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It is shown that the band structure of single-wall semiconducting carbon nanotubes �CNT� is analogous to
relativistic description of electrons in vacuum, with the maximum velocity u=108 cm/s replacing the light
velocity. One-dimensional semirelativistic kinematics and dynamics of electrons in CNT is formulated. Two-
band k ·p Hamiltonian is employed to demonstrate that electrons in CNT experience a zitterbewegung �trem-
bling motion� in absence of external fields. This zitterbewegung should be observable much more easily in
CNT than its analogue for free relativistic electrons in vacuum. It is argued that in the lowest subband of
metallic CNT, where the rest effective mass of electrons vanishes, the zitterbewegung should not occur.
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I. INTRODUCTION

Since the first reported observations of carbon
nanotubes1,2 these unique one-dimensional nanostructures
were subject of very intensive research, both because of their
remarkable properties as well as their potential use in
nanometer-sized electronics �see Refs. 3 and 4�. Among
other particularities carbon nanotubes �CNT� have an inter-
esting energy band structure and it is this aspect that is of our
concern here. We will be interested in the simplest single-
wall semiconducting and metallic CNT. Such tubes are ob-
tained from a slice of graphene wrapped into a seamless
cylinder, so that the one-dimensional �1D� band structure of
CNT can be constructed by using the two-dimensional �2D�
band structure of graphene. The periodic boundary condition
around the tube circumference causes quantization of the
transverse wave vector component kx. The purpose of our
work is to predict new properties of electrons and holes in
CNT in the classical and quantum domains. To this end we
use a similarity of the band structure of CNT to the relativ-
istic description of free electrons in vacuum. In particular, we
predict that the “semirelativistic” band structure of semicon-
ducting CNT should result in a zitterbewegung �trembling
motion� of nonrelativistic electrons in absence of external
fields. Similar phenomenon was predicted for relativistic
electrons in vacuum but never observed. Thus, an observa-
tion of the zitterbewegung in CNT would be of great impor-
tance not only for the solid state physics but also for the high
energy physics.

II. SEMIRELATIVITY

In the following we use the k ·p band structure at the K
point of the Brillouin zone.5,6 This band structure is well
established in the vicinity of the Fermi energy. The initial
2�2 Hamiltonian is written in the form

Ĥ = �� 0 an − ip̂

an + ip̂ 0
� , �1�

where � is a coefficient, p̂ is the operator of pseudomomen-
tum in the y direction and an is given by the quantization of
the wave vector kx. There is an=�kx�n�=��2� /L��n−� /3�
for n=0, ±1, ±2, . . .. Here L is the length of circumference.

The semiconducting CNT of our interest are obtained for �
= ±1. In absence of external fields the resulting energy is E
= ±E�p�, where E�p�=��an

2+ p2�1/2. The upper sign is for the
conduction and the lower for the valence band. The above
relation is analogous to the dispersion E�p� for free relativ-
istic electrons in vacuum. We write the energy in the follow-
ing equivalent form:

E�p� = �� �g

2
�2

+ �g
p2

2m0
*�1/2

, �2�

where �g=2�an is the energy gap and m0
*=an /� is the effec-

tive mass at the band edge, related to band’s curvature for
small p values. Both �g and m0

* have different values for
different subbands n. Equation �2� has the relativistic form
with the correspondence �g→2m0c2 and m0

*→m0.7

We first investigate some consequences of the one-
dimensional dispersion �2�. The electron velocity is v
=dE /dp=�2p /E. For large momenta the velocity reaches a
saturation value u=�= ��g /2m0

*�1/2, the same for all sub-
bands. The maximum velocity u plays for electrons in CNT
the role of the light velocity c for relativistic electrons in
vacuum. Using u we can write the energy in another equiva-
lent form

E�p� = ��m0
*u2�2 + u2p2�1/2, �3�

which is directly reminiscent of the relativistic E�p� relation.
Now we define an energy-dependent effective mass m* relat-
ing velocity to momentum

m*v = p . �4�

We calculate m*= p /v=E /u2. This gives

E = m*u2, �5�

which is in one-to-one correspondence to the Einstein rela-
tion E=mc2 �the maximum velocity u replacing c�. For p
=0 Eqs. �3� and �5� reduce to Er=m0

*u2, which corresponds
to the formula for the rest energy. One can also express the
mass m* by the velocity. Beginning with the relation p2u2

=v2E2 /u2, employing E2= �m0
*u2�2+u2p2 and solving for mo-

mentum, we get
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p = m0
*�v , �6�

where �= �1−v2 /u2�−1/2. Using the above definition p=m*v
we have m*=m0

*�, which has the familiar relativistic form
�with u replacing c�. Now Eq. �5� reads E=m0

*�u2.
Next we assume, in analogy with the special relativity,

that dp /dt=F, where F is the force. One can now define
another effective mass M*, relating force to acceleration

M*a = F . �7�

Since a=dv /dt= �dv /dp��dp /dt�= �d2E /dp2�F, we obtain
1/M*=d2E /dp2. Using the above dispersion E�p� we obtain

M* =
E3

m0
*2u6 = m0

*�3, �8�

which again has the corresponding relation in special relativ-
ity if the acceleration is parallel to the force.

Estimating the introduced quantities, we use the value of
��=6.46 eV Å.6 This gives for the maximum velocity u
=�=0.98�108 cm/s, which shows explicitly that we deal
with nonrelativistic electrons. The lowest energy gap is
�g�0�=2�a0, where a0=�2� /3L. For the circumference L
=60 Å we get �g�0�=0.45 eV. The effective mass m0

* /m0

=a0 /�m0=0.041 for the same conditions. The quoted param-
eters are close to those of the typical narrow gap semicon-
ductor InAs, but CNT of higher diameter have smaller �g and
m0

*. We emphasize that, while for a nonparabolic energy band
one can legitimately define both energy dependent masses m*

and M*, it is the “momentum” mass m* that is a more useful
quantity. This mass is employed in the transport theory since
the current is related to velocity, not to acceleration. It is m*

that enters into the equivalence of the mass and the energy in
Eq. �5�. Finally, m* is related to the density of electron states
since the latter is 	�E�= �1/����dp /dE�= �1/����m* / p�. We
emphasize that, even if other energy levels had to be in-
cluded in the kp theory, the first nonparabolic approximation
to the dispersion relation is always of the type given by Eq.
�2�. The only difference is that �g in Eq. �2� is then replaced
by an effective gap.

III. ZITTERBEWEGUNG

Next we consider the quantum effects in CNT related to
the Hamiltonian �1�. To this purpose we introduce an impor-
tant quantity8


Z =
�

m0
*u

=
�

an
, �9�

which we call the length of zitterbewegung �see below�. It
corresponds to the Compton wavelength 
c for electrons in
vacuum and it plays for the semirelativistic band structure
�1� the role that 
c does for the Dirac equation. However, 
Z

is several orders of magnitude larger than 
c. Using m0
*

=0.041m0 and u=0.98�108 cm/s we calculate 
Z=28.6 Å.
Now let us consider the operator of electron velocity v̂

=dĤ /dp̂. A simple calculation shows that the eigenvalues of
v̂ are, paradoxically, ±u. This differs drastically from the

classical velocity calculated above. To clear the paradox we

calculate v̂�t�. Using Eq. �1� we get v̂Ĥ+ Ĥv̂=2�2p̂=2u2p̂.
Hence the time derivative of v̂ is

dv̂
dt

=
i

�
2u2p̂ −

2i

�
v̂Ĥ . �10�

This represents a simple differential equation for v̂. Its solu-
tion is

v̂�t� =
u2

Ĥ
p̂ + �v̂0 −

u2p̂

Ĥ
�exp�− 2i

Ĥt

�
� , �11�

where 1/ Ĥ=E−2Ĥ. Thus the quantum velocity differs from
the classical one by the term that oscillates in time. Equation
�11� can be integrated with respect to time to give the posi-
tion operator ŷ in the Heisenberg picture

ŷ�t� = ŷ�0� +
u2p̂

Ĥ
t +

i�u

2Ĥ
Â0�exp�− 2iĤt

�
� − 1� , �12�

where Â0= �v̂0 /u�− �up̂ / Ĥ�. The first two terms of Eq. �12�
represent the classical electron motion. The third term de-
scribes time-dependent oscillations with the frequency �Z

=�g /�. Since Â0	1 the amplitude of oscillations is

2�u /2Ĥ	� /m0
*u=
Z. In the relativistic quantum mechanics

�RQM� of free electrons the analogous oscillations were de-
vised by Schrödinger,9,10 who called them zitterbewegung
�ZB�. This explains the name given above to 
Z. We note that
the phenomenon of ZB goes beyond Newton’s first law since
we have a nonconstant velocity without a force. In RQM it is
demonstrated that the ZB is a result of interference between
the states of positive and negative electron energies.11 The
ZB described above for CNT has the frequency of about 107

times lower and the amplitude of about 104–105 times higher
than the corresponding values for relativistic electrons in
vacuum. We come back to the problem of ZB below.

In order to investigate the case of a definite sign of energy
we complete the Hamiltonian �1� by the potential V�y� on the
diagonal and introduce magnetic field by adding a vector
potential to the momentum operator. We then try to separate
the 2�2 eigenenergy problem employing the Hamiltonian
�1� into two independent problems for each band. This can
be easily done in the semiclassical approximation neglecting
the noncommutativity of p̂ with V. One obtains then, as ex-
pected, the one-band effective mass approximations for the
conduction and valence bands

Ĥ = ±
�g

2
±

P̂2

2m0
* + V , �13�

where P̂= p̂y +eAy is the canonical momentum.
In absence of external potentials the two-component wave

functions resulting from the Hamiltonian �1� can be trans-
formed exactly into one-component functions for positive �or
negative� electron energies. This is achieved by applying the

following unitary transformation Ŝ:
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Ŝ =
1

2
�1 +

�̂Ĥ

E
� , �14�

where �̂= � 1
0

0
−1

�. It can be verified that ŜŜ+=1 and that the

transformed Hamiltonian Ĥ
 is

Ĥ
 = ŜĤŜ+ = E�̂ . �15�

Thus the positive and negative energies are separated. One
can transform any wave function ��y�� �not only the eigen-
functions of the Hamiltonian �1�� from the original two-
component representation to the one-component 
 represen-
tation by the following integral transformation �cf. Refs.
12–14�:

�±��y� =� K±�y,y����y��dy�, �16�

where

K±�y,y�� =
1

8�
�1 ± �̂� � �1 ±

Ĥ

Ep
�eip��y−y��dp�. �17�

The subscripts � correspond to the one-component functions
related to positive or negative energy, respectively. The fac-

tors �1± �̂� guarantee this property. The kernels K±�y ,y�� are
not point transformations. Suppose we are interested in the
eigenfunction of the electron position ŷ. It is convenient to
take in the initial representation the unit vector ��y��
= � 1

0
���y�−y0�, where � is the Dirac delta function. It follows

then from Eq. �16� that the transformed one-component func-
tions are K±�y−y0�. The integrals of K±�y−y0� over Y =y
−y0 are unity. To get an idea of the extension of K±�y−y0�
we calculate their second moment. After some manipulation
we obtain

� Y2K±�Y�dY = 1
2
Z

2 . �18�

Thus the extension of the transformed eigenfunctions of po-
sition is �y−y0�=
Z /
2. In the transformed states there is no
ZB since the transformation �14� �or �16�� eliminates the
negative �positive� energy components of the wave func-
tions. Following the interpretation established in RQM we
are confronted with the choice between a pointlike electron
described by a two-component function �four components
including spin� which experiences the ZB with the amplitude
of 
Z, and an electron described by a one-component func-
tion �two components including spin� for either positive �or
negative� electron energy which does not experience the ZB
but is “smeared” in the y direction to an object of the size 
Z.
One can say that in the one-component representation the
trembling motion is averaged into smearing. As follows from
the above estimation of 
Z, the amplitude of ZB or, alterna-
tively, the smearing of electrons in CNT is quite large and it
should be observable directly or indirectly.

IV. DISCUSSION

In a recent paper15 zitterbewegung-type oscillations were
proposed using the Hamiltonian of spin splitting due to struc-

ture inversion asymmetry �SIA� or bulk inversion asymmetry
�BIA� of the system.16–18 The Hamiltonian for BIA has the
form ĤD= �� /����yp̂y −�xp̂x�, where �x and �y are the Pauli
spin matrices. Interestingly, the Hamiltonian �1� which we
use for CNT has the identical form, with the minus sign in
ĤD replaced by the plus sign in Eq. �1�. This similarity is
formal because the Hamiltonian �1� is not related to spin.
The description of Ref. 15 begins with a 2D case but finally
treats a quantum wire, which is a system almost identical
with CNT. Considering the motion of a wave packet it shows
that the ZB occurs in the direction perpendicular to the pack-
et’s group velocity. Its frequency is �=�E /�, where �E is
the energy splitting, and its amplitude is inversely propor-
tional to the packet’s wave vector. Our Eq. �12� describes the
same result for the frequency, namely �Z=�g /�. As to the
amplitude, our result is also the same since the ZB in the y
direction has the amplitude 
Z=� /an=1/kx�n�, where kx�n�
is the wave vector in the x direction. However, in our case,
for each kx�� ,n� there exists kx�−� ,−n�=−kx�� ,n�, resulting
in two degenerate subbands, and the ZBs related to these
subbands will cancel each other. The easiest way to break
this symmetry is to apply an external magnetic field parallel
to the tube axis. Such a field changes the phase factor in the
wave function leading to kx= �2� /L��n−� /3+
 /
0�, where

 is the magnetic flux and 
0=ch /e is the flux quantum, see
Ref. 6. The magnetic term breaks the above symmetry and
the cancellation of the two trembling motions will not occur.

As compared to the oscillatory electron motion proposed
in Ref. 15, the ZB in CNT described above has an important
advantage. Namely, the ZB of electrons in CNT is the “true”
zitterbewegung in a sense that it corresponds to the ZB for
free relativistic electrons in vacuum, while the oscillatory
motion proposed in Ref. 15 has no such correspondence.
Thus the observation of ZB in CNT would be of great value
also for the relativistic quantum mechanics. There exist in
the literature contradictory statements concerning the observ-
ability of ZB in vacuum �see, e.g., Refs. 10, 19, and 20�,
which makes its analogue in solids and molecules even more
interesting.

The ZB described above can be observed with the use of
scanning probe microscopy �SPM�, which is able to image
coherent electron flow.21,22 The SPM uses a movable tip that,
properly biased, probes the electron density below it. As the
zitterbewegung changes the electron density along the tube’s
circumference, it will induce oscillations of the tube’s con-
ductance when the tip is moved along the circumference. A
specific way, particular to the CNT geometry, could possibly
be used. As mentioned above, without an external magnetic
field the two components of ZB corresponding to the two
directions of the quantized transverse momentum cancel
each other. This means that switching on a magnetic field
“triggers” the appearance of the net ZB motion. In conse-
quence, after the magnetic field is switched on a charge be-
gins to flow along the free direction y, that is parallel to
magnetic field. This could serve as a signature of the ZB
since the usual effect of a magnetic field is to affect the
motion transverse to magnetic field. A single wall CNT is a
particularly favorable system since the ZB occurs on the sur-
face, in which case the SPM imaging of the electron wave
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function is relatively easy. It should be mentioned that the
scanning probe microscopy was already successfully applied
to CNT.23–25

Finally, we briefly consider the case of metallic CNT. In
our notation of Eq. �1� the metallic CNT are characterized by
the quantum number �=0, which gives a0=0 for n=0. This
leads to E= ±E�p�, where E�p�=��p�. This means that for the
lowest subband there is no energy gap. The maximum veloc-
ity u can still be defined, there is, as before, u=�. In fact, the
classical velocity is always u. The rest effective mass van-
ishes, m0

*=an /�=0. Still, the effective mass of Eq. �4�, relat-
ing velocity to momentum, exists, m*=E /u2. The equiva-
lence between the energy and the mass, as given by Eq. �5�,
remains unchanged. An electron �hole� cannot be accelerated
since its velocity is constant, v=u. It corresponds to 1/M*

=d2E /dp2=0, i.e., to M*=�. This indicates once again that
the mass m* is more useful than M*. The above features
describe “massless” electrons �holes� which acquire their
mass due to motion. According to Eq. �9� the length of zitter-
bewegung is 
Z=�. Using the initial Hamiltonian �1� with
an=0 and the definition of the quantum velocity v̂ it can be
easily verified that dv̂ /dt=0. Thus, also the quantum velocity
is constant, from which we conclude that in metallic CNT
the carriers in the lowest subband do not experience the
zitterbewegung.

The subject of zitterbewegung is lately very intensively
discussed in the literature, see Refs. 26–29. It has been con-
cluded that this phenomenon should occur in many situations

in solids but no viable ways of its observation have been
proposed.

V. SUMMARY

In summary, using the analogy between the band structure
of single-wall semiconducting carbon nanotubes and the de-
scription of relativistic electrons in vacuum we formulate
one-dimensional semirelativistic kinematics and dynamics
for nonrelativistic charge carriers in CNT. We also consider
the quantum domain demonstrating that electrons in CNT
experience the zitterbewegung �trembling motion� even in
absence of external fields. For typical diameters of CNT the
amplitude of ZB should be of the order of nanometers. If the
electrons are described by an effective one-band Hamiltonian
for positive �or negative� energy, there is no ZB but the elec-
trons should be treated as objects extended along the direc-
tion of the CNT axis. It is emphasized that the analogous
effects have been predicted for relativistic electrons in
vacuum but they are much more difficult to observe than in
CNT.
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