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We study plasmonlike excitations in quantum antiferromagnets by the recently proposed variational coupled-
cluster method. Within our approximation, we find that these spin-zero excitations have a nonzero energy gap
in a cubic lattice and are gapless in a square lattice, similar to the plasmons in quantum electron gases.
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Since 1952, Anderson’s spin-wave theory �SWT� has been
a key in our understanding of quantum antiferromagnets in
three- and two-dimensional �3D and 2D� bipartite lattices.1

For many purposes, such an antiferromagnet at zero tempera-
ture can be considered as a gas of weakly interacting quasi-
particles �equal number of spin±magnons, the transverse
spin-flip wave excitations with respect to the classical Néel
state�; also present in this gas are the spin-zero, longitudinal
fluctuations consisting of multimagnon continuum.2–5 This is
similar to the better-known quantum electron gases �metals
at low temperature� which can also be considered as a gas of
weakly interacting quasiparticles �equal number of
quasielectrons and holes, the transverse excitations near the
Fermi surfaces� and the charge-neutral, longitudinal fluctua-
tions consisting of quasielectron-hole continuum.6 The inter-
esting question is whether or not the well-known plasmon
excitations in metals, which show sharp peaks over the
quasielectron-hole continuum,6 also have a counterpart in an
antiferromagnet. This is the focus of our theoretical investi-
gation.

In its present form, SWT does not seem able to derive the
plasmonlike excitations, including the more recently modi-
fied spin-wave theories.7–9 We investigate plasmonlike exci-
tations in an antiferromagnet by adapting Feynman’s excita-
tion theory of phonon-roton for quantum helium liquid10 to
our recently proposed variational coupled-cluster method
�VCCM� which has been successfully applied to antiferro-
magnetic lattices.11,12 In these earlier papers, we showed that
a simple approximation reproduces the complete ground-
state properties of SWT; improvements over SWT by higher-
order calculations were also obtained; a close relation be-
tween our VCCM and the other well-established variational
method, the method of correlated basis functions �CBF�,13

was also established and exploited. Since Feynman’s excita-
tion theory is an integrated part of the CBF method, adapting
the Feynman’s theory in our VCCM is therefore a natural
extension. Indeed, by following Feynman, we are able to
obtain spectra of spin-zero excitations in antiferromagnets,
which are clearly not the multimagnon excitations discussed
before,2–4 but show very much plasmonlike features, a non-
zero energy gap in a cubic lattice and a gapless spectrum in
a square lattice.

We first briefly describe the application of VCCM to an
antiferromagnetic lattice for the ground state as these results
will be used in discussion of its plasmonlike excitations. De-
tails are in Refs. 11 and 12. The antiferromagnetic Heisen-
berg Hamiltonian is given by

H =
1

2�
l,n

Hl,l+n =
1

2�
l,n

sl · sl+n, �1�

where the index l runs over all N bipartite lattice sites, n runs
over all z nearest-neighbor sites. In VCCM, the ground state
��g� of Eq. �1� is given by the so-called Coester representa-
tion,

��g� = eS���, S = �
I

FICI
† �2�

with its Hermitian conjugate ��̃g�= ���eS̃, S̃=�IF̃ICI as the
bra ground state. In Eq. �2�, the model state ��� is given by
the Néel state with alternating spin-up sublattice �denoted by
i index� and spin-down sublattice �denoted by j index�, and
CI

† with nominal index I is given by the spin-flip operators
over the Néel model state,

�
I

FICI
† = �

k=1

N/2

�
i1¯,j1¯

f i1¯,j1¯

si1
−
¯ sik

−sj1
+
¯ sjk

+

�2s�k , �3�

with s as spin quantum number. The bra state operators are
given by the corresponding Hermitian conjugate of Eq. �3�,
using notation F̃I= f̃ i1¯,j1¯

for the bra-state coefficients. The

coefficients �FI , F̃I� are then determined by the usual varia-
tional equations as

��H�

�F̃I

=
��H�
�FI

= 0, �H� 	
��̃g�H��g�

��̃g��g�
. �4�

Evaluation of �H� is through the important bare distribution
functions, gI	�CI� and g̃I	�CI

†�, which can be straightfor-
wardly expressed in a self-consistency equation as

gI = G�g̃J,FJ�, g̃I = G�gJ,F̃J� , �5�

where G is a function containing up to linear terms in g̃J �or

gJ� and finite order terms in FJ �or F̃J�. In Refs. 11 and 12,
we considered a truncation approximation in which the cor-

relation operators S and S̃ of Eqs. �2� and �3� retain only the
two-spin-flip operators as
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S 
 �
ij

f ij

si
−sj

+

2s
, S̃ 
 �

ij

f̃ ij

si
+sj

−

2s
. �6�

The spontaneous magnetization �order parameter� in this
two-spin-flip approximation is obtained by calculating the
one-body density function as

�si
z� = s − �i, �i = �

j

�ij = �
j

f ijg̃ij , �7�

where �i=� due to translational invariance of the lattice sys-
tem. For the spin-down j sublattice, �sj

z�=−s+� j =−�si
z�. As

demonstrated in Ref. 12, the contributions to the one-body
distribution function of Eq. �7� can be represented by dia-
grams. The results of SWT were obtained by a further ap-
proximation �partial resummations of the diagrams�. The
one-body bare distribution function g̃ij = �si

−sj
+� / �2s� in this

further approximation is given by, after the sublattice Fourier
transformation,

g̃q 

f̃ q

1 − f̃ qfq

, �8�

where f̃ q is the Fourier component of correlation coefficient

f̃ i j with q restricted in the magnetic zone, etc. Variational Eq.
�4� then reproduces the SWT result for this coefficient as

fq = f̃ q =
1

�q
��1 − ��q�2 − 1, �q =

1

z
�

n

eiq·rn. �9�

Finally, the two-body distribution functions, g̃ij,i�j�
= �si

−sj
+si�

− sj�
+ � / �2s�2, are approximated by, in the same order as

approximation of Eq. �9� of the large-s expansion,

g̃ij,i�j� 
 g̃ijg̃i�j� + g̃ij�g̃i�j . �10�

Systematic improvements over SWT for the ground state by
including an infinite set of diagrams �i.e., resummation of an
infinite 1 /s expansion series� was obtained as detailed in
Ref. 12. In the following, we will restrict ourselves to ap-
proximations of Eqs. �6�–�10� for the ground state to inves-
tigate plasmonlike excitations as required by Feynman’s ex-
citation theory.10

We also need to discuss one important ground-state prop-
erty involving two-body correlation functions before discuss-
ing excitations. Order-parameter of Eq. �7� can also be cal-
culated through two-body functions as

��si
z��2 =

��̃g��sa
z�2��g�

��̃g��g�
, �11�

where sa
z =�l�−1�lsl

z /N is the staggered spin operator.8 Equa-
tion �11� is in fact the sum rule for the two-body distribution
function as in the CBF method.13 This can seen by introduc-
ing the total magnon-density operator n̂i as

2n̂i = 2s − si
z +

1

z
�
n=1

z

si+n
z , �12�

where as before summation over n is over all z nearest neigh-
bors. Hence the sum rule for the one-body function is simply

2
N�i�n̂i�=�. The two-body counterpart, Eq. �11�, can now be
written in the following familiar sum rule equation:

2

N
�
i�=1

N/2

�n̂in̂i�� = ��i = �2, �13�

where in the last equation, translational invariant property
�i=� has been used. In the approximation of Eqs. �6�–�10�,
we find that this sum rule is obeyed in both cubic and square
lattices in the limit N→�. In particular, we find that
� 2

N�i��n̂in̂i��−�2��1/N in a cubic lattice and ��ln N� /N in a
square lattice.14 These asymptotic properties are important in
the corresponding excitation states as discussed later. How-
ever, Eq. �13� is violated in the one-dimensional model,
showing the deficiency of the two-spin-flip approximation of
Eq. �6� for the one-dimensional model. We therefore leave
more detailed discussion and a possible cure elsewhere14 and
focus on the cubic and square lattices in the following.

For the quasiparticle excitations, briefly, we follow Em-
rich in the traditional CCM,15,16 and write excitation ket state
��e� involving only CI

† operators as, ��e�=X��g� with X
=�IxICI

†. However, unlike the traditional CCM, our bra ex-

citation state is the corresponding Hermitian conjugate ��̃e�
= ��̃g�X̃= ���eS̃X̃. Choosing a single spin-flip operator CI

†

=si
−, we have X
�ixisi

− with coefficient chosen as xi=xi�q�
=� 2

Neiq·ri to define a linear momentum q. State ��e� has
therefore spin stotal

z =−1. The energy difference between this
excitation state and the variational ground state of Eqs.

�2�–�4�, �q= ��̃g�X̃HX��g� / ��̃e ��e�− �H�, can be derived as,
to the order of �2s�,

�q 
 sz
1 + �q + �qg̃q

1 + �q
= sz�1 − ��q�2, �14�

where �q= fqg̃q and we have used Eqs. �6�–�10�. This agrees
with SWT �Ref. 1� in this order. The spectrum of Eq. �14� is
gapless in all dimensions because �q�q as q→0. Similar
calculations using spin-flip operators CI

†=sj
† of the j sublat-

tice in excitation operator X will produce the same spectrum
as Eq. �14� except that the corresponding excitation state has
spin stotal

z = +1. These excitations are often referred to as
magnons.1

We now focus on the plasmonlike excitations. As men-
tioned earlier, Feynman’s excitation theory provides an ex-
cellent description of longitudinal density-wave excitation in
quantum helium liquid, the famous phonon-roton
spectrum.10,13 Feynman employed particle density operator
to obtain the spectrum. It is interesting to note that Feyn-
man’s excitation theory was also successfully applied to frac-
tional quantum Hall effects to obtain the gapped magneto-
plasmon excitations,17 to valence-bond-solid
antiferromagnetic chains for the collective excitation spec-
trum which was very close to numerical values of exact
finite-size calculations,18 Feynman excitation formula was
also derived by Pines for the plasmon spectrum of 3D
metals.6 The 2D plasmon spectrum first derived by Stern19

can also be derived by using a density operator as shown in
a Ph.D. thesis.20 In order to discuss spin-zero excitations of
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antiferromagnets, we first notice that the order parameter �i
=� j =� of Eq. �7� in fact represents the average density of
quasiparticle magnons of spin ±1, respectively; the spin op-
erators �s−si

z� and �sj
z+s� are the corresponding magnon-

density operators. Magnons of spin ±1 interact with one an-
other with an attractive potential proportional to −�s−si

z��sj
z

+s� in the Hamiltonian of Eq. �1�, where j is the nearest
neighbor of i. The total magnon-density operator is given by
n̂i of Eq. �12�, which nicely obeys the important two-body
sum rule of Eq. �13� in our approximation of Eqs. �6�–�10� in
the limit N→�. Furthermore, for the case of s=1/2, mag-
nons of same spin �+1 or −1� repel each other on a lattice
site. With all these considerations, we believe it is suitable to
apply Feynman’s excitation theory to investigate the plas-
monlike excitation in antiferromagnets. We therefore write
this spin-zero excitation state using n̂i as

��e
0� = Xq

0��g�, Xq
0 = �

i

xi�q�n̂i, q 	 0 �15�

and its Hermitian counterparts for the bra state, ��̃e
0�

= ��̃g�X̃q
0. The coefficient, xi�q�=� 2

Neiq·ri, defines the linear
momentum q. The condition q	0 in Eq. �15� ensures the
orthogonality between this excited state with the ground
state. We notice that the density operator n̂i in Eq. �15� is a
Hermitian operator. This property can be used to derive a
double commutation formula for the energy difference be-
tween the above excitation state and the variational ground
states of Eqs. �2�–�4� as

�q
0 =

��̃g�X̃0HX0��g�

��̃e
0��e

0�
− �H� =

N�q�
S0�q�

, q 	 0, �16�

where N�q�	��X̃q
0 , �H ,Xq

0� /2, S0�q�	�X̃q
0Xq

0� is the struc-
ture function, and the notation �¯� is the ground-state ex-
pectation value as before. The double commutator N�q� cor-
responds to the f-sum rule.6,10 Both N�q� and S0�q� can be
straightforwardly calculated as, using approximations of Eqs.
�6�–�10�,

N�q� = −
sz

2 �
q�

��q� + �q�q−q��g̃q�, �17�

and

S0�q� =
1

4
�1 + �q

2�� +
1

4�
q�

��1 + �q
2��q��q−q� + 2�qg̃q�g̃q−q� ,

�18�

where �q	 fqg̃q as before, fq and g̃q are as given by Eqs. �8�
and �9�. Substituting Eqs. �17� and �18� into Eq. �16�, we can
then calculate the energy spectrum �q

0 numerically. We notice
that Eq. �18� is closely related to the sum rule Eq. �13�. It is
not difficult to see from Eq. �17� that N�q� has a nonzero,
finite value for all values of q. Any special feature such as
gapless in the spectrum �q

0 therefore comes from the structure
function of Eq. �18�, and hence is determined by the
asymptotic behaviors of the sum rule Eq. �13� mentioned
earlier. For a cubic lattice, we find that the spectrum �q

0 has a

nonzero gap everywhere. The minimum gap is about �q
0


0.99sz at q→0. This gap is about the same as the largest
magnon energy, �q=sz at q= �
 /2 ,
 /2 ,
 /2� from Eq. �14�.
At q= �
 /2 ,
 /2 ,
 /2�, we have the largest energy �q

0


2.92sz. This is nearly three magnons’ energy at this q. At
q= �
 ,0 ,0�, we obtain �q

0
2.56sz.
For the square lattice the structure function S0�q� of Eq.

�18� has a logarithmic behavior ln q as q→0. This is not
surprising as discussed earlier in the sum rule Eq. �13�,
where occurs the asymptotic behavior �ln N� /N as N→�.
For small values of q, N�q� approaches to a finite value,
N�q�
0.276sz as q→0. The corresponding energy spectrum
of Eq. �16� is therefore gapless as q→0. We plot the spec-
trum for the values of q between �0.01
 ,0� and �
 ,0� in Fig.
1, together with the corresponding magnon energies for com-
parison. As can be seen from Fig. 1, the spectrum energy of
Eq. �16� is always much larger than the corresponding mag-
non energy of Eq. �14�. At small values of qx �qx�0.05
�,
we find a good approximation by numerical calculations for
the structure function, S0�q�
0.25−0.16 ln qx with qy =0.
The energy spectrum of Eq. �16� can therefore be approxi-
mated by

�q
0 


0.276sz

0.25 − 0.16 ln qx
, qx → 0 �19�

for a square lattice �with qy =0�. This spectrum is very “hard”
when comparing with the magnon’s soft mode �q�q at small
q. For example, we consider a system with lattice size of
N=1010, the smallest value for qx is about qx
10−10
 and
we have energy �q

0
0.07sz. Comparing this value with the
corresponding magnon energy �q
10−10sz, we conclude that
the energy spectrum of Eq. �16� is “nearly gapped” in a

FIG. 1. Excitation energy spectra for the values of q
= �0.01
 ,0�– �
 ,0� in a square lattice. The higher branch is for the
plasmonlike excitation of Eq. �16� and the lower one is for the
magnon excitation of Eq. �14�.
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square lattice. We also notice that the largest energy in a
square lattice �q

0
2.79sz at q= �
 ,0�, not at q= �
 /2 ,
 /2�
as the case in a cubic lattice. At q= �
 /2 ,
 /2�, we obtain
�q

0
2.62sz for the square lattice.
In summary, we have applied the recently proposed

VCCM by adapting the Feynman’s excitation theory to in-
vestigate the plasmonlike excitations in quantum antiferro-
magnets, using magnon density operator sz. The energy spec-
tra obtained indeed appear very much plasmonlike as in
quantum electron gases: a large energy gap in Three dimen-
sions and the gapless spectrum in two dimensions. It is also
interesting to note that, in a 2D electron gas, the plasmon
spectrum ���q at small q limit19,20� is also “harder” than the
corresponding quasiparticle excitations ��q2� near the its
Fermi surface. We also notice that recently modified spin-
wave theories �SWTs� were applied to finite systems with
results in reasonable agreement with exact finite-size
calculations.7–9 As pointed out in Ref. 8, however, a major
deficiency in this modified SWT is the missing spin-zero
excitation as the low-lying excitations for a finite lattice

Heisenberg model are always triplet with spin equal to 0 , ±1.
We believe the plasmonlike excitation as discussed here cor-
responds to the missing branch; the energy gap in the cubic
lattice and the nearly gapped spectrum in the square lattice of
Eq. �16� reflect the nature of long-ranged Néel order in the
ground states of infinite systems. As observations of both the
magnon excitations and multimagnon continuum in 3D and
2D antiferromagnets have been reported,4,5 it will be inter-
esting to see further experiments on these systems at very
low temperature and high energy for observation of plasmon-
like excitations as described here. We also believe that these
plasmonlike excitations, if confirmed, may play a role in our
understanding the physics of high-temperature superconduct-
ing cuprates.
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