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The thermodynamics of an atomic deposit adsorbed in grooves, on the outer surface, and in interstitials of a
closed-end carbon nanobundle is investigated theoretically. The model takes into account the interparticle
interaction in the primary and secondary chains of the groove subsystem as well as the interaction between
atoms from different chains. The thermodynamic potential for the groove subsystem is calculated exactly
within the transfer-matrix method. The interstitials, two-dimensional deposit on the outer bundle surface and
three-dimensional atmosphere of the cell, are included into consideration through the appropriate balance
condition. The average adsorbate densities, adsorption isotherms, isosteric heat, and heat capacity are calcu-
lated. The behavior of these quantities is analyzed in detail at different relations between the parameters of the
system. The theoretical results are in good quantitative agreement with the experimental data on thermody-
namics of 4He adsorbate.
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I. INTRODUCTION

Theoretical and experimental study of multilayer adsorp-
tion is of great interest due to an intensive development of
nanotechnology. To construct devices with specified charac-
teristics we need tools to operate on electrical, mechanical,
and structure properties of nanotubes and nanobundles. The
dosing adsorption of atomic and molecular deposits is one of
such tools. That is why a comprehensive investigation of
physical processes responsible for adsorption on
nanobundles is of great importance to the modern
nanoscience.1–8

At present various aspects of atomic and molecular ad-
sorption on planar graphite and metallic substrates are well
understood.9–17 A carbon nanobundle, as a substrate, differs
substantially from the planar graphite. First, the bundle has
positions where the one-dimensional �1D� deposit can be
formed. They are intratube channels if the bundle consists of
open nanotubes, interstitials, and also grooves on the outer
surface of the bundle. All these positions are different not
only in binding energies between a particle and the substrate
but also in conditions for deposition of adsorbate particles.
Namely, interstitials are accessible for deposition if their
cross sizes exceed the diameter of an adsorbate particle. In-
side a nanotube the particles may occupy either positions on
the intrinsic wall of the tube or axial positions along the tube,
depending on the relation between the diameters of an in-
tratube channel and adsorbate atom. At deposing on the outer
surface the particles first occupy the bottom of the groove
forming a primary chain, and then with increasing in cover-
age two secondary chains appear and the 1D condensate
changes to a three-chain groove structure �GS�. At large cov-
erages the two-dimensional �2D� adsorbate develops on the
outer surface of nanobundles. Due to substantial curvature of
the bundle surface the 2D positions on it differ considerably
from those on the planar graphite. The numbers of possible
1D and 2D positions on the bundle surface are comparable in
magnitude.

Until the present time the thermodynamics of adsorbates
on nanobundles was studied for the most part by numerical

methods, in particular, by Monte Carlo �MC� simulation.
Within this approach the main attention was paid to the ad-
sorption potentials,18,19 binding energy, and corrugation ef-
fects which influence the adsorbate formation in the external
grooves20–23 and outer surface of the bundle. The potentials
and binding energy for adsorption into interstitials were also
discussed.19,23–26 As for thermodynamic functions of the low-
dimensional adsorbate, the intrinsic energies of helium,26

hydrogen,19 the heat capacities of helium,27 argon,28 and
isosteric heat of methane29 were calculated using various MC
algorithms. Numerical simulations such as MC are believed
to give the most direct way to describe complicated statisti-
cal systems, but in reality the accuracy of MC results is
limited for some reasons. First, the modeling procedures op-
erate only with small amounts of particles �typically, not
more than 40–60 particles28�, so that the extension of the
results on the real many-body system needs special justifica-
tion. Second, all the parameters of the system should be
specified numerically for each run of the procedure and for
the new set of the parameters the procedure should be re-
peated again, which makes it difficult to find in details how
the result depends on the parameters of the system.

In this connection various analytical methods are of great
importance to treat the thermodynamics of adsorption on
nanobundles. In Ref. 30 the quantum virial expansion was
employed to calculate the specific heat of the 1D adsorbate
with regard to the interparticle interaction. In Ref. 31 the
one-particle energy-band structure of He atom in a corru-
gated interstitial channel was analyzed and the contribution
from the interstitials to the adsorbate heat capacity was esti-
mated. In Ref. 32 analytical expressions for the phonon ex-
citation spectrum of the 1D dense deposit in bundle external
grooves were obtained and the specific heat of this linear
phase was calculated.

Recently, an analytical approach33 based on a lattice gas
model has been proposed to describe the thermodynamics of
particles adsorbed in the grooves of carbon nanobundles. De-
spite the set of simplifications the model33 is adequate for
interpreting the adsorption on the initial stage of deposition
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�groove phase formation�. The results obtained in Ref. 33 are
in good agreement with the experimental data1,2,33 on ther-
modynamic properties of helium and methane adsorbates.

In the present paper we improve the approach33 by taking
into account the interparticle interaction between nearest
�NN� and next nearest �NNN� neighbors in the three-chain
groove phase and by including interstitials and the 2D sub-
system into consideration. As is shown below, the main part
of the problem relating to the three-chain subsystem reduces
to the exact-solvable model of the statistical physics, and
rigorous analytical results can be obtained at arbitrary values
of interparticle interaction parameters.

The plan of the paper is as follows. In Sec. II, we intro-
duce and justify the Hamiltonian for the quasi-1D multilayer
adsorbate �three-chain groove structure�. In Sec. III, the
transfer-matrix and grand canonical partition function for the
GS are built and the conservation law for the total number of
the particles in the system is derived. In Sec. IV, we calculate
the thermodynamic functions of the adsorbate �adsorbate
density, isosteric heat, and heat capacity� and analyze their
behavior at various relations between the interparticle inter-
action parameters. The role of interstitials in the low-
dimensional adsorption is discussed in Sec. V. In Sec. VI, on
the basis of the present theory we give the quantitative inter-
pretation of the experimental data on the adsorption
isotherms and isosteric heat.

II. STATEMENT OF THE PROBLEM

Let us assume that a monoatomic gas is adsorbed on a
nanobundle made of closed nanotubes. Then, the intratube
adsorption is not possible. The system of N particles consists
of a low-dimensional subsystem �adsorbate� with the average
density nads, and a three-dimensional �3D� atmosphere with
the density n3D. The 3D subsystem is considered as an ideal
lattice gas34 with the internal energy �3D=0. Thus, the 3D
atmosphere is simply the reservoir of the particles whose
balance with the other parts of the system is determined by
the thermodynamic equilibrium conditions.34

The low-dimensional subsystem includes 2D positions on
the curved outer bundle surface and a quasi-one-dimensional
subsystem that consists of the three-chain structure formed in
grooves and deposits in the interstitials �Fig. 1�. The basic
part of the problem is to describe adequately the quasi-1D
subsystem. Let us denote the binding energies for the posi-
tions in the interstitial channels, primary chain, secondary
chains, and 2D subsystem by �IC, �0, �1, and �2D, respec-
tively. All of them are negative �attraction� and satisfy the
following inequalities: �IC��0��1��2D. As the coverage
increases the particle adsorption on the nanobundle follows
the order: first, the interstitial positions are occupied, then the
one-chain phase is formed at the bottoms of the grooves,
then it transforms to the three-chain structure and, at last, the
occupation of the 2D positions occurs up to the formation of
the first monolayer on the outer surface of the bundle, and so
on. To simplify the model we treat the 2D adsorbate as an
ideal lattice gas.

The Hamiltonian of the groove subsystem has the form

H = H − ��
f=1

B

�nf + Af + Bf� , �1�

H = �0�
f=1

B

nf + �1�
f=1

B

nfnf+1�Af + Bf� + Hint, �2�

where nf, Af, and Bf are the occupation numbers of the po-
sitions in the primary and two secondary chains, respectively,
which take values of 0 or 1, � is the chemical potential, B is
the total number of positions at the bottom of the groove
�Fig. 1�. Accordingly, the total number of positions in two
secondary chains equals 2B. The adsorption in the fth sites
of the secondary chains is possible only if both neighboring
sites, f and f +1, in the primary chain are occupied. Further,

FIG. 1. The system configuration.
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Hint = U1�
f=1

B

nfnf+1 + U2�
f=1

B

nfnf+2 + W0�
f=1

B

nfnf+1AfBf

+ V1�
f=1

B

nfnf+1nf+2�AfAf+1 + BfBf+1�

+ W1�
f=1

B

nfnf+1nf+2�AfBf+1 + BfAf+1�

+ V2�
f=1

B

nfnf+1nf+2nf+3�AfAf+2 + BfBf+2�

+ W2�
f=1

B

nfnf+1nf+2nf+3�AfBf+2 + BfAf+2� , �3�

where Ui and Vi describe the interaction between the nearest
�i=1� and next-nearest �i=2� neighbors in the primary and
secondary chains, respectively, Wi is the interaction between
atoms in sites f and f + i �i=0,1 ,2� from different secondary
chains.

III. TRANSFER MATRIX

To calculate the partition function of the three-chain sub-
system we employ the transfer-matrix method. The system is
divided into B /2 identical six-site cells consisting of two
sites from the primary chain and four sites from the second-
ary chains �see Fig. 2�. The total energy of the system is the
sum of the cell energies Es �s is a cell number� and the
energy of the interaction between the neighboring cells
Es,s+1,

E = �
s
�Es + Es+1

2
+ Es,s+1� , �4�

where

Es = ��0 − ���ps + qs� − ��rs
a + rs

b + ts
a + ts

b�

+ psqs�U1 + �1�rs
a + rs

b� + W0rs
ars

b� ,

Es,s+1 = qsps+1�U1 + �1�ts
a + ts

b� + W0ts
ats

b� + psqsps+1

��V1�rs
ats

a + rs
bts

b� + W1�rs
ats

b + rs
bts

a��+ qsps+1qs+1

��V1�rs+1
a ts

a + rs+1
b ts

b� + W1�rs+1
a ts

b + rs+1
b ts

a��

+ U2�psps+1 + qsqs+1�+ psqsps+1qs+1�V2�rs
ars+1

a

+ rs
brs+1

b � + W2�rs
ars+1

b + rs
brs+1

a �� .

Here ps, qs, rs
a, rs

b, ts
a, ts

b are variables taking the values of 0 or

1. They have a meaning of occupation numbers for the po-
sitions within a cell �the notations are clear from Fig. 2�.
Their values determine a possible configuration �state� of the
sth cell. A set of all possible configurations of the sth cell
forms a space of states �s= �ps ,qs ,rs

a ,rs
b , ts

a , ts
b	, the total num-

ber of which is equal to 26=64.

Finally, the transfer-matrix T̂��s ,�s+1� has the form

T̂��s,�s+1� = exp
−
1

T
�Es��s� + Es+1��s+1�

2

+ Es,s+1��s,�s+1�� . �5�

The grand partition function of the system can be repre-
sented as the product of matrices35

Z = tr�T̂��1,�2�T̂��2,�3� ¯ T̂��s,�s+1� ¯ T̂��B/2−1,�B/2�

�T̂��B/2,�1��

�the system is supposed to be closed into a ring and the cell
number B /2 is adjacent to the first one�. In order to calculate
the partition function we need only the maximal eigenvalue
�max�T ,�� of the matrix �5�. It can be found using a well-
known iterative algorithm.36 As a result, the thermodynamic
potential of the groove subsystem has the form

�GS�T,�� = −
TB
2

ln �max�T,�� . �6�

Now all the thermodynamic characteristics of the system are
calculated within the standard scheme. The conservation law
for the total number of particles can be written as

�nads + �1 − ��n3D��� = n . �7�

Here

nads = 	nGS + �1 − 3	�n2D, �8�

n is the particle density in the system �quasi-1D+2D+3D�, �
is the fraction of the low-dimensional positions in the sys-
tem, 3	 is the fraction of the three-chain positions in the
low-dimensional subsystem, 	=B / �3B+B2D�, and B2D is the
total number of the 2D positions. In addition

nGS�T,�� = −
1

B
��GS

��
, 0 
 nGS 
 3 �9�

is the average number of particles in a cell of the three-chain
subsystem. Further,

n2D�T,�� = fF��2D − ��, n3D�T,�� = fF�− �� ,

0 
 n2D,3D 
 1 �10�

are the average numbers of particles34 in sites of the 2D and
3D subsystems, respectively, fF�x�= �1+exp�x /T��−1. Equa-
tion �7� determines the chemical potential ��T�.

IV. THERMODYNAMIC FUNCTIONS OF ADSORBATE

The proposed model includes a detailed consideration of
the interparticle interaction in the low-dimensional adsorbate

FIG. 2. Cells for the transfer-matrix method.
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and the presence of the 2D subsystem. From here on we
focus our attention mainly on the features of the system be-
havior connected with these points.

The dependence of the thermodynamic functions on the
binding energy �0 in the bottom of the groove was detailed in
Ref. 33, and in all calculations of the present work this pa-
rameter is assumed to be constant. We choose its absolute
value as an energy unit, without changing the notations for
the energy parameters introduced above. Thus, �0=−1.
Below we put �1=−0.6 and �2D=−0.4 unless otherwise
specified.

The quantity 	 is chosen to be 	=0.13 that is close to the
corresponding value in real systems,3 and �=0.01. Note, that
the meaning of the parameter � is slightly different from that
in Ref. 33, where the 2D subsystem was ignored. We put the
total density n=0.02 to make possible filling all the low-
dimensional positions. Other parameters are given in tables
or in figure captions.

A. Adsorbate density

The temperature dependences of adsorbate densities np�T�
and ns�T� in primary and secondary chains, the total density
nGS�T�=np�T�+ns�T� and the density of the 2D adsorbate
n2D�T� are shown in Fig. 3. The quantities np and ns vary in
the ranges 0
np
1 and 0
ns
2. As can be seen from
Fig. 3 the groove adsorbate density as a function of tempera-
ture behaves similarly to that found in Ref. 33. However, the
presence of the 2D subsystem changes qualitatively the fill-
ing conditions for the 1D positions. The temperature regions
where np�T�, ns�T�, and nGS�T� are practically equal to their
limiting values become narrower, because at low tempera-
tures the groove adsorption is accompanied by an active oc-
cupation of the 2D positions.

B. Heat of adsorption

The heat of adsorption or isosteric heat is defined as9

Qst�T�nads� = T2� � ln P

�T
�

nads

, �11�

where

P =
T

v0
ln�1 + exp��/T�� �12�

is the pressure in the 3D lattice gas,34 v0 is the specific vol-
ume of the 3D subsystem. The derivative in Eq. �11� is cal-
culated at fixed nads. This means that the chemical potential
should be determined from Eq. �8�. The balance equation �7�
in this case becomes simply a definition for n�� ,T�. Being
the differential characteristic of the system, Qst�T �nads� is
very sensitive to the adsorbate-substrate binding energies as
well as to the interparticle interactions.

Figure 4 illustrates temperature dependences of Qst calcu-
lated at several values of nads. The behavior of the isosteric
heat is rather different at low �nads�3	� and high
�nads�3	� densities and is conditioned by redistribution of
the particles among the prime chain, secondary chains, and
2D positions. The difference is more pronounced at low tem-
peratures. If the number of adsorbate particles is less than the
number of the groove positions �nads�3	� the function
Qst�T� goes through a minimum and then increases as T
tends to zero. At nads�	 �the upper curve in Fig. 4� this
increase in Qst is caused by compaction of the adsorbate in
the primary chain. Indeed, as the temperature decreases the
correlation functions �nfnf+1� and �nfnf+2� tend to their mini-
mum and maximum values, correspondingly. As a result, the
desorption energy ��0+U1�nfnf+1�+U2�nfnf+2�� increases at
T→0. In the region 	�nads�3	 �the curves at nads=0.2, 0.3
in Fig. 4� the primary positions are completely occupied at
low temperatures while the secondary chains are taken up
only partially and it is the redistribution of the particles be-
tween the secondary chains that plays a dominant role and
the minimum of Qst�T� shifts to smaller temperatures.

For dense adsorbate �nads�3	� the function Qst�T� is
monotonic at T� �U2� because along with the three-chain
phase completion the effect of the 2D subsystem becomes
noticeable. As can be seen from Fig. 4, at high temperatures
Qst grows linearly with temperature. Indeed, substituting Eq.
�12� in Eq. �11� and taking into account Eq. �10�, we obtain

Qst = T + T2� � ln n3D

�T
�

nads

,

where the second term is constant at T→�.

FIG. 3. Adsorbate density as a function of temperature.

FIG. 4. Temperature dependences of Qst at different nads.
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Figure 5 displays the theoretical curves Qst�nads� at differ-
ent temperatures. At nads→0 the isosteric heat Qst�nads� tends
to a finite limiting value Q0�T�. For all the temperatures Q0

 ��0� due to the contribution from the interparticle interac-
tion. It is customary to present experimentally obtained isos-
teric heat as a temperature averaged function.3 As can be
seen below �Sec. VI�, such averaging leads to quite accurate
results. However, the set of curves Qst�nads� at different tem-
peratures can give additional information on subtle details of
the interparticle interaction.

Figure 6 demonstrates how the interparticle interaction
affects Qst�nads� at fixed temperature T=0.1. Curve 1 repre-
sents Qst when all interactions in the Hamiltonian �3� are
nonzero with near neighbor �NN� repulsion and next-nearest
neighor �NNN� attraction between atoms both in chains and
between atoms from different secondary chains �see Table I�.
Other three curves are obtained for the case when only the
NN interactions are taken into account. Curve 2 shows that
neglect of the NNN attractions decreases Qst at all nads. An
increase in the NN repulsions leads to the sharp decrease of
the isosteric heat at low adsorbate densities �curve 3�, be-
cause the strong repulsion favors the particle delocalization
in the grooves. Finally, if the NN repulsion between second-
ary chains changes for attraction �this might be the case for
some bundle configurations� the isosteric heat increases at
dense coverages �curve 4�, where the exchange between the
adsorbate and 3D atmosphere occurs mainly due to atoms
from the secondary chains.

Figure 7 demonstrates Qst�nads� at T=0.1 and different
values of the binding energy �1 in the positions of the sec-
ondary chains. The behavior of the curves in Fig. 7 is quite
obvious: the heat of adsorption increases with ��1�.

C. Heat capacity

The energy of the system E has the form

E = EGS + E2D.

Here EGS and E2D are the energies of the groove and 2D
subsystems, correspondingly,

EGS = �H�, E2D = B2D�2Dn2D�T,�� .

The heat capacity of the adsorbate �per site of the low-
dimensional subsystem� takes the form

Cads =
	

B
�E

�T
= CGS + �1 − 3	��2D

�n2D�T,��
�T

, �13�

where the heat capacity CGS of the groove subsystem is

CGS =
	

B
�EGS

�T
. �14�

Temperature dependences of CGS at different �1 are
shown in Fig. 8. All the curves have two peaks: the high
temperature peak is associated with the primary chain forma-
tion and the low temperature one is connected with the par-
ticle adsorption into the secondary chains. As ��1� increases,
both peaks shift to higher temperatures. The theoretical de-

FIG. 5. Heat of adsorption as a function of adsorbate density at
different T.

FIG. 6. Heat of adsorption as a function of the adsorbate density
at different combinations of the parameters.

TABLE I. Parameters for the curves in Figs. 6 and 9.

Curve 1 2 3 4

U1 0.1 0.1 0.2 0.1

U2 −0.025 0 0 0

V1 0.1 0.1 0.2 0.1

V2 −0.015 0 0 0

W0 0.1 0.1 0.2 −0.1

W1 −0.02 0 0 0

W2 −0.005 0 0 0

FIG. 7. Heat of adsorption as a function of the adsorbate density
at different �1.
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pendences CGS�T� are in qualitative agreement with the re-
sults of computer Monte Carlo simulations28 on argon ad-
sorption into the grooves.

Figure 9 shows CGS�nads� at the same combinations of the
interaction parameters as in Fig. 6 �see Table I�. When the
repulsions between the nearest neighbors in the chains in-
crease both peaks of CGS�nads� become more pronounced. At
very strong repulsion the deposition into the secondary
chains becomes less preferential than in the 2D positions and
the second peak vanishes �curve 3�.

Figure 10 shows the total heat capacity Cads of the adsor-
bate as a function of temperature �Fig. 10�a�� and as a func-
tion of adsorbate density �Fig. 10�b��. For comparison, the
heat capacity of the groove subsystem is added to these fig-
ures. It is seen that Cads does not have the two-peak shape
typical of the groove subsystem due to the contribution from
the 2D subsystem.

V. INTERSTITIAL ADSORPTION

The role of interstitials in the adsorption on nanobundles
still remains a subject of discussion.1,4,23,29 It needs further
experimental and theoretical investigations. At present the
filling mechanism of interstitial channels is not quite under-
stood. Indeed, an adsorbate atom should not only hit the
small open face of the channel but also move forward inside
the channel to vacate the place for deposition of next atoms.
Thus, the mobility of the adsorbate atoms is an essential

factor controlling the interstitial adsorption. However, this
problem is beyond the scope of the present paper.

Since ��IC� is the largest energy parameter, the contribu-
tion from the interstitials to the thermodynamics of the ad-
sorbate is sufficient at small coverages and can be neglected
at dense coverages. Experimentally,3,33 the effects caused by
the interstitial adsorption were actually observed at nads�1.
Here we propose a simple model that gives a reasonable
estimation for the contribution from the interstitials to the
low-dimensional adsorption. Formally, the inclusion of inter-
stitial positions for adsorption means the expansion of the
quasi-1D subsystem. We denote by � the fraction of the in-
terstitial positions in the total number of the quasi-1D posi-
tions. Below we assume that ��1.

Let M be the number of the interstitial channels in the

bundle. Each channel consists of B̃ sites available for adsorp-
tion. Thus,

� =
MB̃

MB̃ + 3B
.

The adsorbate in a channel is described within a 1D ideal
lattice gas model. Due to the difference in the diameters of
the nanotubes that make up the bundle the interstitial chan-
nels differ in geometry and, consequently, in binding ener-
gies �IC

�m� �1�m�M�. Taking into account Eq. �1�, the
Hamiltonian of the quasi-1D subsystem can be written as

FIG. 8. Temperature dependences of CGS at different �1.

FIG. 9. Heat capacity of the GS as a function of the adsorbate
density at different combinations of the parameters.

FIG. 10. Heat capacities of the groove subsystem and the total
adsorbate as functions of T �a� and nads �b�.
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H̃ = H + �
m=1

M

��IC
�m� − ���

f=1

B̃

nf
�m�.

In real nanobundles the tube diameters are distributed
near some average value.37 As a result, the intertube sub-
system may be considered as some groups of identical chan-
nels inflated with the ideal lattice gas. In this case the aver-
age particle density on the site of the channel subsystem is
given by

nIC��,T� = �
�

��fF��IC
��� − ��, �

�

�� = 1, �15�

where � is the channel group number, �IC
��� is the binding

energy of the �th group, and �� defines the fraction of the
�th group positions in the total amount of the interstitial
positions.

As before, the chemical potential should be found from
Eq. �7� with

nads = 	��1 − ��n1D��,T� + 3�nIC��,T�� + �1 − 3	�n2D��,T� .

�16�

The rest of the calculations are similar to those in Sec. IV.
Figure 11 illustrates the effect of the interstitial adsorption

on Qst�nads� of the adsorbate �curve 2�. For comparison,
Qst�nads� without regard to the interstitial adsorption ��=0� is
also shown �curve 1�. The parameters of the interparticle
interaction are chosen as for curve 1 in Fig. 6, and the pa-
rameters of the intertube subsystem are given in Table II, �
=0.1, T=1.

It is seen, that even 10% of the interstitial positions in the
quasi-1D subsystem affect sufficiently the behavior of
Qst�nads� at small nads. Disregard to the interstitials leads to a
plato on Qst�nads�, which appears because at nads�1 all the
particles adsorb into the primary groove positions of equal

energy. The isosteric heat of adsorption coincides with the
highest binding energy of the particles with the substrate in
the limit T→0 and nads→0. So, the behavior of Qst�nads� at
low coverages implies the presence of the interstitials. In
addition, when we put �=0 in Eq. �16� the number of the
groove positions effectively increases. As a result, there ap-
pear a difference between the curves 1 and 2 in the interme-
diate coverage region, where all the interstitial positions, if
any, are completely occupied. Certainly, the character of the
Qst�nads� behavior in its turn is determined by �IC

��� and ��.

VI. COMPARISON WITH EXPERIMENT

For today there is a detailed experimental material relative
to adsorption of helium on nanobundles �see, e.g., Refs. 1
and 3�. In this section we compare the obtained theoretical
results with the experimental data3,33 on adsorption isotherms
and Qst for helium adsorbate. The present theory gives a
quantitative description up to the coverages corresponding to
the initial promotion stage of the 2D subsystem described as
an ideal lattice gas. For this reason we consider only densi-
ties less than Vads=1 cm3 at STP �Vads is the total amount of
4He adsorbed on the nanobundle substrate� and, therefore,
the isotherms with T�6 K.

To compare the theory and experiment we should specify
the parameters of the system. We begin with 	, �, and �
defining the geometry of the system. The value of 	 is known
with a high accuracy from the structural data �	=0.13�. This
is not the case for � because it is difficult to estimate in
practice both the free volume of the experimental cell and
the size of the nanobundle surface available for adsorption.
However, the calculated results are not very sensitive to the
value of �. The only important point is that at any given � the
average density n must be large enough to make possible
filling of all the low-dimensional positions. The value of �
cannot be extracted from the experiment, and we choose it to
provide the best agreement between the theory and experi-
ment at low coverages, where the interstitial adsorption is
important ��=0.1�. To find the conversion factor between the
dimensionless nads and the experimentally measured cover-
age density Vads �in cm3 at STP� we equate the value of Vads
at which the formation of the quasi-1D subsystem
completes3,33 to the corresponding theoretical value nads=3	.

The binding energies �0, �1 and specific volume v0 are
chosen to fit as a whole the theoretically calculated set of
isotherms to the set of Vads�P� measured experimentally. It is
these parameters that are responsible for the positional rela-
tionship of the isotherms in the set.

Other parameters exert on more delicate features of the
adsorption isotherms. Each of them accounts for its own cov-
erage region. Thus, at large coverages where the contribution
from the 2D subsystem prevails the correct run of the iso-
therms is provided for the correct choice of �2D. In the region
where the formation of the GS occurs the interparticle inter-
actions play the most important part. And at small coverages
the behavior of the system can not be explained without
taking into account the interstitials and, hence, the param-
eters �IC

� , �� are determinant.

FIG. 11. Heat of adsorption with �2� and without �1� regard to
the interstitials.

TABLE II. Parameters of the interstitials

� 1 2 3 4

�IC
��� −2.0 −1.8 −1.6 −1.4

�� 0.1 0.2 0.3 0.4
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The theoretically calculated isotherms of 4He in the tem-
perature region 6–14 K together with the corresponding ex-
perimental data33 are shown in Fig. 12�a�. The adjustable
parameters for the outer surface adsorption are the following:
�0=−158 K, �1=−115 K, �2D=−61 K, U1=12 K,
U2=−4 K, V1=5 K, W0=5 K, V2=−3 K, W1=−1 K, W2
=0 K; and for the interstitial adsorption are presented in
Table III. The obtained value of �0 is consistent with that
found both experimentally,2,5 and by computer
simulations.21,23,24 The energies of the interstitials are also in
agreement with the values known from literature.21,23,24

It worth noting that good agreement between the theory
and experiment can be achieved only at the unique set of the
parameters. For example, if we change the value of �0 by
±2 K ��1% � the theoretical and experimental isotherms will

differ from each other significantly at all pressures and tem-
peratures.

In Fig. 12�b� we show our previous results on the adsorp-
tion isotherms33 which were calculated without regard to the
2D subsystem, interstitials and interparticle interaction in the
secondary chains and between the chains. It is seen that the
present model makes it possible not only to extend the region
of adequate description for the adsorption isotherms but also
to achieve better agreement between the theoretical and ex-
perimental results.

The experimental and theoretical dependences Qst�Vads�
are shown in Fig. 13. Both curves are the results of averaging
over temperature. The solid curve is obtained with regard to
the interstitial adsorption, whereas the dashed one is calcu-
lated without taking the interstitials into account ��=0�. The
low coverage behavior of the experimentally found heat of
adsorption is a direct evidence for the presence of the inter-
stitial adsorption �see Sec. V�. The solid curve reproduces all
the nonmonotonicities of the measured Qst�Vads�. Owing to
this fact the stages of the adsorbate formation can be identi-
fied unambiguously.

The procedure of extracting Qst from experimental data
consists in numerical differentiation of adsorption isotherms
over temperature. As a fact, this operation gives a set of
Qst�Vads� at different T, but because of rather wide tempera-
ture interval between neighboring isotherms ��1 K� the ac-
curacy of the corresponding derivative calculations is intrin-
sically limited. In this connection the experimental results on
Qst are typically presented as temperature averaged depen-
dences. Theoretically, the isosteric heat can be calculated at
any T without resorting to adsorption isotherms and numeri-
cal differentiation. Figure 14 demonstrates a set of the theo-
retically calculated Qst�Vads� for different T and the averaged
experimental heat of adsorption from Fig. 13. In the given
temperature region the theoretical curves cross each other at
well defined nodes. The divergences of curves in loops are
rather small, and averaging over temperature gives the de-
pendence that reproduces all the features of the experimental
curve Qst�Vads� quite well. Nevertheless, a lot of additional

FIG. 12. The adsorption isotherms for 4He on carbon
nanobundles. Symbols are the experimental data �Refs. 3 and 33�
for T�K� from top to bottom: 6.5, 7.5, 8, 9, 10, 11, 12, 13, 14. Solid
curves are the theoretical results: present �a�, and previous �b�
�Ref. 33�.

TABLE III. Parameters for the interstitial adsorption.

� 1 2 3 4

�IC
��� �K� −270 −250 −230 −210

�� 0.1 0.2 0.3 0.4

FIG. 13. Averaged heat of adsorption for 4He on carbon
nanobundles. Symbols are the experimental data �Ref. 3�. Solid and
dashed curves are the theoretical results with and without regard to
the interstitials.
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information about the interparticle interaction in the adsor-
bate can be extracted from the nonaveraged set. Thus, it is
worthwhile to present experimental results for Qst�Vads� at
different T.

The theory was also applied to interpret the experimental
data2 on methane adsorption isotherms. It turned out that a
simpler model proposed in Ref. 33 is quite enough to de-
scribe adequately these data. It is due to the fact that the
measurements2 were carried out within the temperature range
where the interparticle interactions taken into account in this
work can be neglected. Moreover, the experiment was made
for low coverages at which the deposition into the three-
chain subsystem prevails and the formation of the 2D sub-
system practically does not occur. And, finally, the filling of
the interstitials is impossible due to the large size of methane
molecules. As a result, the adsorption process is governed
only by the attraction of the adsorbate to the quasi-1D sub-
strate positions.

VII. SUMMARY

The analytical model has been proposed to describe quan-
titatively the thermodynamics of an atomic deposit adsorbed

in grooves, on the outer surface, and in interstitials of a
closed-end carbon nanobundle. The model takes into account
interparticle interactions between the nearest and next-
nearest neighbors in the quasi-one-dimensional groove sub-
system. The obtained theoretical results allow us to explain
successfully the experimentally observed thermodynamic be-
havior of the adsorbate in the wide temperature and pressure
range.

The dependences of the thermodynamic functions on the
interparticle interaction parameters as well as on the attrac-
tion to the substrate have been analyzed and interpreted. It
has been shown that the run of the thermodynamic functions
in different temperature and density regions is determined by
different interaction parameters. In fact, it is possible to de-
tect how every single interaction parameter influences the
shapes of the curves describing the densities of adsorbate in
the 1D and 2D subsystems, heat capacities of the 1D and 2D
adsorbate, adsorption isotherms and isosteric heat. As a re-
sult, the thermodynamic of adsorption on the nanobundles
can be described on a quantitative level.

Considering the energetic constants of Hamiltonian �2�
and �3� as fitting parameters, we obtain good agreement be-
tween the theory and experiment not only in general but also
in all features of the experimental dependences, and this fact
demonstrates the efficiency of the proposed theoretical
model. We emphasize that the agreement is achieved at the
unique choice of the whole set of the parameters with
strongly established relationships between them. Since all
the fitting parameters have clear physical meanings, it is rea-
sonable to expect that the proposed approach can serve as a
method of the “thermodynamic spectroscopy” making pos-
sible to extract the magnitudes of the interparticle interaction
parameters in adsorbate directly from the thermodynamic
measurements.
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