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Here we discuss the theory and analyze in detail the guidance properties of linear arrays of metamaterial/
plasmonic small particles as nanoscale optical nanotransmission lines, including the effect of material loss.
Under the assumption of dipolar approximation for each particle, which is shown to be accurate in the
geometry of interest here, we develop closed-form analytical expressions for the eigenmodal dispersion in such
arrays. With the material loss included, the conditions for minimal absorption and maximum bandwidth are
derived analytically by studying the properties of such dispersion relations. Numerical examples with realistic
materials, including their ohmic absorption and frequency dispersion, are presented. The analytical properties
discussed here also provide some further physical insights into the mechanisms underlying the subdiffraction
guidance in such arrays and their fundamental physical limits. The possibility of guiding beams with subwave-
length lateral confinement and reasonably low decay is discussed, offering the possible use of this technique at
microwave, infrared, and optical frequencies. Interpretation of these results in terms of nanocircuit concepts is
presented, and possible extension to two- and three-dimensional nanotransmission line optical metamaterials is

also foreseen.
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I. INTRODUCTION

One of the main technological challenges of today deals
with squeezing the dimensions of electronic components
and/or raising their frequency of operation in order to have
more compact and faster communications and computational
abilities. For these purposes, the interest in designing effi-
cient, subwavelength guiding structures at optical frequen-
cies has increased in recent years. As is well known, the
material conduction at infrared and higher frequencies
changes its usual properties' that are widely exploited in mi-
crowaves, and the guiding mechanisms relying on the total
reflection at a highly conducting boundary are no longer eas-
ily possible at these high-frequency regimes.

An interesting alternative, however, may be found in the
plasmonic resonances (see, e.g., Refs. 2 and 3), typical of
noble metals, polar dielectrics, certain semiconductors,* and
metamaterials that arise when these materials are interfaced
with conventional media.> The negative real part of permit-
tivity of plasmonic materials at THz, infrared, and optical
frequencies, combined with reasonably low losses, is indeed
responsible for several anomalous electromagnetic properties
which have been studied since the initial development of the
electromagnetic theory.(’ It is well known, for instance, how
an isolated plasmonic particle can support a subwavelength
“quasistatic resonance” (i.e., local surface plasmon reso-
nance) under suitable conditions on its geometrical and elec-
tromagnetic parameters.

As for applications of such resonances to the problem of
guiding of waves at these high frequencies, chains of such
plasmonic particles have been proposed as possible subdif-
fractive waveguides in the infrared and optical regime, since
the coupling among the individual resonances of each nano-
particle may guide a beam with subwavelength lateral con-
finement and reasonably low attenuation factor.”% Under
suitable conditions, it has been shown theoretically and ex-
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perimentally by various groups how these arrays may guide
the energy with a modal cross section smaller than the free-
space wavelength and for a reasonable distance. In many
cases reported in the literature, however, the theoretical
analyses have been conducted in the “quasistatic limit”
and/or for arrays under some relevant approximations. More-
over, due to convergence problems relatively less attention
has been paid to the influence of material losses and fre-
quency dispersion of the modes guided by these structures,
aspects that we fully consider in the present paper. Such
anomalous guidance along plasmonic particle arrays has
been extensively simulated numerically or proven experi-
mentally by various groups. It is of great interest to highlight
a proper full-wave theoretical interpretation of the results,
particularly the role of material loss on modal dispersion.
Our group has been interested in exploring the theoretical
conditions under which this technique may be successfully
utilized in the case of arrays of resonant, naturally plas-
monic, or artificially-made metamaterial nanoparticles, and
to investigate in more details the properties of such guidance
with respect to the parameters involved in this
phenomenon,?-Y including the loss mechanism. Why more
analysis for such a problem? The goal of this work is to fully
review the guiding characteristics of an infinite array of par-
ticles from a general full-wave analytical point of view (even
including material loss), under only the assumption of the
dipolar contribution of each particle to the interaction among
the particles, which, as we show in the following, is neces-
sary for the guidance of low-attenuating beams. In this case
we are able to find the fundamental physical limits of this
phenomenon that would allow us to predict the general be-
havior of electromagnetic interaction among these particles
and to obtain further physical insights. In particular, this gen-
eral closed-form dispersion relation for the modes in this
setup may provide us with interesting conditions on the re-
quired properties for minimal absorption or radiation damp-
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ing and better robustness or higher bandwidth for these
waveguides. The results obtained here may therefore offer
some fundamental lower limits on the guidance properties of
such plasmonic arrays.

The paper is organized as follows: In the next section the
general conditions and properties of the guidance of subdif-
fraction beams along plasmonic arrays are derived, assuming
a generic model for the polarizability of each particle com-
posing the chain. In the following section, these theoretical
results are applied to realistic plasmonic particles, analyzing
also some numerical examples that confirm the theory pre-
sented here and providing physical interpretation of these
results.

All over the paper, a monochromatic e~ time depen-
dence is assumed.

II. MODAL PROPERTIES OF CHAINS OF POLARIZABLE
PARTICLES

In the limit in which a subwavelength low-loss nanopar-
ticle is close to its dipolar resonance, its near field as well
as its far field is strongly dominated by the corresponding
dipolar contribution. In this case, the particle’s presence, as
seen by an observer placed anywhere outside its volume,
may be interpreted as a corresponding dipole of amplitude
p=¢,E, where E; is the averaged local external electric
field applied on the particle (which may be considered uni-
form due to the small electrical extent of the particle volume)
and «,, is its electric polarizability, here considered to be
isotropic for the sake of simplicity. (The case of anisotropic
particles may follow the same theoretical analysis presented
here, as long as the polarization of the field on each particle
is aligned with one of the principal axes of anisotropy. This
is often the case when nonsymmetric geometries are consid-
ered, like nanowires or short dipoles. A generalization of this
analysis to arbitrary anisotropy of the particles is beyond the
scope of this paper.) In the following, we assume the par-
ticles to operate sufficiently close to the resonance of their
electric dipole moment, and thus we can safely consider each
particle to be represented by p, bearing in mind that for
plasmonic particles with a negative real part of their permit-
tivity this situation is not uncommon.? An analogous situa-
tion is found when magnetic dipoles or metamaterial par-
ticles that may support electric and/or magnetic resonances®!
are considered, and therefore analogous analyses may be
conducted in such cases. The case in which both magnetic
and electric resonances are excited simultaneously in a chain
problem has been investigated in Ref. 26. In the following,
without loss of generality we concentrate on the electric case.

Although it is well known that the far field from a sub-
wavelength particle is well described by this dipolar
approximation,>? it should be noted that the assumption that
the particle is near its dipolar resonance, corresponding to
the condition for its polarizability to fulfill Re[«,']=0, en-
sures that even its near field is dominated by this dipolar
term.’? This implies that when considering the mutual inter-
action among particles near their dipolar resonance, as is the
case here, it is sufficient to consider their dipolar term, even
when their center-to-center distance is very small. As we
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show in the following, this requirement of being sufficiently
close to their resonances is necessary for the guidance of
low-attenuating modes, and therefore the assumption that the
dipolar contribution dominates is not restrictive in the fol-
lowing analysis.

A. Polarizability of an isolated particle

The electric polarizability of a generic isolated particle
may be expressed in the following closed form in terms of its
Mie scattering coefficient clTM by comparing the Mie TM"
spherical harmonic for n=1, with the dipolar field generated
by P= aeeEO’

. TM
6mig)c)

ER (1)

aee =
following the notation of Ref. 31. Here ko= w\eouo=27/\g
is the background (i.e., host) wave number, with &g, u(, and
N\o as the background permittivity, permeability, and wave-
length, respectively, and
™
e (2)
U™ +iVv,

where U™ and VI™ are real functions when the particle is
lossless and the background is transparent (i.e., ky € R). As
an example, the general expressions of UITM and VITM for a
two-layered core-shell sphere are reported in Ref. 31.

It is well known that the dipolar resonance of a particle
occurs when VITM =0, implying CITM =—1 (which is the maxi-
mum absolute value that this coefficient may yield) and
a,,=61igy/ k?), which becomes a purely imaginary quantity.
(As a symptom of the resonant phenomenon, the induced
dipole moment is indeed 90° out of phase with the impinging
excitation and thus, the power extracted from the external
field, P=—(iwp*/2)-E,, is purely real.)

Note that the expressions (1) and (2), with the assumption
of lossless particles and transparent background, imply that
Re[(cI™)']=-1, independent of the particle geometry, and
therefore,

q

6e

Im[a;}]= - 3)
This above condition is totally independent of the particle
design, and it is consistent with the radiation condition,? with
the power conservation issues® and with the alternative ana-
Iytical derivation in Ref. 13. The shape of the particle, on the
other hand, affects the real part of this quantity, and therefore
the resonance of a generic isolated particle in the lossless
limit may be simply indicated by the condition Re[a;e1 1=0,
since the imaginary part of this quantity is governed by (3).
When low material losses are present, they add an additional
negative contribution to the right-hand side of (3), which we
indicate in the following as —a;, but they do not affect
sensibly this resonance condition.

B. Modal dispersion for a linear chain of polarizable particles

Consider now the case of an infinite array of such polar-
izable dipoles, as depicted in Fig. 1, located along the x axis

205436-2



THEORY OF LINEAR CHAINS OF...

i
P poe’ ™™
- S o O o o - S S S O O S
a) | X
i

iENd.

N T 37 N N S W

FIG. 1. (Color online) Geometry of the problem: an array of
metamaterial/plasmonic polarizable nanoparticles supporting a lon-
gitudinal (a) or a transverse (b) mode.

at the location x=Nd, with N being any positive or negative
integer. Let py be the dipole moment for the Nth particle.
Suppose now that the particle at x=0 is excited with a given
linearly polarized electric field inducing the dipole moment
po- Due to the linearity of the problem and the symmetry
around the x axis, without loss of generality we may split the
problem into the two cases of longitudinal excitation, for
which pyllX, as in Fig. 1(a), and transverse polarization, for
which py L X, as in Fig. 1(b). In both cases, as can be easily
verified, due to the electric field distribution of the dipolar
pattern, the other particles are also polarized in the same
direction: pylipoV N. (Notice that for a generic orientation of
Py the dipole moments induced on the other particles are not
necessarily oriented in the direction parallel to p. It is there-
fore convenient without loss of generality to decompose the
problem in these two fundamental polarizations, which sup-
port linearly polarized propagation along the chain. Arbitrary
polarization of the guided modes is considered as a special
case in the next section.) In the following, we look for the
conditions under which such linearly polarized propagating
modes in the form py=pye’?¢ may be self-sustained by such
a chain with a small, or even a null, attenuation factor (i.e.,
Im[B]=0).

In the fully dynamic case the dispersion relations for these
modes may be found by supposing that such a modal distri-
bution is somehow established along the chain and by im-
posing that the electric field induced at the location x=0 in
the absence of the particle at x=0, due to the infinite chain of
dipoles (removing the one at x=0), excites the dipole mo-
ment p, at the particle seated at x=0, as already done in
Refs. 8, 13, 20, and 22-30. An analogous approach of the
problem of dipolar chains placed inside a subwavelength me-
tallic waveguide has been proposed in Ref. 33. In our nota-
tion this may be written in the following convenient form for
the two polarizations:

oo

L 6> [N3d3 cos(NBd)e™(1 - iNd)| = &,
N=1

oo

T: =3 [N cos(NBd)e™(1 - iNd - N*d)] = &,

=1

(4)

where d=kod, B=B/ky, and &, =kja,./(67e). In this way
all the quantities involved in Eq. (4) are dimensionless and
the system is frequency-invariant. We notice how the disper-
sion equations are even with S, as expected, and periodic in

PHYSICAL REVIEW B 74, 205436 (2006)

B with principal period —m/d <8< m/d, due to the inherent
periodicity of the Floquet modes of the chain.

The problem has been elegantly reduced in (4) to two
dispersion equations involving three quantities: the normal-

ized spacing d, related to the geometrical properties of the
chain, the normalized inverse polarizability a,,, related to
the particle properties, and the normalized guided wave num-

ber B, which is the unknown of the problem and the quantity
of interest.

For the two polarizations Eq. (4) is a complex equation,
with the complication that the series on the left-hand side are
slowly convergent with N. Moreover, these summations di-
verge for complex solutions of B, as noticed in Ref. 20. This
is because, strictly speaking, the supported complex mode
would be growing exponentially at +% or —o, depending on

the chosen sign of S, in a way faster than the decay of the
dipolar fields. Clearly this problem is not present when the
chain is fed at a finite x, as in any physically realizable sys-
tem, but it arises under the hypothesis of a modal distribution
established at infinity. This divergence problem might ex-
plain why in the technical literature less attention has been
paid to the theoretical full-wave analysis of the behavior of
such eigenmodes propagating along infinite chains of plas-
monic particles when material losses are considered or when
the modes radiate in the background medium, for which case

the solutions for B would necessarily be complex.

This problem can be overcome by regularizing Eq. (4).
This is done by supposing that the dispersion equations ad-
mit real solutions, and then applying an analytical continua-
tion in the complex plane. In this case, it is convenient to
rewrite the equations in terms of the following polylogarithm
functions Liy(.):

L. 3d3(f5(B.d) - idfo(B.d)] = &,

3 - e -
T = AR~ idfy(Bd) - Ef (B A=, (5)

with fy(B,d)=Lin(e"B+4) 1+ Liy(e~F-1)4).

Polylogarithm’s standard definition, as given in Ref. 34, is
Liy(z)=2;_,2*/k", and this function is strictly convergent
only for |z| =< 1. However, as first noted by Euler, the func-
tions can be analytically continued in the complex plane
when written in the integral iterative form Liy(z)
=[§[Liy_,(t)/t]dt, with Li;(z)=—In(1-z).>* In this way the
dispersion relations (5) are convergent for real and complex

values of B and, due to their numerous analytical and recur-
sive properties, their evaluation is very efficient and can be
performed instantaneously with standard mathematical soft-
ware (e.g., Ref. 35). This eliminates any problem in the
evaluation of real and complex poles for the supported
modes of the chain, and it represents a complete general
expression for the problem at hand. The use of polylogarithm
functions for expressing, in closed form, the dispersion of
guided modes along such linear chains has also been pro-
posed in recent contributions.?”-?8
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It is interesting to underline that formulation (5) is valid
for any complex value of the parameters coming into play
(i.e., when material losses are introduced or when leaky ra-
diating modes are studied). The properties of polylogarithms
and associated functions may help in understanding the in-
trinsic properties of this configuration (including the material
loss) when utilized to guide as well as to radiate energy, as
we show in the following.

It may also be noted that the analytical continuation intro-
duced here, which allows avoiding the divergence problem
present in (4), may yield complex solutions that are not
strictly physical, in the sense that they may diverge at +. In
real systems, since the structure is finite and fed at a specific
point, this problem does not constitute an issue, and the va-
lidity of such solutions follows the same mathematical dis-
cussion justifying improper leaky-wave solutions in any
guiding structure, or low-attenuating modes in lossy
waveguides:® they dominate the steepest-descent approxi-
mation in specific angular regions of the visible spectrum,
and even if not representing proper physical solutions for the
modes of the structure, they constitute effective descriptions
of the near-field distribution at their resonance. We do not
discuss further this point, since it has been widely discussed
in the technical literature (see, e.g., Ref. 36). It should be
noted, however, that by limiting this formulation to the case

of real B, Eq. (5) is consistent with (4), with the accelerated
series expression derived in Ref. 37, or with the approxi-
mated closed-form solution of this series reported in Refs.
22-26.

C. Analytical properties of the dispersion equations

Let us consider now the case of interest here, i.e., a trans-
parent background with ky e R (the cases of a lossy and/or
e-negative background are also part of the analysis of the
previous paragraph, but they will be analyzed elsewhere). In
this case, real solutions of B for Egs. (4) and (5) would

correspond to propagating modes along the chain that do not
radiate energy and do not decay. By extracting the imaginary

part of Eq. (5) under the hypothesis of 3 being a real quan-
tity, and noticing that®*

rLil(e"”) = Cl,(0) + i@

] L"Z(em)=§—@+iaz(e) 0<0<2m
Liy(e"”) = CLy(6) + iw

\ (6)

where Cly(#) are the Clausen’s functions,>* which are

real for real argument and whose numerical evaluation
as Clausen integrals is immediately available with any
calculator (these functions are also tabulated in many
sources, e.g., Ref. 38), we may get interesting closed-form
relations. It may be noted, in particular, that the identity
CI,(6)=-In[2 sin(6/2)] holds.
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In the principal period | 8| < 7/d, which is the only physi-
cally relevant period (the higher-order Floquet modes can be
all reduced to this principal period, due to the discreteness of
the system), Eq. (6) and the imaginary part of Eq. (5) yields
the relations necessary for having a real-valued propagating
factor:

L Iml&)]=-1 _ _
' for 1 <|B| < wld

T: Im[a,]=-1

L Im[&@,]=-1+3m(1-B»/(2d)

~ B for 0 < |B| < 1.
T: Im[@,]=—1+3m(1+ B)/(4d)

()

Equation (7) represents an interesting result, consistent with
what is found in Ref. 8 for the longitudinal polarization.
These closed-form expressions in fact ensure the power con-

servation issue: when |B|>1 the guided mode is a slow
wave, implying that the interference of the dipolar fields of
each particle is destructive at any visible angle in the far
zone, leading to the propagation of a (nonradiating) guided
wave along the chain. At a sufficient distance from the chain,
for which only the dominant first-order Bloch mode comes
into play (the higher-order Bloch modes are all evanescent in
this situation), the field distribution may be evaluated by as-
suming the presence of an averaged current line along the x
axis with amplitude —iwpye’?/d, leading to a decay in the
radial direction in this guided mode regime, as®

L K(NB = kg\y* + 7%

f— ”— b
T: K(VB* —ko\y* +2°)

(8)

for the two polarizations, with K,(.) being the modified cy-
lindrical Bessel function of order n. In this case, real solu-
tions of B for (5) are available along lossless chains, since
the condition Im[&,']=—1 is consistent with the physical re-
quirement (3) for lossless particles. Physically, guided modes
may indeed be supported by a lossless structure, provided
that their || >k, in order to ensure that the mode does not
radiate power in free space and neither suffers of material
absorption. This concept is elegantly summarized in Eq. (7)
for the two polarizations.

This situation, which is of interest for the present paper, is
possible only for d< 7, as clearly seen from the condition of
validity of (7), that is, |8|< 7/d. This condition on the spac-
ing between the particles, for which d<<\,/2, represents a
first fundamental limit for the guiding properties of such di-
pole chains. We note also that the guided beam is weakly
guided for chains with spacing factor close to this limit, since

when d= 7 the guided modes have necessarily 8= 1, which
implies a mode not really confined near the particles, as
shown by Eq. (8). This implies that a good guidance is pos-
sible only for particles sufficiently packed, and |B|<m/d
represents quantitatively this limit on the geometry of the
chain.

When | [_3| <1, on the other hand, a positive term is added
to the right-hand side of the equations in (7). In this case, in
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fact, the interference of the dipolar patterns may add up con-
structively, producing a leaky-wave mode. The positive term
added to the right-hand side of (7) may be justified, equating
the averaged real power radiated by each particle (which is

nonzero only when |B8|<1) to the power extracted by each
dipole, as shown for the longitudinal case in Ref. 8.

In the two polarizations, working in the far field where we
can simplify the problem by assuming again the presence of
a current line of averaged amplitude —iwpye’®/d, we get the
following exact result for the averaged power radiated by
each dipole in the radial direction:

olpo (kg - B)

Lo Pra= =g

2n s o ©)
, w|po|*(ky + B°)
. P =—r 0T

16d80

which is valid only when B<k, (as already mentioned, the
radiated power is zero for 8>k;). After the due normaliza-
tions, the imaginary part of the left-hand side of (5) takes
exactly into account this radiated power, adding accordingly
the positive term on the right-hand side of Eq. (7) in this
leaky-wave regime. Equation (7), therefore, also describes
analytically the radiation properties of such chains in their
leaky-wave modal operation.

For having real solutions for A3 in this case, Eq. (7) re-
quires the use of particles (and/or the host) with active (i.e.,
gain) materials, whose polarizability compensates for the ra-
diation losses evaluated in (9). In this case the chain would,
of course, act as a nano-leaky-wave antenna, rather than as a
waveguide, which may have different interesting applica-
tions not discussed in the present paper.

It should be noted that for the longitudinal case Eqgs.

(7)~(9) have a smooth transition at |8|=1, but in the trans-
verse polarization there is a discontinuity between the two
intervals. As we show in the following, the dispersion fea-
tures in the two polarizations are in fact different, and only
the longitudinal case allows a continuous transition from the
surface-wave propagation to the leaky-wave mode of opera-
tion. This is again reflected in the properties of Eq. (7).
Remaining in the lossless limit and seeking the nonattenu-

ating guided modes under the necessary conditions d < 7 and

1<|B|<mr/d, the real part of (5) determines the guiding
properties of these modes as a function of the particle prop-
erties, fully determined by Re[&;el] (it is interesting to note
how the imaginary part of the inverse polarizability is related
to power conversation issues, represented by (7), whereas its
real part determines the guidance properties of the chain).
Using (6) in this case we can write

L: Re[@,]=3d"[g;(B.d) +dg>(B.d)]

3- - - - - —
T: Re[a’;el] == Ed_3[83(ﬁ’d) + dgz(ﬁ,d) - dzgl(ﬁ’ d)]»
(10)

with gy(B,d)=CI\[(B+1)d]+Cl[(-B+1)d].
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The dispersion properties for the two polarizations are
indeed very distinct, and they are analyzed in the following
paragraphs in the guided region 1< |B|< #/d. Owing to the
evenness of these dispersions, without loss of generality we
focus our attention on the region of positive phase velocities,

ie., 1<B<m/d.

D. Longitudinally polarized modes

In the longitudinal case, taking the derivative of the right-
hand side of (10) and considering the properties of the inte-
gral definition of Clausen’s function

dCIy(0)
ﬁ—’fg:(—l)NClN_l(e), (11)
we find that
dRe[a,, -
— <0 Vd (12)
B

This implies the important result that the region of guidance
of such chains in the longitudinal mode is determined by the
limiting values of Re[&@,, ], as given in (10), calculated at the

extremes of the interval 1<B8< /d. Applying (6) and the
identities Li,(1)=7/6 and Li;(1)=&(3), with &(.) being the
Riemann zeta function, this range may be written as

L: 6[Cly(d+ m) +dCly(d + )]

< d*Re[a,!] < 3[£(3) + Cl;(2d) + dC1,(2d)].
(13)

This represents the closed-form expression, as a general re-
sult, for the range of polarizabilities capable of supporting
guided longitudinal modes in a chain of lossless polarizable
particles with a given spacing. In other words, seeking for
guided modes in longitudinal linear polarization, the par-
ticles composing the chain should be designed to have the
proper inverse polarizability falling in this range, depending
on the particle separation.

Figure 2 reports this guidance region in the plot of d vs
d’Re[@;!]. The red dotted line corresponds to the locus

B=1, which is the border between the guided propagation
(below the line) and the leaky-wave propagation (above the
line), whereas the black solid line is the locus where

B=/d, below which complex evanescent Floquet modes

with Re[ B]=/d are supported.

The region below the black line, in which the phases of
two neighboring particles are opposite to each other and the
mode is therefore nonradiating, rapidly attenuated and totally
reflected at the entrance of the chain, represents the stop-
band region of this configuration. It should be noted how the
stop band for this chain may arise at frequencies for which
its periodicity is much smaller than the background wave-
length . Usually band gap structures are characterized by a
periodicity of the order of \y/2, for which Bragg reflection
arises (see, e.g., Ref. 40). The condition for entering the stop-
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FIG. 2. (Color online) Regions of guidance for the longitudinal
mode [Fig. 1(a)]. Above the red-dashed line, a longitudinal leaky-
mode exists, whereas below the black solid line we enter the band-
gap region of the chain in this polarization. For values of polariz-
abilities between the two lines guided propagation is possible, with
the other lines delimiting more stringent ranges for the higher val-

ues of B, and therefore more confined modes.

band region in this case, instead, is that the chain spacing is
N/2, where N\,=2m7/ is much smaller than A, for suffi-
ciently packed particles. This implies that a subwavelength
plasmonic chain may support a first band gap in the long-
wavelength regime due to the anomalous slow-wave mode
supported by such chains. This phenomenon is not discussed
further in the present paper, and it will be the subject of
future investigations for some other interesting potential ap-
plications.

In the region between the two lines, longitudinal guided
modes with no attenuation (in the limit of no losses we are

considering now) are supported, with 8 monotonically in-
creasing with a decrease of Re[a,], consistent with (12).
You may notice how for small d the guidance region rapidly
widens up (a factor of @ is also normalizing the vertical
axis), being centered around the resonance condition for the
isolated particle Re[c’vzel 1=0. In any case, for a guided mode
to be supported, the requirement of particles near their reso-
nance remains necessary, and it is physically understandable
since nonresonant nanoparticles offer weak induced dipole
moments and low scattering, and therefore their interaction
in the chain would not be sufficient to self-sustain a propa-
gating mode. As more widely discussed in the next section,
in fact, even though the guidance region widens up around
the point Re[@,.]=0 when d—0 as d™3, the resonant band-
width of each particle necessarily narrows down as (kya)~>,*!
with a being its averaged linear dimension. These two fac-
tors compensate each other, as it is discussed later.

The transition between the surface-wave and leaky-wave
operations is smooth for this polarization: increasing the par-
ticle inverse polarizability, the mode becomes weakly guided
and at some point starts radiating energy away, scanning the

beam angle with a variation of Re[S] and having a high

directivity of the beam if Im[ 3] is sufficiently low, as in any
leaky-wave antenna.
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When the distance between particles is increased, the re-
quired polarizability of each particle in the chain for having
a guided mode narrows down in a smaller range around the
resonance, since the particles are required to be closer to
their individual resonance to support a guided mode. How-
ever, the presence of the other scatterers shifts the resonance

condition, and the guidance region for a given d is not nec-
essarily centered around Re[&;j]=0, even though it remains

close to it. Indeed, for 1.71 <d<?2.95 and 3.01<d< 77, an
array of lossless particles exactly at their individual reso-
nance, i.e., with Re[@,!]=0, would not guide a longitudinal

mode with real B. In this case, the proper condition on the
polarizability requires it to be tuned downward or upward in

the plot. When d— 7 the range of required polarizabilities
tends to a single specific value Re[a,,]=67¢(3), for which

B— 1*. This is the only possible value of polarizability for
an infinite chain of lossless particles with spacing d=\,/2 in
order to support a resonance. For distances beyond this
value, no resonance (or guided waves) can be supported by
such an array, consistent with the results of the previous
paragraph.

Curves for different values of B are also reported in the
plot. The region included between the green dotted line and

the solid black line, for instance, are those for which [3 >3.
This makes it clear that a more negative inverse polarizabil-
ity in the region of guidance confines more the guided beam

around the chain. Similar curves are plotted for 8=2 and

B=1.5, also showing the narrower limits in the spacing be-
tween the particles to support a beam concentrated around
the chain.

Figure 3 reports the dispersion diagram for the real 3 vs
Re[&;el] for the longitudinal modes guided by an infinite ar-
ray of lossless particles in the two significant cases of narrow
spacing [d=0.1, Fig. 3(a)] and wide spacing [d=0.97, Fig.
3(b)]. The plots are compared with the nearest-neighbor ap-
proximation (NNA), i.e., the approximate solution obtained
using only the quasistatic dipolar field of the nearest neigh-
boring particle, which can be obtained from Eq. (4) by trun-
cating the summation to the first term and neglecting the
imaginary part of the solution (which is vanishing for small

d). This approximation has often been used in the technical
literature (see, e.g., Ref. 9) for the analysis of this setup. In
the plots the horizontal axis is delimited by the boundaries
for the particles polarizability derived from Fig. 2. Notice

how in the case of narrow spacing [Fig. 3(a)] 8 may yield

large values, limited by 7r/d, implying that a subwavelength
confinement of the mode is possible, and the NNA predicts
the dispersion reasonably well, since the coupling between
neighboring particles dominates. It is interesting to note that
once the mode becomes sufficiently slow, it is in principle
possible to confine the beam in a region of space much
smaller than the wavelength of operation, going much be-
yond the diffraction limit. From these results it may appear
that there is no lower limit on how narrow the spacing be-
tween particles, and therefore the guided cross section, may
be made [the guided beam cross section decays with an in-
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FIG. 3. (Color online) Dispersion plots for the guided longitu-
dinal modes in terms of the particle polarizability for two different
values of the spacing between neighboring particles: (a) narrow
spacing, d=0.1 and (b) wide spacing, d=0.97r. NNA stands for
“nearest-neighbor approximation.”

crease of B3, following (8)]. However, this property is limited
by losses, as it will be shown in the following section.

For electrically larger spacing [Fig. 3(b)], on the other
hand, the NNA yields incorrect results. Also, the guidance is
limited to a narrow range of polarizabilities, as predicted by
Fig. 2, and the mode is poorly confined along the chain,
since B=1.

It is interesting to note how for particles at their individual
resonance, i.e., Re[&;j]zo, the NNA predicts the approxi-

mate solution Bd=1/2, with a cutoff for the guided modes

in this case to be at d=/2, very near the exact value d
=1.71 determined in our earlier discussion about Fig. 2. The
discrepancy between the exact solution and the NNA is more
accentuated when the mode is close to the borders of the
guidance region, i.e., near the leaky-wave or the band-gap
regions.

As a last comment on these plots, it is worth noting how,
as predicted by (12), the slope of the dispersion curve is
always negative. As will be discussed in more detail later,
this is a consequence of the forward-wave propagation of
these longitudinal modes (i.e., phase and group velocities
parallel to each other).
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E. Transversely polarized modes

The analysis of the case of transverse polarization is more
challenging, since the dispersion curve of Re[a;el] vs 3 is not
necessarily monotonic. In particular, for this polarization,
dRe[&,']/9B may flip its sign inside the range 1<B<m/d
for smaller spacing between the particles. In this situation,
the chain may clearly support two distinct surface modes in a
given range of polarizabilities. Taking the derivative of (10)
and using the properties of Clausen’s functions, it is possible
to show that this coexistence of two modes is possible when

d<d, with d satisfying the following transcendental equa-
tion:

A

d

In[2(1 + cos d)] d
—————— +tan S

d

(14)

A

1+cosd

whose solution is d=1.517. Obviously, this property is inde-
pendent of the particle polarizability.

In this situation, the two supported 3 have opposite be-
havior: one mode is confined around the chain, with
Buin<B<ml/d and IRe[a,]/dB>0. This mode is sup-
ported in the range of polarizabilities:

T: d&a,, <d’Re[a,)]<-3[Cly(d+m)+dCl(d+ m)

min

—-d*Cly(d+ m], (15)

whose right-hand side is obtained from (5) with B: a/d. The
other supported mode has B=1 and its value slightly in-
creases when Re[ @] is lowered, i.e., d Re[a,,]/dB<0. It is
supported for any Re[a,,]>a,! . i.e., it does not have an
upper cutoff limit for the inverse polarizability.

At the specific value Re[&@,!]=&} , the two dispersion
branches collapse into the same degenerate solution with
B=,n(d) and they become complex conjugates for smaller
values of Re[&;j], entering the complex-mode region. (An
analogous complex-mode regime that characterizes the
guided mode spectrum of plasmonic planar slabs*? and the
anomalous power-flow properties of complex modes, which
carry zero net power in the longitudinal direction, have been
studied over the years for several geometries.*?) This implies
that in principle there is no upper limit for the polarizabilities
required for having a guided mode with this polarization.
Although when Re[&,!] increases beyond the existence of
the first (confined) mode, i.e., beyond the right-hand limit of
(15), the only supported mode is very weakly guided, close
to the cutoff, and spread all over the space, almost as a uni-

form plane wave (since 8= 1). The interest is evidently con-
centrated on the mode determined from condition (15), with
a dispersion

dRe[a,,
9B

contrary to the case of longitudinal polarization.
From a physical point of view, for this polarization the
presence of the secondary mode, which is not even predicted

>0 Vd, (16)
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by the NNA, is not surprising, since in the limit of very high
values of Re[@,!] the particles are just vanishingly small
dielectric particles (or particles with materials similar to that
of the background) weakly interacting with the field. The
transverse polarization indeed includes the case of TEM
plane-wave propagation in the background medium with no

influence from the particles, for which B=1. Thus, it is not
surprising to find a solution in this case, even when the par-
ticles are vanishingly small. Decreasing the value of Re[c_z;el ,
this secondary mode starts to weakly interact with the chain

and its B=1 weakly increases, up to the point in which

B=3,,, and the two modes degenerate. This second mode is
clearly not of interest in the present analysis, since it cannot
be claimed that such a modal distribution is really guided by
the chain. (As an aside, a similar dual mode of propagation is
typical of spatially dispersive materials, e.g., the wire
medium.** The three-dimensional (3D) extension of this
chain problem, in fact, shows a spatially dispersive charac-
teristic, as will be presented elsewhere in the near future.)

The special degenerate solution B=]f,,,, for which
Re[a,,]=&,;, corresponds to the limiting case of a mode
with zero group velocity (due to the superposition of the two
degenerate modal solutions) but nonzero phase velocity (in
fact B=,,;,>1). We note that at this point J Re[a,,]/dB is
indeed zero and, for a given linear chain with assigned spac-
ing, we can write the following equality among the three
variables involved in the problem w, B, and Re[a;e1 :

dRe[a,
9B

[0}
== — 5 (17)
Re[a;el] J Re[aeel
Jw B

where the partial derivatives are taken when fixing the vari-

able in the pedix. Since the condition JRe[@,.]/dB=0
makes the numerator of (17) zero, this special situation cor-
responds to a zero group velocity with a nonzero phase ve-
locity for the degenerate modes.

This phenomenon is not uncommon when dealing with
guided modes in plasmonic or negative-index structures, as
we have found in different configurations.*>-*® In this chain
configuration this special solution has been investigated
theoretically by Simovski et al. in Refs. 49 and 50. We show
in the following, however, how the presence of absorption in
the particles affects particularly these regions of guidance for

Jw
v:

g

which the derivative d Re[ &, ]/ is particularly low, reduc-
ing the effective applicability of this region of operation.
Moreover, when losses are considered, this derivative, and
consequently, the group velocity of the mode, can never be
identically zero, even though it may become sufficiently low
for a low-absorptive material.

Figure 4 shows the admissible range of polarizabilities for
having guided modes in this polarization. The black solid

line, which is the locus for which B=/d when d< d, rep-
resents an upper boundary for the polarizability in order to
have the confined mode in the two-mode regime (with
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FIG. 4. (Color online) Region of guidance for the transverse
mode [Fig. 1(b)], analogous to Fig. 2. The confined mode is sup-
ported only in the region between the black (solid) and the red
(dashed) lines.

Bouin< B<r/d). Beyond this line, in fact, we enter the band-
gap region for this confined mode, since its B is sufficiently
high to have d= )\g/ 2. The red dashed line, on the other hand,
provides the value of polarizability that gives 8=, i.e., it
represents the value of c_v,_,in as a function of d. Below the red
line the two supported modes become a complex conjugate

of each other with Re[8]=p,,;,- The red line represents the
dispersion curve for the zero-group velocity mode described
in Refs. 49 and 50, and the value of its guided wave number
Bouin s a function of d is reported in Fig. 5, remaining close

to unity in all the admissible range d < d.

The area between the black solid and red dashed line is
therefore the required range for having a confined transverse
guided wave propagating along the chain with no radiation.
The green dotted line continues the lower limit of polariz-

abilities when d> d, still being the locus for which B=1/d.
Below this line again no mode can be guided by the chain. In
the region above the green and the black lines, however, the
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1.6
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1.2+

1.0 T T T T T
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d

FIG. 5. Variation of B,,, the wave number of the zero group
velocity mode, that limits the propagation of confined guided modes

in the transverse polarization, as a function of d.
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chain still in principle supports one guided mode, even
though its distribution is very sparse in the outer region. As
an example, the blue dash-dotted line is the locus where this

poorly confined mode has 8=1.001. Clearly, above this line
the chain is not guiding any wave, since its distribution is
very widespread in the surrounding space. The inverse polar-
izabilities in fact are far from their individual resonances and
therefore, the guided mode is close to the TEM plane wave
propagating in the background medium, weakly affected by
the presence of the chain. Similar to the longitudinal case,
the cyan dash-dot-dotted line is the locus for =3, and the
region between it and the black solid line includes the region
where 3> 3. Contrary to the previous case, here a more posi-
tive inverse polarizability within the region of guidance of
the confined mode would produce a higher 8 and a more
concentrated beam. This is due to the backwardness of the
confined mode, as we will discuss later. Comparing the two
polarizations, we note how the longitudinal and transverse
modes have somewhat similar features for guidance, since
the range of polarizabilities that would support a guided con-
fined beam, forward or backward depending on the polariza-
tion, is comparable in the two cases.

To provide an example of the dispersion for this trans-
verse configuration, we have considered the cases reported in
Fig. 6, distinguishing again between a narrow spacing
[d=0.1, Fig. 6(a)] and a wide spacing [d=0.97, Fig. 6(b)]. In
the first case, the propagation of a confined mode, similar to
the longitudinal case, is shown to be possible. As predicted
by (16), the slope of the curve in the confined region is
opposite with respect to that of the longitudinal polarization,
a consequence of the change in the direction of power flow,
since, as shown in the following, this mode is backward, i.e.,
group and phase velocities are antiparallel. This situation is

possible provided that condition (15) is satisfied for d<d. In
this case we are indeed in the region confined between the
red and black lines in the plot of Fig. 4, and a second mode

is visible in the region B8=1*. Even though this mode has in
principle no upper limit for the required polarizability value,
its propagation properties are clearly less appealing, being
analogous to those of a plane wave propagating in the back-
ground medium and weakly interacting with the chain. The
NNA predicts well the dispersion of the first mode, and it
does not predict the second mode of propagation. We note
the position of the zero-group velocity mode at the connec-
tion between the two curves in the plot.

For wider spacing, beyond the two-mode region, i.e., for

d>d, the only supported mode maintains a positive slope in
the plot, similar to the longitudinal mode, and it is, in fact, a
forward wave. However, there is still no upper boundary for
the inverse polarizability with 3, that rapidly approaches
unity when Re[a] is increased. In this polarization, the
NNA again fails completely when a wider spacing is consid-
ered and the zero-group velocity mode is not supported in
this configuration.

F. Lossy particles

We recall now that the analytical continuation of the dis-
persion relations represented by Eq. (5) also allows treating
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FIG. 6. (Color online) Dispersion plots for the guided transverse
modes varying the particle polarizability for two different values of
the spacing.

complex solutions of B. This implies that the leaky-wave
complex mode regime may be analyzed following similar
steps, even though it is not of interest for the present analy-
sis. It will be presented in a future work for different appli-
cations.

It is, however, of interest to consider complex solutions

for B in the case in which small ohmic losses are added to
the particle polarizability. Under this assumption, which
brings the present analysis closer to a realistic model, an
attenuation factor in the propagation, i.e., an imaginary part

of B, is expected. Equation (5) in this case would indeed
support complex solutions, and Eq. (4) would not properly
converge. In parallel, condition (7) for having real solutions

cannot be satisfied even in the region 1 <|B| < w/d, since the
presence of ohmic losses adds a contribution to the imagi-
nary part of the inverse polarizability, in the form
1 1
Im[aee] =-1- Wpsso> (18)
where c_vl'olss>0 for passive particles.
For low-loss particles, of interest here, &, is small and

only slightly perturbs the real solutions found in the previous
analysis. In particular, the new solution satisfying (5) can be
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written in the form B=g,+iB; with B, and B; being real
valued quantities. In the limit of small losses, perturbing (5)
with the presence of a small &1_0155, expanding in Taylor series
to the first order, and applying (6), we find

_ ., B

[=—a’{m—__. 19
A l ‘(9Re[aw1 (19)

with B, satisfying the unperturbed Eq. (10).

This implies that the attenuation factor of the guided
modes (due to the small material losses in particles) is di-
rectly proportional to the contribution of ohmic losses to the
inverse polarizability and to the derivative of the guided
wave number with respect to the inverse polarizability itself,
which according to (17) is inversely proportional to the
modal group velocity. This is valid in both polarizations. The

properties of Eq. (5) ensure that the perturbation of 3, due to
the presence of material losses are only a second-order ef-
fect, and small ohmic losses affect mainly the attenuation
factor, inducing a B; proportional to &,_Olm.

As a corollary to (19), we can determine the direction of
power flow in the modes previously described. In fact, the
regions where d,/d Re[c_v;e]] is negative (positive) are the
regions where the guide;d mode is forward (backward). This
is because under the ¢’”* assumption, for a positive phase

velocity (B8,>0), a positive group velocity and power flow
(i.e., a forward propagation) can be expected only when
B;>0, that is, for a negative value of JB,/JRe[a;, ], which
happens in the longitudinal polarization and in the low-
confined propagation of the transverse mode. Conversely,

when 93,/ Re[c_v;el] >0, as it is for the concentrated mode in
the transverse polarization, the propagation is necessarily
backward, again following (19) and applying causality. It is
worth noticing that this behavior is consistent with the modes
propagating in a closed rectangular waveguide periodically
loaded with polarizable particles, for which longitudinally
(transversely) polarized modes are indeed forward
(backward).?® Moreover, as already anticipated, the regions

where &Re[c‘v;el]/ 4B, and correspondingly, the group veloc-
ity, is small are those more affected by the presence of ohmic
losses in the particles, and those for which the attenuation of
the guided mode is expected to be higher for a given material
loss factor. This should be considered in applications when
utilizing these chains having modes with very low (or even
zero) group velocity, as in Refs. 49 and 50, since material
losses are expected to strongly affect these configurations.
Using (19), it becomes straightforward to identify the
more appealing regions of dispersion curves for getting a
low-attenuation propagation along the chain. First of all, the

sensitivity to losses increases when the spacing d is in-
creased, as evident from the previous figures, since the de-
rivative 983,/ 9 Re[&,!] in general grows with d. This is ob-
viously related to the fact that more particles per unit length
are expected to guide better the energy along the chain. Also,
the region of weak guidance for closely packed particles in
the transverse polarization is very weakly affected by losses

PHYSICAL REVIEW B 74, 205436 (2006)

(the derivative is almost zero for such a modal operation),
due to the fact that the mode is very widespread around the
background space and weakly interacting with the lossy par-
ticles. Near the cutoff of the modes the derivative becomes
high, and we expect higher sensitivity to losses when the
propagating mode is entering a cutoff region. This is consis-
tent with the properties of any traveling-wave structure.

It is particularly interesting to apply this result in order to
find the conditions of minimum absorption for the guided
modes in the two polarizations, which may be useful for the
design of low-attenuation waveguides and nanotransmission
lines in this configuration. Based on the above discussion
and following (19), these conditions are those for which the

second derivative ¢* Re[&,!]/9B>=0. Resorting again to the
properties of Clausen’s functions (11) and conducting some
mathematical manipulations, this condition may be written
for the two polarizations as

d*sind

L: In(2[cos(d) - cos(Bd))=— ——————
cos(d) — cos(B,d)

T:  In(2[cos(d) — cos(B,d)])
d*sind
cos(d) — cos(B,d)
J3< . _z(Br_l)E . _2(Br+1)3)
n———— +sin " ———— |.
2 2

+ —| si 20
2 (20)
For a given spacing d, the optimum S is found by numeri-
cally solving (20). For both polarizations, this is plotted in

Fig. 7(a) after being normalized to d for plotting conve-
nience. In the limit of d— 0, i.e., closely packed particles,
the optimum f3 that ensures smaller losses interestingly tends

to the value [_3,,,,,=7T/ (3d) in both polarizations. Upon in-
creasing the spacing the two polarizations behave differently,
as evident from the plots. If in the longitudinal polarization

this value of 8 quickly converges to the regions of weakly
guided modes with 8= 1 (and in any case this does not admit

a solution for d>>0.58), the transverse polarization in this
sense offers a wider range of spacing values where a concen-
trated mode allows achieving the minimum loss condition.

Note that in both polarizations the limit of B— 1* yields

9B/ Re[a,,]=0. In the transverse polarization this mode is
obtainable only when the particles are removed, i.e., when
Re[@,,]=0, which coincides with the trivial solution of a
TEM plane wave propagating in the lossless background me-
dium, whereas in the longitudinal polarization we need a
specific value of the polarizability to induce a longitudinally

polarized plane wave with B=1. This value is determined by
the boundary between the guided region and the leaky-wave
region for this polarization, as given by (13) and represented
by the red dashed line in Fig. 2. This analysis shows that this
mode would be particularly robust to the material losses,
since it is spread all over the background material. This,
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however, is not of interest in our present analysis, where we
are concentrating on low-loss conditions for confined guided
waves around the chain.

In Fig. 7(b) we plot the value of |B|/a;,. obtained at the

optimum value Bop, given in Fig. 7(a), in order to show the
sensitivity of the two cases of polarizations to a given level
of material losses. In this sense the longitudinal polarization
offers a better performance, even though the guided beam is
comparatively less confined, as Fig. 7(a) shows. A trade-off
between these two quantities appears necessary in order to
obtain an optimum design. We notice that the results in Fig.
7 represent intrinsic physical limitations to the attenuation
factors of guided propagation along such chains, regardless
of the nature of the particles in the chain. If a more concen-
trated mode is desired for a given spacing, it may be ob-
tained at the expense of increasing the sensitivity to material
loss, since the field levels at the particles’ location are higher.

Once the value of ,éop, is chosen for a given spacing, as
obtained from the charts of Fig. 7, the optimum value of
polarizability for the particles in the chain can be directly
obtained from (10), and it can be used as a design tool to get
the minimum attenuation factor and the desired lateral con-
finement of the beam around the chain.

PHYSICAL REVIEW B 74, 205436 (2006)

G. Nearest-neighbor approximation

To conclude this section it should be pointed out that for
closely-spaced particles in both polarizations the NNA can
predict with a good approximation the guiding properties of
the chain, as it has been shown in the previous examples, and
therefore the approximate dispersion equations for small
spacing may be given by

L: Bd= cos_l[Re[c_v;el]/(63_3)]

T: Bd=cos '[-Re[a,,1/(3d7)], (21)

which are obtained by truncating Eq. (4) to the first order and
taking the limit for small d. In this limit, applying (19), we

get also

L Bi=a, d6

A

T: B;=-a,. d/3, (22)

confirming that in the limit of small spacing the robustness to
reasonable amount of losses is high (and it is twice as strong
in the longitudinal forward case than in the transverse back-
ward case). As we show in more detail in the following sec-
tion, even though the individual particle resonance is af-
fected by losses in a way proportional to the volume of the
particles, together with &\ , the proximity to other resonant

particles increases their robustness, due to the term d” in
(22).

It should also be noted how the approximate dispersion
given in (21) reveals the anomalous feature valid for closely-
spaced particles, i.e., shrinking the scale of our setup, which
in this case is achieved by reducing the spacing between the
dipoles, and increases the concentration of the guided modes
around the chain, whereas usually in conventional guided-
wave setups the behavior is opposite, i.e., reducing the di-
mensions of open slab waveguides causes the field to be
widespread in the background region. This is analogous to
what happens in other guiding geometries involving metama-
terials or plasmonic materials, i.e., planar slabs* and cylin-
drical rods® that we have recently analyzed. In these struc-
tures, the mode can be guided beyond the diffraction limits,
since the lateral confinement of the guided beam may be
considerably reduced below the wavelength of operation
when the dimension of the waveguide is reduced. The cylin-
drical or planar open waveguide setups may indeed be con-
sidered as limiting cases of the dipolar chains, analyzed here
when the spacing d goes to zero. In all these setups, in the
limit of electrically small transverse dimensions, the product

Bd remains constant. Further analogies among these setups
will be discussed in future works.

III. REALISTIC MODELS FOR THE PARTICLES
FORMING THE CHAIN

We have shown in the previous section how the nanopar-
ticles composing the linear chain under analysis are well de-
scribed by their effective electric polarizability in the regime

205436-11



ANDREA ALU AND NADER ENGHETA

1.20 - ~0.050
-T "~ 10.025
145 Pt R
'
N\
. 0.000
110
— | L —
B Re [ ] | o0 il
105 4 = cim[p] .
1-0.050
1.00 ) .
095 . ’ . T . y : 0.100
10 15 20 25 30
d

FIG. 8. (Color online) Dispersion of the wave number for the
longitudinal polarization in terms of the particle spacing in a chain
of spherical particles with e=-2g(, i.e., at their individual
resonance.

of interest here. «,, is strictly related to the geometry of the
particles and to the permittivity of their material(s). Con-
sider, for simplicity, the case of a chain of spherical homo-
geneous particles of radius a and permittivity €. In general,
their polarizability may be obtained from (1) and the formu-
las given in Ref. 31 for clTM, but in the quasistatic limit in
which the spheres are much smaller than the wavelength, as
in the case of interest here, one can write in the lossless
case 173

3 +2
Re[@!] = = (kga) 0, (23)
2 e—g

Notice that when the particles are too small, the permittivity
of the bulk material may not be adequate to describe the
quantum effects associated with the nanoparticles, but a cor-
rected value of g, distinct from that of the bulk material
(usually with a higher attenuation factor), may be
employed.”'? We do not enter further into these discussions
here, since it is out of the scope of the present paper, but in
such a case we note that Eq. (23) may still take into account
to some extent also these considerations.>!3?

A. Varying the permittivity of the particles

It is interesting to see that due to the geometrical require-
ment d>2a and to the fact that e+2¢y/e—gy>1 for any
€>¢gq, a chain made of conventional dielectric particles in
empty space cannot guide any concentrated guided beam

around the chain, since (d° Re[&;el]) > 12 for any £> ¢ (see
Figs. 2 and 4). The region of guidance is expected to be
around the resonance of the individual particles, which is at
around e=-2¢,.

Figure 8, as an example, shows the variation of the real
and imaginary parts of 3 for the longitudinal polarization, as
a function of the spacing d for a chain of particles at their
individual resonance, i.e., with Re[&;j]:o, which in this
case happens around e=-2¢g,. A similar plot may be drawn

for the transverse polarization. For small spacing, not re-
ported in the figure, the guided mode is more and more con-
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fined, and the hyperbolic behavior of the curve is well ap-

proximated by (21), ie., B=m/(2d). However, when d
=1.71, as noted in the previous section, the mode starts leak-
ing out energy, since Eq. (13) is not satisfied anymore. In this
leaky-wave region 3 has an imaginary part, which is positive
since the mode in this case is a forward improper leaky
mode. Again, consistently with Fig. 2 and the previous dis-
cussion, there is another small region of spacing where a

mode can be guided, with a value of B increasing with in-

creasing d. When B=/d the mode enters a cutoff region
where the mode does not propagate and the phases of neigh-
boring dipoles remain 180° out of phase with each other,

with the expression for Re[]=/d. Again, an attenuation
factor is present in this region, since no propagation is ad-
mitted and the chain is in its stop band. The sign of the
imaginary part in this case is irrelevant, since complex con-
jugate solutions are admitted in this stop-band region.

In this subwavelength limit, the regions of guidance in
terms of the particle permittivity may be easily written as

filn+3
filn=312

folp+3
folp=312"

(24)

where  f;=3[£(3)+Cl;(2d)+dCl,(2d)],  f,=6[Cl5(d+m)
+dCly(d+)] for the longitudinal case, and f;=-3[Cl5(d

+77) +dCly(d+ ) —d*Cly (d+ )], f2=33c_v;$n for the trans-
verse polarization. Moreover, n=d/a represents the ratio be-
tween the particle radius and their center-to-center distance
(therefore 7>2 for geometrical reasons).

As an example, Fig. 9 plots this range of guidance for the
two polarizations and for different values of 7.

Figure 9(a) shows the range of required permittivities for
having a guided mode with longitudinal polarization,
whereas Fig. 9(b) shows the region in which the confined
backward-wave-guided mode with transverse polarization is
supported by the chain (which coincides with the two-mode
region). The figures show some interesting features. First,
even though Q of the dipolar resonance of a plasmonic par-
ticle increases dramatically when its size decreases,3! consis-
tent with the Chu limit,*' and therefore its resonance rapidly
becomes very concentrated in a narrow range of permittivi-
ties near e=-2g, in the subwavelength limit, the closely
spaced chains of small particles do not necessarily require
for their particles to have permittivity so close to this value,

since the range of required polarizability diverges as d—> for
small spacing. These two factors interestingly compensate
each other, and therefore for very small, closely spaced par-
ticles the range of necessary permittivities for guidance re-
mains a finite and relatively large range for both polariza-
tions. This is due to the strong coupling of the individual
resonances in the chain, which allows broadening of the in-
dividual bandwidth, similar to what happens in a transmis-
sion line metamaterial.>>>* We are currently working on a
detailed analysis of this coupling issue, which will be pre-
sented elsewhere and that may be exploited for different ap-
plications.
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FIG. 9. (Color online) Range of the required permittivity of the
spheres and their spacing for having guided modes for (a) the lon-
gitudinal polarization and (b) the transverse polarization.

When the spacing is increased, the range of possible per-
mittivities to yield a resonant behavior narrows down around
the value of e=-2¢g,, since the coupling between the par-
ticles is diminished and the array resonance is dominated by
the individual resonances of the particles. The limiting val-
ues may be interestingly calculated in closed form in the

limit of d—0 and are given as follows:

o3 & 3m
n—4£3) & 7+3&(3)

o1 —1 __E_, 4oy
' —27+3&3) g n+&3)’°

whereas at the upper limit, which is d— r for the longitudi-

nal polarization and d —d for the transverse case, the only
possible value for the resonance remains

€ 37
L —=1l-—"7=
20 n-4&3)
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€ 3.982
Tm —=-24+—""7T——. (26)
&g - n+1.327

One may notice also how all the curves in the case of longi-

tudinal polarization meet at the point where s=—2g, and d
=1.71, since for this value of spacing the longitudinal mode
has its cutoff at the resonance of the particles, which, in the
quasistatic limit where (23) is valid, is independent of the
size of the particles. The transverse mode has a similar prop-
erty at d= dr2.

By increasing the value of 7, all quantities in (25) and
(26) tend to e=—2¢, since when we increase the spacing or
decrease the size of the particles we expect to narrow down
the bandwidth of the guided mode, thus concentrating on the
region of guidance around the frequencies for which
Re[&,!]=0. The case of the longitudinal polarization offers
better performance than the transverse polarization in terms
of the range of permittivities for supporting a guided mode.
This is analogous to the other metamaterial setups for wave
guiding, (e.g., Refs. 45-47, 53, and 54), in which the opera-
tion in the backward regime usually has a relatively smaller
bandwidth.

B. Dispersive materials

We have shown in the previous section how a confined
guided mode that is traveling along a linear chain of particles
may be obtained under the condition that the particles in the
chain are plasmonic, i.e., with negative permittivity. As is
well known, however, the presence of negative values of the
constitutive parameters necessarily implies a non-negligible
dispersion with frequency and thus, the presence of material
absorption.l Here, therefore, we consider certain realistic
models for the frequency dispersion of the materials and we
verify and augment the predictions of the previous section
under these assumptions.

As an example, let us consider a chain of spherical
particles with Drude-model permittivity, i.e., &(w)
=gg[1 —(3wg/ ®?)] for their materials, surrounded by free
space. In Fig. 10 the dispersion of the guided B vs frequency
is plotted for the two cases of polarizations for particles with
radius a=\,/20 (calculated at w=w,) and spacing d=2.5a.
The horizontal axis in the figure indicates the normalized
frequency (i.e., the frequency normalized with respect to the
central frequency w=uw,, at which the particles would expe-
rience their individual resonance, since e=-2g,). The two
curves are limited in the maximum value by the line with
B=m/d, and in the minimum value by the light line B=k,.
The locus B=p,,, is also reported in the figure, which meets
the red dashed line (transverse polarization) at the point
where the two dispersion curves meet. This point can be
considered the upper limit of the guidance regime in the case
of transverse polarization. Notice that the vertical axis is nor-
malized to the wave number in free space at the central fre-
quency .

The slope of the two curves clearly confirms the conclu-
sions of the previous sections regarding the behavior of the
group velocity in the two polarizations. One notices how the
backward-wave mode (transverse polarization) has a smaller
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FIG. 10. (Color online) Frequency dispersion for a chain of
spherical particles with radius a=X\y/20 (calculated at w=w),
spacing d=2.5a, and permittivity following the Drude model
e(w)=g((1 —3w(2)/ ®?). The guided wave number S is normalized in
the vertical axis to the wave number in free space k( calculated at
W= w.

bandwidth (about 10% of the central frequency) when com-
pared with the bandwidth of the forward-wave mode (almost
30%). The bandwidth can be further increased by reducing d.
However, consistent with the previous analysis and with Fig.
9, a change in the particle size while keeping # fixed does
not appreciably affect this aspect as long as losses are negli-
gible.

It should be mentioned how the values of bandwidth ob-
tained here for the backward, as well as forward, regimes are
larger than those usually achievable in a left-handed metama-
terial made of resonant inclusions with an effective negative
refraction. This provides an interesting potential for extend-
ing these concepts to two-dimensional (2D) or 3D collec-
tions of such closely packed plasmonic particles, which,
when properly combined and under proper excitation, may
constitute an alternative way of building broader bandwidth,
left-handed metamaterials with the desired effective refrac-
tion at microwave, infrared, and optical frequencies.’> The
concepts presented here are in many aspects the one-
dimensional (1D) analog of the planar geometry reported in
Ref. 45, i.e., a 1D nanotransmission line with features analo-
gous to broadband negative-index transmission-line metama-
terials at microwave frequencies,’>* but extendable to infra-
red and optical frequencies. We discuss this point in the next
section.

C. Nanocircuit interpretation

The interpretation of this chain configuration in terms of a
nanotransmission line is more than a mere analogy, as high-
lighted above. Indeed, this concept can be fully motivated in
terms of our nanocircuit interpretation of the light interaction
with plasmonic particles.” It is well known that at low fre-
quencies, properly arranged circuit elements, namely, the
cascades of inductors and capacitors, may constitute trans-
mission lines that guide energy without (or with small) ra-
diation losses. At the IR and optical frequencies, when con-
ducting materials exhibit different material properties, the
displacement current may take the role of conduction cur-
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rent, and the nanocircuit elements have to be re-envisioned
based on a different physical mechanism. In particular, we
have shown in Ref. 56 how plasmonic and nonplasmonic
nanoparticles may be envisioned as nanoinductors and nano-
capacitor elements, respectively. In the case of interest here,
the chains of plasmonic particles interleaved and surrounded
with nonplasmonic gaps may therefore be interpreted as the
cascade of such nanoinductors and nanocapacitors that con-
stitute nanotransmission lines in the optical regime when
suitably designed and properly excited. In the longitudinal
propagation, due to the polarization of the electric field, the
plasmonic particles may be heuristically regarded as the “se-
ries” nanoinductors surrounded by “parallel” nanocapacitors,
providing an equivalent L-C transmission line with forward-
wave behavior, whereas in the transverse polarization the
roles of inductors and capacitors are essentially interchanged,
providing a 1D backward-wave transmission line, analogous
to those in the microwave negative-index TL metamaterials.
This is consistent with the findings of the previous section.
An extension to 2D and 3D may therefore allow synthesizing
effective 2D and 3D nanotransmission line negative-index
metamaterials at optical frequencies,” analogous to those
synthesized at microwaves using lumped circuit
elements.>>>* The advantages of broad bandwidth and ro-
bustness to losses, which are typical of such metamaterials at
microwave frequencies, are expected to also apply to such
optical nanometamaterials, as these 1D results confirm and
our preliminary results on the 3D geometry show.”® We will
present a complete analysis of such bulk optical nanotrans-
mission line metamaterials in the near future.

It is worth noting that we have also utilized similar con-
cepts in order to envision and explain the subdiffraction low-
attenuation propagation along thin planar layers or cylindri-
cal rods of plasmonic and nonplasmonic materials.*>**¢ These
cases may be seen as the limit of vanishing gaps in the nano-
particle chains presented here. An extended analysis of the
analogies of these array problems with the transmission-line
circuit theory will be presented in a future work.

D. Material losses

The behavior of these structures in the presence of mate-
rial losses has been already analyzed in the previous section,

and the dependence of the attenuation factor 3; on losses has
been found to be directly proportional to the quantity &l_olm.
Here we embed the presence of losses in the material per-
mittivity. This allows evaluating how the size of the particles
that form the chain may play an important role as a lower
limit on squeezing and confining the guided beam below the
diffraction limit.

Adding to (23) the contribution of material losses, we
can write for a single particle with complex permittivity
e=g,+ig;,

_ _9&i gq(koa)”>

Ajpss =

. (27)
2 (e—gg)+ 81-2
It C_!l_(}vs grows with increasing the imaginary part of the per-
mittivity, as physically expected, it also increases with the
inverse volume of the particle. Therefore, if reducing the size
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of the particles while keeping 7 fixed may increase the band-
width of guided propagation along the chain (since the spac-
ing between them should be accordingly reduced to allow a
fixed #), a lower limit is represented by (27) combined with
(22), which ensures that there is a physical lower limit on
squeezing the beam in a subwavelength scale with the pres-
ence of realistic losses. Therefore, as physically expected,
there is a tradeoff between bandwidth and subdiffraction on
the one hand and the sensitivity to losses on the other hand.
This is also physically justifiable due to the concentration of
the guided beam in a subwavelength region where material
losses are present. Equation (22) then becomes

= _3g eolkoa)™ 77

L: =
4 (e—g))+el

~ 38 sylkga)

T: P = N
2 (8—80)2+si2

(28)
which shows how the attenuation factor in this configuration
is inversely proportional to the linear size of the particles,
much better than the volume (cubic) dependence that an iso-
lated plasmonic resonance generally shows. Clearly, for a
given size of the particles, more robustness to losses is en-
sured when the particles are closely packed, as the presence
of 77 shows in the numerator of (28).

E. Arbitrary polarization

Elliptically polarized modes propagating along the chain
may be obtained by exciting both longitudinal and transverse
components of the polarizable particles. Assuming an isotro-
pic polarizability, and referring to Fig. 1, the polarization of
the exciting dipole at x=0 may be written, without loss of
generality, as

Po= (/ll& + a,i, (29)

where a; and qa, are, respectively, the complex amplitudes
driving the longitudinal and the transverse polarization. Ow-
ing to the linearity of the problem, the two modal polariza-
tions of the system may be analyzed independently in this
case. Along the same direction, e.g., the positive x, we would
experience the propagation of two orthogonal modes, the
longitudinal one with positive phase and group velocity, i.e.,
B,;>0, and the transverse one with 3,<<0 (here we neglect
the possible excitation of the spurious nonconfined mode in
the transverse polarization). The generic amplitude of the
Nth dipole would then become

py=a,e VPR + qe MBI (30)

which, in general, is arbitrarily polarized. Interesting combi-
nations may be envisioned. For instance, a combination for
which a;=a, and B;=—f3, can be designed as the chain of Fig.
10 at the frequency where the two curves meet with
py=a,[cos(NB,d)(X+2)+i sin(NB,d)(X—2)]. This would have
the interesting property of being linearly polarized at 45°
from the axis when d is a multiple of 7/(283,), rotating its
orientation every particle, or circularly polarized for S,d
=m/4+L/2, with L being an integer number. Also, a circu-

PHYSICAL REVIEW B 74, 205436 (2006)

larly polarized field at pg, i.e., @;==*ia,, would produce a
rotating circular polarization for Bd=Lm/2, or a rotating
linear polarization for B d=m/4+Lw/2.

F. Realistic plasmonic materials

From our previous discussions above, we have seen that
chains of metamaterial or noble metal particles with negative
permittivity may provide interesting potentials for guiding a
subdiffraction beam with a relatively low attenuation factor
[we reiterate here that u-negative (MNG) materials may be
employed as well, since by duality they would support
coupled magnetic resonances]. However, in analyzing the
possibility of applying these concepts to a real-life setup, we
have to deal with the required properties of the materials of
the particles. As previously shown, the chain of dielectric
particles made of standard materials would not provide the
required guiding properties. Metamaterials may be properly
synthesized by embedding resonant inclusions in a host di-
electric in order to have the desired effective negative
properties.’’~%0 Clearly, the size of such inclusions should be
much smaller than that of the metamaterial particle in order
to let the particle be considered as a bulk material with nega-
tive parameters. Therefore, in dealing with subwavelength
particles, the inclusions that “make” the materials may be
required to be much smaller than the operating wavelength
and still produce a sizeable resonance. This may represent a
challenging task for the designer. Even the anisotropy of the
metamaterials may represent an issue in this sense, since the
inclusions may have preferred directions for their interaction
with the impinging field. Homogeneous spherical particles,
however, are polarized with a uniform field inside their over-
all volume at the dipolar resonance, and therefore it would be
sufficient to orient the axis of anisotropy in the direction of
the expected polarization of the field in order to obtain re-
sults consistent with this analysis.

If metamaterials may provide a flexible way of tailoring
the material properties at the desired frequency of operation,
at infrared and optical frequencies noble metals and polar
dielectrics naturally possess the required isotropic negative
permittivity.'"® On the one hand this is useful in envisioning
a direct and easy application of the present analysis, but still
the set of noble metals is limited in terms of the possible
material dispersion and the range of frequencies at which the
desired values of permittivity are met with possibly low
losses. Additional degrees of freedom in the geometry of the
particles of the chain may provide possibilities for tuning the
properties of these guided modes at the desired frequency.
For instance, following Ref. 31, core-shell concentric spheri-
cal nanoparticles may suggest a way for tailoring the prop-
erties of the guided modes along the chain. We have found
that the choice of the proper filling ratio (i.e., the ratio of
radii) of core-shell spheres partially filled with ENG or MNG
materials may allow tuning the particle electric or magnetic
polarizability in frequency.

Following (1), one can write Re[&,, ]=Im[(c]")~'], which
in the case of lossless particles is simplified into Re[@,!]
=ViM/UM. Using the closed form expressions for these
quantities derived in Ref. 31, one can evaluate the exact dis-
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FIG. 11. (Color online) (a) Variation of normalized 3, in terms
of the material permittivity for a chain of homogeneous spherical
particles with radius a=15 nm and spacing d=5a at the wavelength
No=500 nm for the longitudinal polarization. (b) Variation of nor-
malized S, in terms of the ratio of radii v, for the same size, spac-
ing, and polarization, but for a SiC sphere covered with Ag shell.

persion for a chain of core-shell spherical particles.

Let us consider, for instance, the case of a chain of par-
ticles of radius a=15 nm with spacing d=75 nm excited at
optical wavelength of \y=500 nm. Assuming homogeneous
spherical particles in the chain, the modal dispersion vs the
permittivity is reported in Fig. 11(a) for the case of longitu-
dinal polarization, where one can note the range of permit-
tivities over which the chain would support a guided mode.
A too low permittivity (in this case below e=-2.16g,) would
cause energy to start leaking out of the chain, and a too high
permittivity, i.e., for e >—-1.97¢,, would enter the cutoff re-

gion of the array, where B,=/d and the attenuation factor
increases with e. Clearly, the range of frequencies for which
a realistic material may be available with these required val-
ues of permittivities might be narrow and may not coincide
with the frequency of interest (not to mention the fact that
this range may not necessarily correspond to a low-loss
range of frequencies). Imagine we are willing to use
spherical particles made of silver, which at A;=500 nm have
a real part of permittivity given by Re[e,]=—9.77¢.%
Silver has a relatively low material absorption at this
frequency, so it may appear to be a suitable material for these
purposes. However, the real part of permittivity clearly does
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FIG. 12. (Color online) Frequency dispersion of the longitudi-
nally polarized modes supported by a chain of spherical silver par-
ticles with a=10 nm and d=22.5 nm, considering realistic experi-
mental data available in the literature for the bulk silver.®!

not fall in the range of allowable permittivities, as Fig. 11(a)
shows. However, if we cover silicon carbide spheres
(£gic=6.52¢, %%) with silver shells, maintaining the same
outer radius for the overall particle, we can move the reso-
nance of the core-shell particles to the desired frequency, as
found in Ref. 31. Figure 11(b) shows the variation of 8 with
the ratio of radii y=a,/a at the frequency of interest, i.e., at
Ap=500 nm.

In this example, the spacing among the particles is pretty
large, and therefore still the sensitivity to the material param-
eters of the chain is relatively high in order to get a low-
attenuation mode, but this shows how, in principle, it is pos-
sible to add additional degrees of freedom to the problem in
order to adjust the frequency of operation and its properties.
Here the degree of freedom is provided by the filling ratio 7,
but in other cases it may be represented by the shape of the
object and its eccentricity (for instance for ellipsoidal par-
ticles). It is clear how by properly choosing the materials in
the regions where they show sufficiently low losses, together
with the proper choice of the chain geometrical parameters in
the regions with minimal loss influence (20), it may in prin-
ciple be possible to tailor modes that can propagate for rela-
tively long distances in a subdiffractive mode. As a final
example, Fig. 12 shows the real and imaginary parts of
guided wave numbers for longitudinal modes supported by a
chain of spherical particles made of silver, using the realistic
experimental data available in the literature® for bulk silver
at optical frequencies with a=10 nm, d=22.5 mn, as a func-
tion of the wavelength of operation \,. Operating at around
Ap=370 nm can lead to a guided wave propagation with a

reasonably good ratio of B,/83;, providing the possibility of
subdiffraction propagation with a relatively low attenuation.

IV. CONCLUSIONS

In this paper we have analyzed in detail the various as-
pects of guiding properties of linear arrays of metamaterial/
plasmonic particles. After deriving novel closed-form ana-
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lytical dispersion relations for the subdiffractive guided
modes of such arrays, we have been able to provide condi-
tions for minimal absorption and maximum bandwidth of
such modes. A discussion on the realistic possibility of real-
izing such setups, with numerical examples considering
ohmic absorption and frequency dispersion, has also been
provided. This may open new doors in the realization of
microwave, infrared, and optical nanotransmission lines and
nanowaveguides. Enlightened by the nanocircuit interpreta-
tion of this phenomenon, an extension to 2D and 3D setups

PHYSICAL REVIEW B 74, 205436 (2006)

for the realization of broader-band, left-handed metamateri-
als at high frequencies has also been envisioned and fore-
casted.
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