaller than the cut-off distance Rc
of the empirical potential. For any atom i, say in the top half
of the crystal, the distance between i and a neighbor j in the
other half crystal is

Ri
a�j� = F1r0�i� − F2r0�j� = F1ri�j� + �F2 − F1�r0�j� ,

�53�

where y0 is some arbitrary point on the interface. However,
CB rule calculates this distance using the deformation gradi-
ent F1,

Ri,1
CB�j� = F1ri�j� . �54�

For any fixed j, we can select y0 such that �r0�j�� has the
minimum value, which is always smaller than the cut-off
distance Rc. As a consequence, we get

�Ri
a�j� − Ri,1

CB�j�� � C0�F2 − F1� . �55�

Thus the error in calculating the energy of atom i can be
estimated as

��Ei
strip� = �Ei��Ri

a�j��� − Ei��Ri,1
CB�j����

� C0 max� �Ei

�y j
��F1ri�j���� · �F2 − F1� . �56�

Notice here that the coefficient in front of �F2−F1� depends
on the deformed state instead of the reference state.

Now we have

��Eedge� � C�F1,F2��F2 − F1�Nedge, �57�

where

C�F1,F2� �58�

=C0 max� �Ei

�y j
��F1ri�j����, � �Ei

�y j
��F2ri�j����� �59�

depends on the deformed state instead of the reference state
and Nedge is the number of atoms near the interface.

In the same spirit of the CB rule, we can define the den-
sity of energy error due to the edge

WCB
edge =

�Estrip

Lstrip
. �60�

Thus, the energy correction along the bulk part of edges can
be estimated as

�Eedge = LedgeWCB
edge, �61�

where Ledge is the length of the edge.
A similar estimate can be derived for the vertex atoms,

��Evertex� � C�F1, . . . ,FN� �
i,j=1

i�j

Nvertex

�Fi − Fj� . �62�

Again the coefficient C�F1 , . . . ,FN� depends on the deformed
state.

This procedure of estimating the error due to edge and
vertex atoms also suggests a way to calculate the “exact�
atomistic energy of an element

Etot,h = EbulkNbulk + �
edge

�Eedge + �
vertex

�Evertex. �63�

Since the number of edges and vertices are proportional to
the number of rep-atoms in the system, the complexity of
this exact summation rule still proportional to the number of
rep-atoms Nrep.

B. Higher order approximation of the displacement field

QC uses piecewise linear functions to approximate the
displacement field u, the error of this approximation is sec-
ond order in displacement and first order in deformation gra-
dient,

�uh − u� � C�2, �64�

where � is the largest diameter of the elements, C is a con-
stant that depends only on u. The approximation of the en-
ergy is second order,7

�Etot,h − Etot� � C�2, �65�

and the accuracy of the forces is the first order,

�fh − f� � C� . �66�

Other than using piecewise linear function to approximate
the displacement field, we can also use higher order piece-
wise polynomials. In this case, the simple summation rule
used in local QC with the help of the CB rule does not apply
since the displacement field is not uniform on each element.
One can construct an alternative way of calculating the en-
ergy of the element using some quadrature rules as suggested
in Ref. 14. What one needs is the energy density at the
quadrature points of the elements and the energy associated
with the element is obtained using the quadrature rule. The
energy density at the quadrature points can be obtained using
CB rule.

IX. CONCLUSION

The problem of accuracy across the interface where two
different physical models are coupled together is the most
common and most important problem in multiscale, multi-
physics modeling. QC provides one of the simplest settings
for understanding this problem. As we discussed earlier,
there are two sources of inconsistency between summation
rules using the CB rule and full atom summation. One is that
the CB-based summation is purely local, depending only on
the nearest neighbor rep-atoms. The other is that the CB-
based summation is an element-based strategy, whereas the
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full atom summation is more naturally associated with each
of the atoms. These two problems are treated separately in
this paper by introducing two interfaces where the two tran-
sitions take place, a local/nonlocal interface and an atom-
based/element-based interface. The second interface is inside
the local region. The inconsistency at the local/nonlocal in-
terface can be reformulated in terms of the geometric com-
patibility of the reconstruction schemes, and we have found
the necessary and sufficient condition for locally uniform
first-order accuracy at the local/nonlocal interface. This con-
dition is geometric in nature. It contains the quasi-nonlocal
approach as a special case and it guarantees the elimination

of the “ghost forces.” The atom-based/element-based inter-
face is another subtle problem. Consistency at this interface
depends not only on the geometry of the underlying lattice
but also on the triangulation used in QC. We have understood
this problem in various cases but we have not found a gen-
eral condition for consistency at this interface.
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