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We examine the dependence of the critical Josephson current on the length L of the normal bridge N between
two bulk superconductors. This dependence turns out to be nonanalytic at small L. The nonanalyticity origi-
nates from the contribution of extended quasiparticle states with energies well above the superconducting gap.
This should be contrasted with the more familiar contribution to the Josephson current coming from Andreev
bound states localized in the normal region at energies below the gap.
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Owing to the rapid progress in nanofabrication,1–4 there is
a renewed interest in various aspects of the physics of
superconductor/normal-metal/superconductor �SNS� struc-
tures.5 The purpose of this paper is to point out a subtle
contribution to the Josephson current, flowing across the nor-
mal region. Specifically, we address the current carried by
the high energy, ���, extended states of the system. It leads
to a nonanalytic behavior of the critical current as a function
of the length of the normal region, L, at small L.

It is frequently stated6,7 that as the result of the Andreev
reflection13 the Josephson current is carried exclusively by
the Andreev bound states with the energies ���, localized
in the normal region. Indeed, the energies of such bound
states are sensitive to the phase difference, �, between the
superconductors. This leads to the �-dependent free energy
and thus to the supercurrent. The validity of this point of
view is well established in the two limiting cases of
long9,11,10 junction L��, and very short6–8 one, L /�→0,
where � is the coherence length of the superconductor. Thus
it came as a surprise for us that in between these two ex-
tremes, the physics appears to be more complicated. We find
that the Josephson current is shared between the localized
Andreev states and the extended above-gap states. The de-
pendence of the critical current on L at short lengths, L	�,
is not analytic and comes from the contribution of the
extended states.

The phase sensitivity of the energy levels originates from
the trajectories, which are reflected at least once from both
NS interfaces. Such trajectories, require propagation time
longer than the diffusion time across the normal region
L2 /D, where D is the diffusion constant. As a result, only
states with energy smaller than the Thouless energy, �

ETh=�D /L2, may exhibit sensitivity to the phase differ-
ence. In the long junction limit, the Thouless energy is small
compared to the superconducting gap, ETh	� �indeed, no-
tice that �=�D /�2�. Thus all the current-carrying states are
at the energy �
ETh	�. Since there are no states in the
superconducting leads at such energies, the Andreev bound
states of the normal region are indeed solely responsible for
the Josephson current.

The situation is more complicated for shorter junctions,
such that ETh��. One may expect that the extended states in
the energy range ����ETh contribute to the supercurrent.

Yet, in the only case treated analytically so far, namely in the
limit L /�→0 �or, equivalently, ETh→��, the entire current is
still given by the Andreev states6,8 with 0��
�. In this
paper, we show that this result is an artefact of the limit
ETh→� rather than a general principle. Specifically, the
spectral density of the Josephson current appears to be J���
��2 / �ETh�� in the energy interval �
�
ETh. Upon inte-
gration over energy, it results in the contribution to the criti-
cal current of the form �Ic���2 /ETh�ln�� /ETh�, nonanalytic
in the limit of the short normal region.

Summarizing the existing knowledge, one may write for
the critical current of an SNS structure

Ic =
g�

e
I���, � �

�

ETh
, �1�

where g is the conductance of normal region and I��� is a
universal scaling function of the junction’s dimensionless
length �= �L /��2. In the limit of long junction, ��1, this
function is given by11 I����10.82 �−1. On the other hand,
for shorter junctions, �	1, it is

I��� = I�0� − a� ln�b/�� + O��2� , �2�

where I�0�=2.08, see, e.g., Ref. 6, and a=0.31, while b
=2.84. The first term on the right-hand side �r.h.s.� represents
the current carried by the Andreev states and was discussed
by Kulik and Omelyanchuk8 and Beenakker.6 The second
nonanalytic term originates from the above-gap extended
states. This term is the main result of the present paper. In the
rest of the paper, we derive it and compare our analytical
result with the existing11 numerical data.

To approach the problem analytically, we employ the Us-

adel equation12 for the matrix Green function Ĝ�� ,x� of the
quasi-1D disordered normal region,

D�x�Ĝ�xĜ� + i���̂3,Ĝ� = 0, �3�

where the Green function is subject to the constraint Ĝ2= 1̂.

At the two NS interfaces, the Green functions Ĝ�� , ±L /2�
are given by those of the BCS superconductors with the or-
der parameter �, maintained at the phase difference �. The
suppression of the order parameter within the bulk supercon-
ducting leads may be safely disregarded as long as the trans-
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verse directions of the normal region are less than the coher-
ence length, �. The same assumption justifies keeping only
the lowest transverse mode and thus the use of the 1D form
of the Usadel equation. This should be contrasted to the case
of the long junction L��, where fully self-consistent
calculation is required and the approximation with the
constant order parameter within the normal region is not
appropriate.

The Green function may be parametrized by the two com-
plex angles ��� ,x� and ��� ,x� as

Ĝ = sin � cos ��̂1 + sin � sin ��̂2 + cos ��̂3. �4�

Employing this parametrization and introducing the rescaled
coordinate x /L→x, we rewrite the Usadel equation �3� as

�x
2� + �2 sin � = J2 cos ��sin ��−3, �5�

where �2�2i� /ETh, and the spectral current density J��� is
given by

J = sin2 ��x� . �6�

One needs to solve Eq. �5� with the boundary conditions

tan ���, ± 1/2� = i�/� . �7�

The spectral current density may then be determined from
the condition of having the fixed phase difference:
��� ,1 /2�−��� ,−1/2�=�. Finally, the Josephson current is
found as

I��� =
g

e
�

0

�

d� tanh	 �

2T

Im J��,�� . �8�

For the sake of illustration, we shall first execute this pro-
gram in the short junction limit, L��→0. Equation �5� with
�=0 may be easily integrated, resulting in

cos ���,x� = cos �0 cos	 Jx

sin �0

 , �9�

where the integration constant is �0���=��� ,0�. Integrating
then Eq. �6� and employing the boundary condition for the
phase �, one obtains

tan��/2� =
1

sin �0
tan	 J

2 sin �0

 . �10�

This last equation along with Eq. �9� taken at the NS inter-
face, x=1/2, constitutes the system of the two algebraic
equations for the two unknown quantities: J��� and �0���.
Such an algebraic problem may be easily solved, resulting in
the following expression for the imaginary part of the spec-
tral current:

Im J =
�� cos��/2�

��2 − �2 cos2��/2�
�11�

for � cos�� /2�����, and Im J=0 otherwise. The fact that
Im J vanishes for ��� is an artefact of the approximation
ETh→�, already mentioned in the beginning of this paper.
Equation �11� is in perfect agreement with the result of
Beenakker6 based on the consideration of the Andreev bound

states in the diffusive normal region. One concludes that the
Josephson current in the limit L→0 is entirely given by the
Andreev states residing inside the superconducting gap. Em-
ploying Eqs. �8� and �11�, one arrives at the well-known
result6,8 for the zero-temperature Josephson current of the
short SNS junction,

I��� = Io cos��/2�arctanh�sin��/2�� �12�

with Io=�g� /e. At �max=1.97, this function reaches its
maximum value Ic� I��max�=2.08g� /e, which defines the
coefficient I�0�=2.08 in Eq. �2�.

Having established the limit of an extremely short junc-
tion, we turn now to our main subject: the finite-length cor-
rection to the critical current. As was mentioned in the intro-
ductory section and will be proven below, the largest
correction originates from the parametrically wide range of
energies well above the superconducting gap: ����ETh.
One may notice that in this energy interval, the solution for
���� must be of the order of � /�	1, allowing for small-�
expansion in Eq. �5�,

�x
2� + �2� = J2�−3. �13�

Within the same approximation, the boundary conditions �7�
read ��� , ±1/2�= i� /�, while Eq. �6� for the spectral current
density takes the form J=�2�x�.

Equation �13� may be solved exactly, leading to

�2��,x� = �0
2 cos2��x� +

J2

�0
2

sin2��x�
�2 , �14�

where �0���=��� ,0� is the integration constant, similar to
the one in Eq. �9�. Substituting the solution Eq. �14� into the
equation for the spectral current and integrating over the co-
ordinate, one finds

tan��/2� =
J

�0
2

tan��/2�
�

. �15�

Notice that in the limit �→0, Eqs. �14� and �15� reduce to
the small �0 and small J limit of Eqs. �9� and �10�, respec-
tively, as they should.

Taking Eq. �14� at the NS interface, x=1/2, and employ-
ing the boundary conditions, one obtains the algebraic rela-
tion between yet unknown quantities �0 and J. The second
relation between these two quantities is provided by Eq. �15�.
Resolving these two algebraic relations, one finds for the
spectral current density

J = −
�2

�2

�

sin �
sin � . �16�

In the short junction limit, �→0, this expression is real,
which is in agreement with our previous finding that Im J
=0 for ���. However, for a finite-length junction �recalling
that �=�2i� /ETh� one finds the nonzero imaginary part of
the spectral current: Im J�−�2 / �3ETh�� in the energy range
����ETh. For larger energies, ��ETh, Eq. �16� predicts
exponentially decaying Im J. Indeed, as was discussed in the
introductory part, the energies above the Thouless energy
should not contribute to the supercurrent. Note that the tail of
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the spectral current found in Eq. �16� at the energies above
the gap is in perfect agreement with the results of the numer-
cial studies.17 Integrating Eq. �16� over the energy according
to Eq. �8�, one finds the finite-size correction to the T=0
Josephson current,14

�I��� = − Io	 �

3�

ln�b/��sin � . �17�

This correction modifies the value of the critical current,
�Ic=�I��max�, with �max quoted after Eq. �12�. This way we
obtain the second term on the r.h.s. of Eq. �2� with the coef-
ficient a= �sin �max� /3=0.31.

We comment here on the additional approximation made
while deriving Eq. �17�. Our solution strategy was based on
the perturbation theory for the Usadel equation over L /�
	1 exploring smallness on the phase ��x ,�� in the energy
range ����ETh. But we have used rigid boundary condi-
tions �7� ignoring corrections to them coming from the finite-
ness of the normal region link. Although these corrections
exist, they do not bring any new contributions nonanalytical
in L /� to Eq. �17�.

The crossover between the limits of short and long junc-
tions was recently studied numerically by Dubos et al.11 In
Fig. 1, we use the data of Ref. 11 to plot the scaling function
I���. At small �, we expect the linear dependence of �I
−I�0�� /� on ln �, see Eq. �2�. The numerical data11 indeed
agree with this expectation, as shown in the inset to Fig. 1.

All the above consideration was based on the assumption
that the interfaces between normal metal and superconductor
are perfectly transparent. In most experimental configura-
tions, SNS junctions always contain the potential barriers, an
insulating layer I, at the SN interfaces. Thus it is of interest
to investigate the influence of the extended quasiparticle en-
ergy levels on the Josephson current in the realistic SINIS
configuration. In what follows, we will constrain ourselves to

the case of a symmetric SINIS junction with tunnel barrier
conductance gT being much smaller than g.

The physics of the Josephson effect in the SINIS junction
is controlled by the dimensionless interface parameter �eff
= �L /��2�g /gT�. In the so-called incoherent regime �eff�1,
the SINIS junction may be viewed as the two tunnel junc-
tions connected in series with the current-phase relation in
the form I���= Ic sin�� /2�.5 The most interesting case is the
coherent regime �eff	1, which we consider below.

To calculate the supercurrent for the SINIS junction, we
start from the point contact limit and follow the same steps
�5�–�10� as for the SNS case but with one significant
difference, namely the boundary conditions for the Usadel
equation. Instead of rigid boundary condition �7�, we apply
conditions appropriate for this case,15

J =
2gT

g
sin �B sin �S sin

�−�B

2
, �18a�

�x�!x= 1
2

=
2gT

g
�sin �S cos �B cos

�−�B

2
−sin �Bcos �S
 ,

�18b�

where �B���=��� , ±1/2�, �B=��� ,1 /2� and cos �S���
=� /��2−�2. As long as the tunnel conductance is small gT
	g the phase function ��� ,x� changes abruptly at the tunnel
barriers from its values ±� /2 inside the superconductors to
±�B at the boundaries of the junction and remains small in-
side the normal region !��� ,x� ! 	1. This observations im-
plies that in the boundary conditions �18� one can safely put
�B=0. As follows from the Eq. �18� the spectral current J is
small as �gT /g	1. Therefore, according to the solution �9�
of the Usadel equation the ��x ,�� is essentially coordinate
independent �x� �x ,��=0, provided ETh� �g /gT. In this case
the boundary conditions �18� represent the closed
system of algebraic equations for unknown functions �B and
J, which can be solved in terms of � and �S���. As a result
the imaginary part of the spectral current takes the form

Im J =
gT

g

�2 sin �

��2 − �2��2 − �2 cos2��/2�
. �19�

Combining this with Eq. �8� at zero temperature, we find the
Josephson current-phase relation in the form15,16

I��� = Io�2gT/�g�K�sin��/2��sin � , �20�

where K�x� is the complete elliptic integral of the first kind.
Let us compare this result with Eq. �12�. First of all, we
observe that the presence of the tunnel barriers changes the
current-phase relation, but preserves its essential properties,
for example nonanalyticity at phase �=�. Secondly, the am-
plitude of the critical current is suppressed by the small pa-
rameter gT /g	1 compared to its value, Eq. �12�. Similar
changes occur with the Josephson current correction �I: we
get a modified phase-� dependence, the amplitude of the
current correction is suppressed due to the tunnel barriers,
but the correction itself remains nonanalytical in L /�. The
estimate shows that the amplitude of the Josephson current
correction in the symmetric SINIS junction is

FIG. 1. �Color online� Numerical results of Ref. 11 for the scal-
ing function I���. Inset: to facilitate the comparison of numerical
results �Ref. 11� �data points connected by a dashed line� with ana-
lytical theory �solid straight line corresponding to Eq. �2��, the data
are replotted in coordinates �I−I�0�� /a� vs ln�� /b� for the region
�
1.
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�Ic � − Io�gT/g�� ln�1/�� . �21�

Let us discuss now some characteristic features of the
above-gap contribution to the Josephson current found in this
paper: �i� The power-law tail of the spectral current density,
Im J�1/�, results in the nonanalytic length dependence of
the critical current, �Ic�L2 ln L. �ii� The supercurrent carried
by the high-energy extended states is negative, i.e., it flows
in the direction opposite to the current produced by the An-
dreev bound states. �iii� Unlike the dependence on length, the
phase dependence of the found contribution to Josephson
current is not singular, �I����sin �. This should be con-
trasted with the contribution coming from the Andreev
bound states, Eq. �12�. The latter contains �at any L� a
nonanalytic phase dependence, I������−��ln ��−��, at �
��. The origin of such a difference between the two contri-
butions is in the evolution of the Andreev states with the
phase �: unlike the above-gap states, the lowest of the bound
states depends on the phase in a peculiar way, “touching” the
Fermi level, �=0, at �=�. �iv� The occupation of the states
contributing to the L2 ln L dependence of the Josephson cur-
rent hardly changes with temperature, as long as T
��T�.
As a result, the temperature dependence of the second term
on the r.h.s. of Eq. �2� comes solely from the temperature-
dependent superconducting gap ��T�. �v� At a temperature
close to the critical one: Tc−T	Tc�ETh, the short SNS
bridge is in the regime where ��T�	T. Performing energy
integration according to Eq. �8�, one finds for the Josephson
current

I��� + �I��� =
g�2�T�

e
	 �

4T
−

ln�ETh/Tc�
3ETh


sin � , �22�

where the first term in parentheses originates from the An-
dreev states, while the second one originates from the high-
energy extended states. The nonanalytic length dependence
exists in this case as well.

Although our calculations were carried out for the case of
the diffusive normal region, it is clear that the effect is rather
generic. In particular, with the proper redefinition of the
Thouless energy �and possibly with different numerical con-
stants�, Eqs. �1� and �2� should hold for ballistic SNS struc-
tures as well.18 Moreover, nonanalytical correction survives
even in the case of the SINIS junction but with suppressed
amplitude due to small tunnel barrier conductance. Also the
critical current of superconducting weak links of the type
SS’S should contain the nonanalytic term, originating from
the high-energy states, and numerical studies17 only support
this conclusion.
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