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A theoretical investigation is presented of the mode propagation and attenuation in a nanometric coaxial
waveguide in real metal. By a rapid comparison with other structures, it is established that a coaxial waveguide
has propagative modes with very interesting properties: the cutoff wavelengths are very large, they become
larger when a perfectly electric conductor is replaced by gold or silver �real metal�, and they can be increased
when the outer and inner radii are very close one to other. By studying dispersion curves and field structures,
it is shown that surface plasmon modes are responsible for these properties. By simply changing the geometri-
cal parameters of the structure, a very large effective index and very low group velocities could be obtained.
We also establish that, in spite of the metal losses, a reasonable large propagation length could be obtained
�50 �m� which should allow applications for guiding light in nano-optics.
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Miniaturization of optical components is now a real chal-
lenge and takes a large place in the domain of nanotechnol-
ogy. New optical devices are currently designed at the mi-
crometer scale. Tunable photonic crystals are a significant
example of such devices.1 Surface plasmons, which are lo-
calized electromagnetic waves, are used to enhance single-
molecule fluorescence2 or to build microdetectors for bio-
logical applications.3 The superoptical transmission obtained
when light passes through a metallic array of subwavelength
holes,4–6 is now used as a detector for organic molecules and
could be useful to modulate, to filter or to polarize light at
nanometric scales.6,7 Motivated by transmission problems
through optical near-field probes, some theoretical studies
were performed on metallic nanometric cylindrical guiding
structures.8,9 Waveguides that can transmit both electrical
and optical signals should also be designed at this scale as
proposed in Ref. 10. In their paper, Bozhevolnyi et al. clearly
demonstrate that a simple groove on a metallic layer can play
the role of an effective waveguide for surface plasmons with
a relatively very large decay length.

The aim of our paper is to propose another solution for
optical connections in nano-sized optical components: we
theoretically establish that a coaxial waveguide with submi-
crometer radii could guide light with a much larger wave-
length and with losses low enough to enable useful propaga-
tion distances.

In order to use light �0.4���1.5 �m� for optical con-
nections in nano-optical components, it is necessary to find a
structure with small transverse widths and with losses low
enough to enable a useful propagation distance. Dielectric
materials generally have negligible losses but the transverse
confinement is very difficult to obtain with such materials.
Some photonic optical fibers have subwavelength channels
but the field is delocalized among all the cross sections of the
fiber. A dielectric fiber can be easily tapered at a nanometric
scale and it can guide light without any cutoff restriction. But

the evanescent part of the guided mode is spread out over the
taper, which is not compatible with efficient confinement.

With metallic guides, at first glance, it seems easier to
confine the field in a transverse plane, but it is then necessary
to seriously discuss the problems of wavelength cutoff and of
losses especially if real metals are used. The properties of
metallic waveguides can be found in many textbooks �Ref.
11, for instance�, but the studies are generally restricted to
radio waves or microwaves. For theses spectral domains, the
metals are very close to perfect electric conductors �PECs�
and losses are treated as a small perturbation. In the optical
range, the properties of the metals must be described by a
complex dielectric constant with dispersion and losses. For
noble metals �silver, gold, aluminum�, experimental tables
are published12 and a good approximation is given by the
Drude model ����=1−�p

2 / ��2+ i���, where �p=1.374
�1016 rad/s is the plasma frequency and �=3.21
�1013 rad/s a coefficient directly related to the losses. It is
important to notice that for those metals, the losses remain
small and the imaginary part of the dielectric constant is
much smaller than its real part.

For a guiding structure along the z axis, the electric field
of a mode can be written in the general form

E� = E� 0�x,y�ei�	z−�t� = E� 0�x,y�ei��nef f/cz−t�. �1�

The propagation coefficient 	 is directly related to the
effective index of the mode: 	=nef f� /c. In general, 	 and
nef f are functions of � and they depend upon the geometry
and on the mode. Without losses, 	 is real or purely imagi-
nary. For a propagative mode, 	 is real; for a nonpropagative
evanescent mode it becomes purely imaginary. The cutoff
frequency corresponds to the limit between the two kinds of
modes. At this limit, 	 and the effective index vanish. For
real metals with losses, 	 is complex and a general discus-
sion is very difficult. However, when losses are small, a clear
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difference between propagative and attenuated modes re-
mains valid: for propagative modes Im�	�
Re�	� and a cut-
off frequency still exists when Re�	��0.

To propagate light in a guide with a small cross section, it
is necessary to find the geometry that has the mode with the
largest cutoff wavelength. Figure 1 gives the cutoffs of the
fundamental modes of three kinds of waveguide made with
PECs. In the following, the cavity inside each guide is sup-
posed to be filled with air. In theoretical calculations it is
easy to replace air by another dielectric; it is not so easy
experimentally. So, in the following all the calculations are
performed with air inside the cavities.

For a square or rectangular waveguide �widths a and b
with a�b� in a PEC, the fundamental mode with the largest
cutoff wavelength is the TE10: �c=2a. By replacing a rect-
angular cross section by a circular one, with the same width
�diameter a=2R�, a smaller cutoff is obtained for the funda-
mental mode: �c=1.7a for the TE11 mode.

If we consider a coaxial waveguide, in a PEC, a very
interesting result is obtained. The cutoff wavelength of all
the modes except two depends on the difference between the
outer and inner radii, i.e., the wavelength cutoff is very
small. But the TEM0 mode has no cutoff ��c=�� and the
TEm1 mode has a cutoff proportional to the sum of the radii:
�TEm1

c ��Ro+Ri� /m, where Ro and Ri are the outer and in-
ner radii, respectively. The TEM0 mode has a cylindrical
symmetry and it should be very difficult to be optically pro-
duced. On the contrary the electric field of TE11 is linearly
polarized and could be easily excited.

Thus, except for the TEM0 mode, the fundamental mode
of a coaxial guide in a PEC is the TE11 mode, which has a
rather large cutoff wavelength: �TE11

c ��Ro+Ri�. If the ex-
ternal transverse width of the coaxial waveguide remains
constant, the cutoff wavelength of the TE11 mode can be
increased when the inner radius tends to the external one.
The maximum that can be reached is �TE11

c →�2Ro� which
is obtained for a very small gap between the two radii.

For optical applications, it is necessary to check if the

interesting properties of the coaxial waveguide remain valid
in the optical domain. Here analytical solutions are not pos-
sible and it is necessary to use numerical methods. Commer-
cial codes are available for this purpose; they are founded
upon the finite-difference time domain �FDTD� method or
the finite-element method �FEM�. They have no problems for
dielectric structures but they have shown erratic problems of
convergence when applied to our nanoguiding structures
with real metals.

The cutoff frequencies and the light distribution inside the
waveguide, which will be shown below, are calculated via an
original FDTD code that will be briefly described here. The
study of axially symmetrical structures can be easily done by
the body-of-revolution FDTD �BOR FDTD� method which
is based on the discretization of the Maxwell equations ex-
pressed in cylindrical coordinates.13,14 The N-order FDTD
method15,16 is then adapted to such a symmetry. To our
knowledge, this method is not yet recognized in cylindrical

FIG. 2. Effective index of the first guided modes for coaxial and
cylindrical waveguides made in PEC and in silver. The radius of the
cylindrical waveguide is set to R=125 nm, the outer radius of the
coaxial waveguide is Ro=125 nm, and the inner one is Ri=75 nm.

FIG. 3. Variations of the cutoff wavelength of the first mode of
the two structures �coaxial and cylindrical� versus outer radius. For
the coaxial waveguide, the inner radius is set to Ri=75 nm.

FIG. 1. �Color online� Cutoff wavelengths of the first guided
modes �associated with bigger values of wavelength� for three dif-
ferent waveguides made in a PEC.
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coordinates; however, it leads to an efficient and fast code as
it avoids the use of absorbing boundary conditions except in
the radial direction. Moreover, we have also used for these
calculations, a nonuniform mesh: the smallest spatial step
was �r=0.1 nm near the edges whereas �r=5 nm elsewhere.

Let us notice here that studies on optical fibers by the
FDTD method are generally performed with a two-
dimensional 2D algorithm with rectangular discretization17,18

which is not very well adapted to efficiently describe the
cylindrical geometry of the studied structure.

In our case, the dispersion of metals at optical frequencies
is easily incorporated in the FDTD algorithm via the discreti-
zation of the constitutive equation of the medium that con-

nects the displacement D� vector to the electric field E� .19

In order to test the validity of our approach, we first de-
termine the dispersion curve for a coaxial waveguide in a
PEC and compare the result with the same structure in silver.
An example of the dispersion curves is presented in Fig. 2
where are plotted the variations of the effective indices of the
first modes �TEM0, TE10, and TE11� versus the vacuum
wavelength for two different geometries.

The dispersion curves of the PEC structure, obtained with
our FDTD code, exactly correspond to the theoretical ones.
The TEM0 mode has no cutoff and its effective index is
equal to 1 along the whole spectrum. The effective index of
the TE1 mode verifies the simple equation nef f

PEC���
=�1−�2 / ��c�2.

For the coaxial waveguide in silver, only two modes have
a propagative part in the studied spectral range. A mode with

cylindrical symmetry is found, its cutoff wavelength far be-
yond the infrared, and the effective index exhibits a small
dispersion from �0=600–900 nm �even up to 1600 nm�. It is
important to notice that the effective index of this mode is
larger than 1. The other mode has a field distribution corre-
sponding to an m=1 mode. The two modes have, in the case
of silver, small Ez field components so they are not pure
TEM0 and TE1 modes, but they are in the continuity of the
previously described modes of the PEC structure and they
will be named in the following the TEM0� and TE11� modes.

The TE11� mode has a dispersion curve which looks like
the PEC one but is pushed towards the red region of the
spectrum. For a real noble metal, the cutoff wavelength is
increased compared to the same structure in the PEC. A simi-
lar result has also been recently established for the mode
propagation in rectangular20 or cylindrical18 structures made
of real metals. So a general property can be expressed: for a
guiding structure made in real metal, the cutoff wavelength
of a propagative mode is increased when compared with the
same mode of the same structure made in a PEC. This result
is a key point for the interpretation of the very large trans-
mission obtained with an annular aperture array.16 The red-
shift depends both on the value of the plasma frequency �wp�
used in the Drude model and on the geometrical parameters
of the waveguide �radii�. Moreover, the loss coefficient � of
the permittivity has a very small influence on the cutoff shift.

It is important to notice that, among the three studied
structures with the same external radius, the coaxial wave-
guide in silver is the structure which has propagative modes
with the largest wavelength.

FIG. 4. Dispersion curves of a
silver coaxial waveguide with four
values of Ro and with Ri=75 nm.
Only the modes with m=1 are
shown. The dashed line presented
on the four figures corresponds to
�=�p /�2.
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Another interesting phenomenon is presented in Fig. 3. In
this figure we have plotted the variations of the cutoff wave-
lengths versus the outer radius Ro of the fundamental modes
for four structures: a coaxial waveguide in PEC or silver and
a cylindrical waveguide also in PEC or silver. For the two
coaxial waveguides, the inner radius is fixed to Ri=75 nm.

For a cylindrical waveguide made in PEC or silver, the
behavior of the cutoff is linear but it is shifted toward the red
region of the spectrum in the case of real metal. We have also

reproduced the result presented in the inset of Fig. 2�a� by
Shin et al.18

The cutoff wavelength of the TE11 mode of the coaxial
waveguide made in the PEC varies linearly with respect to
the outer radius and verifies the theoretical equation �TE11

c

��Ro+Ri�. All these results are tests showing the good
accuracy of our FDTD code.

But for a coaxial waveguide made in silver �metal with
losses� one can see in Fig. 3 that the variation of the cutoff
wavelength of the TE11� mode exhibits an unusual behavior
when the external radius decreases. For a large external ra-
dius, the cutoff wavelength first decreases linearly, but, be-
low a limiting value �point F on the figure� Ro

min=125 nm,
the cutoff wavelength increases when Ro decreases. This
finding is at the origin of the enhanced transmission obtained
through annular aperture arrays with a small gap between Ro
and Ri when illuminated by very large incident
wavelengths.21

In order to explain this unusual behavior of the cutoff
wavelength in the case of a coaxial waveguide in real metal,
we study the evolution of the dispersion curves when Ro
varies and for a fixed value of Ri=75 nm. The calculations
are performed only for modes having the same azimuthal
number m=1.

Figure 4 shows the results obtained for only four values of
Ro around the point F of Fig. 3. The higher modes are propa-
gative ones and, as usual, they tend asymptotically to the
light line for large values of kz. For small values of Ro, these
modes are shifted toward high frequencies; they do not ap-
pear in Fig. 4�d� for Ro=80 nm.

The two interesting modes are the lowest ones. Actually,
they cut the light line and tend asymptotically to �=�p /�2
which is the surface plasmon frequency on a flat metal-
vacuum interface. When Ro decreases, the two curves repels
each other and a large gap is obtained for Ro=80 nm. These

FIG. 5. �Color online� Light distributions �square modulus of
the electric field� in a section of the waveguide for four values of Ro

and with Ri=75 nm. In all the eight subfigures, kz is set to zero, i.e.,
� is equal to �c. �a�, �c�, �e�, and �g� correspond to the lower mode
while �b�, �d�, �f�, and �h� are calculated for the second plasmonic
mode.

FIG. 6. Normalized group velocity �by c� of the lower mode
versus the wavelength for Ro=125 nm and Ri=75 nm.
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two modes look like the two plasmonic modes obtained in
the case of a 1D metallic photonic crystal.22 In the former
case, one of them has an odd symmetry while the other pre-
sents an even one. In our case, there is no geometrical sym-
metry in the radial direction except when Ro→Ri; this im-
plies that there are no even or odd symmetries. Figure 5
shows the light distribution at cutoff wavelengths for the two
lower modes in the case of a coaxial waveguide made in
silver with Ri=75 nm and for the four values of Ro consid-
ered in Fig. 4. One can see that for the fundamental mode,
the light distribution corresponds to the excitation of a sur-
face plasmon on the inner interface whichever the value of
the outer radius. Moreover, for the second mode, the maxima
of light are located between the two interfaces. We have
verified that these two modes are TE1n-like ones, i.e., at the
cutoff, Er, E�, and Hz are not equal to zero while the three
other components �Ez ,Hr ,H�� of the electromagnetic field
are null.

Note here that for an outer radius of Ro=80 nm �Fig.
5�h��, the cutoff wavelength of the second mode is almost
equal to �c=140 nm which corresponds to �=�p. In this
case, the dielectric constant of silver becomes null and a
plasmon resonance �in the volume� is obtained as shown in
Fig. 5�h�.

It seems that, when Ro→Ri, the cutoff frequency tends to
zero for the fundamental mode and to �p for the second
plasmonic mode. It would be interesting to have a theoretical
interpretation of this phenomenon.

Figure 4�d� shows also that, for a small value of the outer
radius �here Ro=80 nm�, the dispersion curves become al-
most horizontal. The group velocity vg is then small com-
pared to c �light velocity in vacuum�. Figure 6 shows the
group velocity versus the wavelength of the lowest guided
mode in the case of a silver coaxial waveguide with Ro
=125 nm and Ri=75 nm. This curve is simply numerically
calculated from Fig. 4�c� by vg=d� /dk. We have performed
many other calculations which demonstrate that for Ro→Ri
→0, the dispersion curve becomes more flat and, conse-
quently, the group velocity decreases �for example with Ro
=55 nm and Ri=50 nm, we get vg�c /4 for the whole vis-
ible region�. In all cases, the value of vg falls to zero at the
cutoff because there is no propagation along the z axis
�kz=0�.

These modes are interesting because of their large cutoff
wavelengths �especially the lowest one�. Nevertheless, for

practical applications, it is necessary to determine the propa-
gation losses. It is clear from Fig. 5 that, for the fundamental
mode �TE11� �, light is essentially confined in the gap between
the two metallic parts of the waveguide. This indicates that
losses should be very weak during the propagation.

In order to confirm that, let us determine the imaginary
part of the effective index �nef f =nef f� + inef f� �. The real part nef f�
�which is presented in Fig. 2� is determined from the disper-
sion curves given in Fig. 4 by nef f� =�ckz /2. The imaginary
part of nef f can be determined by studying the width of the
resonance peaks obtained by the N-order FDTD method.23

But this method is not sufficiently accurate in our case. Thus,
we have determined it by performing a numerical propaga-
tion experiment. A body-of-revolution FDTD calculation on

FIG. 7. Schema of the studied coaxial waveguide. A pulsed TE11

guided mode is injected at z=zI. Light intensities are then recorded
at z=zA, zB, and zC.

FIG. 8. Numerical values of the imaginary part of the effective
index for the TE11� mode in the case of a silver coaxial waveguide
with Ri=75 nm. Distances AB and BC were set to zB−zA=zC−zB

=500 nm and the injection point I was located at 500 nm above A
�see Fig. 7�.

FIG. 9. Comparison of the efficiency of the diffracted zero order
by four different single coaxial apertures pierced into a metallic
layer. For all, the metal thickness is set to h=100 nm and the struc-
ture is supposed to be free standing �surrounded by vacuum�. Dot-
ted line corresponds to a PEC structure with Ro=90 nm while the
solid line corresponds to the same structure in silver. The dot-
dashed line and the dashed one are both calculated for Ro

=125 nm and for PEC and silver metal, respectively.
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a z-finite structure is performed and the imaginary part of the
effective index is determined by measuring the light attenu-
ation. The schema of the studied structure is presented in
Fig. 7.

A pulsed guided mode is injected at the point I. This pulse
is centered around �=500 nm and has a small temporal
width in order to cover the whole visible range. Three point
detectors are set at A, B, and C. The three components �Er�t�,
E��t�, and Ez�t�� of the electromagnetic field are then re-
corded versus time at these three points.

A time Fourier transform is then made over each compo-
nent in order to determine the spectral densities IA, IB, and IC.

Thus, the imaginary part of the effective index can be
easily calculated from one of the following equations:

n� =
� ln�IA,B or C/IB,C or A�
4�zB,C or A − zA,B or C�

. �2�

One notice here that this BOR FDTD calculation is time
consuming �36 h on a laptop computer Dell Precision M70�
because of the small spatial meshing in the radial direction
��r=0.1 nm� which leads to a very small time step in the
FDTD code ��t�1.35�10−19 s� and also because of the
weak value of the group velocity.

On the other hand, this method remains valid only for
wavelengths less than the cutoff. In fact, for �=�c, the group
velocity of the guided mode is zero and the light does not
propagate.

Because of this, Fig. 8 presents the logarithm of the
imaginary part of the effective index only for ���c for three
different geometrical configurations. For all three cases Ri is
fixed to 75 nm. The dotted line is obtained for Ro=125 nm,
the dashed one for Ro=250 nm, and the solid one in the case
of Ro=80 nm.

Figure 8 shows that the imaginary part of the lower
guided mode �the TE11� one� increases when Ro decreases,

and then the decay length decreases. Moreover, nef f� is around
2�10−3 for the whole visible range when Ro=125 nm. This
corresponds to a decay length of 50 �m �in average�. Thus,
this mode presents weak losses during its propagation and
waveguides of several tens of micrometers can be designed
for optical applications.

On the other hand, this finding can be used in the domain
of enhanced transmission through subwavelength apertures
as studied by Haftel et al.21 In that study, the authors dem-
onstrate that by decreasing the value of the outer radius, the
transmission peak is shifted toward large wavelength values.
Figure 9 shows the zero-order efficiency of a 100-nm-thick
silver layer perforated by only one aperture. Four apertures
were studied: cylindrical and coaxial ones in PEC and in
silver, and two different geometrical configurations.

Two phenomena are clearly shown on Fig. 9: first, the use
of silver instead of PEC leads to a shift in the transmission
peak toward a larger value of wavelength and, second, this
shift can be amplified by decreasing the outer radius.

To the best of our knowledge, this work shows for the first
time the determination of cutoff frequencies of a real metal-
lic coaxial waveguide. In addition, the abnormal behavior of
the cutoff wavelength of the fundamental mode is pointed
out: it increases when the outer radius decreases. The group
velocity of such a mode shows a weak value compared to c,
which means that light will propagate slowly inside the
waveguide. This property is very important if we consider
nonlinear or electro-optical materials placed between the in-
ner and the outer metallic parts because their coefficients can
then be strongly increased with slow light.
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