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Phase structure of lattice model of unconventional superconductors

Tomoyoshi Ono and Ikuo Ichinose
Department of Applied Physics, Nagoya Institute of Technology, Nagoya, 466-8555 Japan
(Received 5 October 2006; revised manuscript received 26 October 2006; published 14 December 2006)

In this paper, we introduce a Ginzburg-Landau (GL) theory for the extended s- and d-wave superconductors
(SC) in granular systems that is defined on a lattice. In contrast to the ordinary Abelian-Higgs model (AHM)
that is a GL theory for the s-wave SC, Cooper-pair field (Higgs field) is put on links of the lattice in the present
model. By means of Monte Carlo simulations, we study phase structure, gauge-boson mass (the inverse
magnetic penetration depth) and density of instantons. In the ordinary noncompact U(1) AHM, there exists a
second-order phase transition from the normal to SC states and the gauge-boson mass develops continuously

from the phase transition point. In the present gauge system with link Higgs field, on the other hand, phase
transition to the SC state is of first order at moderate coupling constants. The gauge-boson mass changes from
vanishing to finite values discontinuously at the phase transition points.
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Ginzburg-Landau (GL) theory plays a very important role
for study on superconducting (SC) phase transition. For con-
ventional s-wave SC, it has a form of a noncompact U(1)
lattice-gauge-Higgs model in which the order-parameter bo-
son field sits on lattice sites.! In the last few decades, uncon-
ventional superconductors, whose order parameter of Bose
condensation is not the usual s-wave, have been discovered.?
In this paper we shall give and study a GL theory of uncon-
ventional SC like the d,»_2-wave SC in which the order-
parameter field, the Cooper-pair wave function, changes its
sign under a w/2 rotation of the real-space coordinates.
Therefore in order to describe such an unconventional SC,
the order-parameter field, Higgs boson field, must be put on
lattice links instead of lattice sites.> On-site amplitude of the
Cooper pair is vanishingly small because of, e.g., the strong
on-site Coulomb repulsion.

We shall use the path-integral formalism, and define the
model on a three-dimensional (3D) cubic lattice of system
size L* with the periodic boundary condition. Before going
into details of the extended model, let us first consider the
ordinary noncompact Abelian-Higgs model (AHM) as a ref-
erence system, which is defined by the following action:
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Axam = 5(2 CuF?]‘(-x) + KbyiiUy l>, (1)
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where F(x)=A,;=A,;i+A;—A,; (i,j=1,2,3) and a
gauge field A, ; on the link (x,7) is related to the electromag-
netic vector potential gfm as A=/ f’}{emd{? and U, j=e™v.
¢, is the Higgs field corresponding to the s-wave Cooper
pair and in the London limit ¢,=e'*s (¢, € [-m,7]). ¢ is
the electric charge of the Cooper pair and « is a parameter
corresponding to the superfluid density and a decreasing
function of the temperature (7). A oy is nothing but the 3D
XY model coupled with the noncompact U(1) gauge field
that describes the electromagnetic interactions.

We studied the phase structure of the model A i by the
Monte Carlo (MC) simulations calculating the internal en-
ergy E=—(Aapv)/L® and the specific heat C={(Axum
—(Aapw))?)/L3. We found that there exists a second-order
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phase transition line* emanating from the 3D XY critical
point at («,c,)=(0.46,%) (obtained in the system of size L
=24). In Fig. 1(a), we show the specific heat as a function of
k with ¢,=1. The specific heat exhibits a typical behavior of
the second-order phase transition as the system size L? is
increased from 8% to 243. This result is in sharp contrast to
the compact AHM in the London limit in which no phase
transitions occur and only the confinement phase exists.’

We also measured the gauge-invariant gauge-boson mass
M ; which is defined through the correlation function of the
operator sin[ F;;(x)]. More precisely let us define the operator
O(x) as O(x)=Z; _; »€; sin Fj(x) (€,=—€;=1), and its Fou-
rier transformed operator in the 1-2 plane,

O(x3) = 2 O(x)ervive, 2)

XX

Then one can expect the following behavior;

(0(x3) 0y + 1)) o e~ \PIHPT MG (3)

In Fig. 1(b), we show the result. We define the gauge-boson
mass M from numerical results as Mg=sign(\’

o 2 3 . . .
—p?)NN*—=p*, where \ is the inverse correlation length of the

Fourier transformed operator 5(x3) with finite momentum
p°. The negative values for k<0.52 in Fig. 1(b) come from
the above definition of the mass M and it is considered as a
finite-size effect.®
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FIG. 1. Results of the MC simulations for the AHM with ¢,
=1. (a) Specific heat C as a function of «. It indicates the existence
of a second-order phase transition at k,=0.538 (L=24). (b) Gauge-
boson mass M obtained from the correlation function of
sin[F;;(x)]. The critical coupling is estimated as x,=0.52 (L=16).
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FIG. 2. Action Ag of the GL theory (4).

From Fig. 1(b), we conclude that M; is vanishing for k
<0.52 and develops continuously as « increases. This be-
havior obviously is consistent with the specific heat measure-
ment in Fig. 1(a) and indicates the existence of a second-
order phase transition from the normal to the Higgs-SC
phases, though the value of the critical coupling «,. obtained
from M (k,=0.52 with L=16) is slightly different from that
obtained by C (k,=0.54 with L=16). Similar phenomenon
has been observed also in the previous studies on the U(1)
gauge field coupled with the CP! fields.”

We applied the finite-size scaling to C as C(k,L)
=L $(L""e€), e=(k—k.,)/ k.., Where k., is the critical cou-
pling at L—o and ¢(x) is the scaling function. We found
that k,,=0.534, v=0.83, and 0=0.15.

Let us introduce the extended mode that is defined by the
following action:

1
AgL= 52 [c,F(x) + ¢,V + ¢, (UVUV + VUVU)
pl

+d,(UUVV + 3 cyclic permutations)], (4)

where V, ; is the spin-singlet Cooper-pair field on link that is
related to electron operator ¢,,(c=1,]) as

Vx,j o <¢xT¢x+jL - % wx+jT>- (5)

Because we shall mostly focus on the extended s-wave and
d,2_»-wave SC’s in the later discussion, we consider the only
nearest-neighbor (NN) pair field V, ;.> For example, in order
to describe the d,,-wave SC simultaneously, we must intro-
duce a next-NN pair field in addition to V, ;. Here it is inter-
esting to notice that a GL theory for the spin-triplet p-wave
superconductivity in ferromagnetic ZrZn, was proposed and
it employs a SC order parameter similar to Vx,j.g Gradient
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FIG. 4. Phase diagram of Ag; with ¢,,=1, d,,=0. Locations of
the phase transition points are determined by those of center of the
hysteresis loops. “Normal” phase denotes the Coulomb (confine-
ment) phase of U, ; (V, ).

terms of the GL theory for ZrZn, have a similar form to Ag,
in Eq. (4).

Hereafter we shall consider the London limit of V, ; and
set V, ;=e'% (6,; € [-m,7]). Each term in Ay is depicted in
Fig. 2 where c,, ¢, etc., are coupling constants, and Ag; is
constructed to be invariant under the following noncompact
local gauge transformation:

la,, ia,
Ax,j — Ax,j + ax+j — O, V)(,j — € 'H'va’je X, (6)

From Eq. (6), it is obvious that V, ; can be regarded as an-
other gauge field dual to the electromagnetic gauge field.’
We consider terms as local as possible for Ag;, and the par-
tition function Z is given as

Z= fw [DA]F [D6]etor. (7)

Compact U(1) version of the above Ag;, in which
2oF fj(x) is replaced by = ,U*, has been studied in the previ-
ous paper.'® In the present paper, we study the noncompact
U(1) gauge theory as a GL theory for the unconventional SC
in which the gauge field U, ; describes the electromagnetic
field.

There is credible evidence that the SC phase transition in
the high-T, cuprates is of second-order and furthermore it is
in the 3D XY model universality class.!! On the other hand,
as explained above, the Cooper-pair field must sit on lattice
links instead of sites in order to describe the d,2_2-wave SC
state.> One of the simplest GL theory for the d,2_2-wave SC
is Ag. given in (4). In the present paper, we shall study the
phase structure and physical properties of Ag; by means of
the MC simulations and compare the results with those of the
noncompact AHM and the XY model.
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FIG. 3. Results for Ag with ¢,,=1, d,,=0, ¢,=0.5 (L=16). (a)
Internal energy exhibiting hysteresis loop. (b) Densities of instan-
ton. py (py) is the instanton density of the noncompact gauge field
A, ; (compact gauge field V. ;).
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FIG. 5. Results for Ag with ¢,,=1, d,,=0, ¢,=0.5. (a) Gauge-
boson mass (L=16) measured for increasing c,. It exhibits a sharp
discontinuity at ¢,=0.6, the phase transition point. (b)Gauge-boson
mass for decreasing c,,.
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Let us first notice that for vanishing c,,=d,=0, the
present system reduces to two independent decoupled gauge
models, a noncompact U(1) gauge model of A, ; and a com-
pact U(1) gauge model of V. ;. Then it is obvious that there
exist no phase transitions in that case. By giving finite values
for ¢,, and/or d,,, we study phase structure in the c¢,-c, plane.

We first study the case c,,=1, d,,=0. It is instructive to
consider the large-c, limit in which configurations of the
noncompact gauge field are restricted as A, ;~ @~ @,
Then the c,, terms in Ag become as

—ip —i@yyi )i Py it/ 1@y iyi
De Ve e Vi et i + c.c. (8)
X,1,j

We shall call the above term double Higgs coupling. As we
explained above, the usual Higgs coupling of the compact
gauge field V, ;, 3, ie™'#V, e7*¢wi, does not induce any phase
transition. On the other hand, the doubly charged Higgs cou-
pling, e="¢x(V;)?¢™"#i, induces a phase transition from the
confinement to Higgs phases.!? Then it is interesting to study
the extended model also from the viewpoint of the Higgs
coupling and see if the Higgs phase transition occurs as the
double Higgs coupling (8) is increased.

We studied the phase structure in the c,-c, plane by cal-
culating E and C and found that there is a phase transition
line. Typical behavior of E near phase transition points is
shown in Fig. 3(a), which indicates that the transition is of
first order. To see physical meaning of the phase transition,
we measured the instanton densities of the gauge fields U, ;
and V, ;. We follow the definition of the instanton densities
py and py given in Refs. 13 and 10. The result is shown in
Fig. 3(b). As U, ; is the noncompact gauge field, the density
of instanton p;; is vanishingly small. On the other hand, for
V. j» pv exhibits a hysteresis loop just like the internal energy
E at the critical point. Vanishing of py, for c¢,>0.4(0.6)
means that the observed phase transition is the normal to
Higgs-SC phase transition. As in the compact U(1) gauge
case,'? adding small but finite positive d,,-term stabilizes the
sign of (UUVV) as (UUVV)>0 in the Higgs-SC phase. This
SC phase corresponds to the extended s-wave, because on-
site amplitude of the Cooper pair is zero whereas expectation
values of V, ; on links (x,j) (j=1,2,3) have the same sign
under the gauge-fixing condition ¢,=0 in Eq. (8).'*

In Fig. 4, we show the phase diagram obtained from the
measurement of the internal energy. In Figs. 5(a) and 5(b),
calculations of the mass of the gauge boson A, ; are given.
Contrary to the AHM in Fig. 1, the gauge-boson mass exhib-
its a sharp discontinuity and acquires nonvanishing value at
¢,=0.60(0.45).
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FIG. 6. Results for Ag; with ¢,,=0, d,,=—0.8. (a) E as a function
of ¢, for ¢,=3. (b) E as a function of ¢, for ¢,=3.
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FIG. 7. Phase diagram for c,,=0, d,,=-0.8. Locations of the
phase transition points are determined by those of center of the
hysteresis loops.

We also studied phase structure of the model with ¢,, ¢,
fixed and c,, varied, and found that a first-order phase tran-
sition occurs at a critical coupling of c,,. Measurement of £
and density of instantons exhibits similar behavior to those in
Fig. 3.

Let us turn to the d,, <0 case. In the large-c, limit, U, ;
~e'%x+je™"% and the d,, terms in Ag; prefer configurations
like (e"""HiVx,,-V;je"‘PH/)<0 (i#j). Then under the gauge-
fixing condition ¢,=0, it is expected that the expectation
value of the Cooper-pair field (V, ;) changes its sign under a
/2 rotation in a plane. Though some of the d-wave SC
materials have a layered structure, we first consider the three-
dimensional (3D) isotropic case and set d,,=—0.8.

Phase structure was studied by means of the MC simula-
tions as before and found that there exist phase transition
lines. The internal energy E shows hysteresis loop at critical
points as in the previous case. We show the calculations of E
for certain places in the c,-c, plane in Fig. 6. Phase diagram
obtained by the measurement of E and C is given in Fig. 7.
The gauge-boson mass M exhibits a discontinuity at phase
transition points as in the previous case.

Besides the normal and Higgs-SC phases, we found that
there exists an exotic phase that we call staggered state (SS).
Existence of a similar phase has been observed for the com-
pact gauge model.'” It stems from the fact that in 3D there
are no configurations that satisfy VX!,»VIJ<0 (i#j) for all i
and j simultaneously. In other words, the d,, terms cause
frustrations. E and the instanton density exhibit the first-
order phase transition at the boundary of the normal and SS
states. In the SS, the translational symmetry with the unit
lattice spacing is broken.!? It is quite plausible that the SS is
similar to the flux state considered by Affleck and Marston
for quantum spin models.'> We also found that as the system
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FIG. 8. Results for Ag, with ¢,,=0, d,,=—0.8(-0.4) for intra-
layer (interlayer) coupling and c¢,=0.5 (L=24). (a) E as a function
of ¢, for ¢,=0.5. (b) Measurement of M (average of M in three
directions) as a function of ¢, for increasing c,. Values of M are
much smaller than those in the 3D isotropic case.
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size is getting larger, signal of the phase transition at the
boundary is getting weaker.

Finally let us turn to anistropic cases and study how the
phase structure changes due to the layered structure. To this
end, we put different values for the interlayer and intralayer
d,’s. Numerical results for d,,=-0.8(=0.4) for the intralayer
(interlayer) coupling with ¢, =0.5 are given in Fig. 8. The SS,
which exists in the isotropic case due to the frustration, is not
observed in this case and the first-order phase transition to
the Higgs-SC phase is observed instead. We also verified that
the critical line of the normal-SC phase transition exists as in
the isotropic case. However, discontinuity in the gauge-
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boson mass M at critical points becomes smaller than that
in the isotropic case.

In conclusion, we studied the noncompact U(1) lattice
gauge model with link Higgs field that is a GL theory for the
unconventional SC including the extended s-, d-wave and
also ferromagnetic p-wave SCs. By means of the MC simu-
lations, we clarified the phase structure. There exist first-
order phase transitions from the normal to Higgs-SC phases.
We also observed that as the anisotropy of the layered struc-
ture is getting larger, signal of the first-order phase transition
is getting weaker.
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