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We present a proposal to optically implement rotations of the electron spin in a quantum dot about the
growth direction �z axis�. In particular, we make use of the analytic properties of sech pulses in two-level
systems to realize spin rotations about the growth direction by an arbitrary angle, for which we give an
analytical expression. We propose to use this scheme to experimentally demonstrate this spin rotation. Using
realistic system and pulse parameters we find the fidelity of the rotation to be more than 96% for pulses in the
picosecond regime, and robust against small errors in pulse parameters. We design a feedback �adaptive� loop
to correct for errors originating from unintended dynamics. The rotation is still evident—albeit with a large
fidelity loss—in the ensemble case, providing the possibility of demonstration of this optical spin rotation in an
ensemble of quantum dots.
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I. INTRODUCTION

A promising qubit candidate is the spin of an electron,
trapped in a quantum dot �QD� and manipulated optically via
Raman transitions involving a charged exciton �trion� state.
Such a scheme combines the merits of the spin in the solid
state environment �long coherence times, integrability� with
advanced laser technology �speed, focusing, pulse shaping�.
Recently, there has been significant experimental progress
towards the demonstration of the key DiVincenzo require-
ments for this qubit. In particular, the optical generation of
spin coherence has been demonstrated1–3 and the spin coher-
ence time has been shown to have a lower bound of 10 ns.1

The optically induced single-qubit rotation, however, has yet
to be experimentally shown for this system. In this paper,
after briefly reviewing other proposals for such a demonstra-
tion �Sec. II�, we present a theoretical design of an experi-
mental demonstration of spin rotations about the growth di-
rection in Sec. III which lends itself more appropriately for
an experimental demonstration, as it is tailored to the quan-
tum dot � system. In Sec. IV we review the solution of the
sech pulse in a two-level system. The spin rotation based on
these pulses is presented in Sec. V. The numerical simula-
tions are shown in Sec. VI with experimental details taken
into account; fidelity loss mechanisms are discussed and
quantified in Sec. VII and feedback loops are devised to
correct for unintended dynamics or uncertainty in pulse pa-
rameters, in Sec. VIII. Finally, Sec. XI contains simulation of
the spin rotation in an ensemble of dots.

II. REVIEW OF THE SYSTEM AND OTHER PROPOSALS

The relevant Hilbert space of the system consists of the
two spin states of the trapped electron and the optically ex-
cited heavy-hole trion state. A static in-plane magnetic field
splits the two spin states and defines the x direction. The
growth axis of the dot is the z direction and the optical axis
as well. The light used is circularly polarized along z. A

peculiarity of this system is that the trion level, though spin
polarized perpendicularly to the magnetic field, does not pre-
cess for fields of up to 5 T.4 Also, the spin Zeeman splitting
is typically small, on the order of tens of �eV’s in GaAs
�Ref. 1� and on the order of hundreds of �eV’s in InAs.5,6

Thus we have a �-type system with both transitions hav-
ing the same polarization and being very close in frequency,
as depicted in Fig. 1. Therefore, common assumptions in
Raman schemes such as polarization selectivity7 cannot be
used, whereas energy selectivity would require long pulses
compared to the spin precession period. This could be an
issue since the spin decoherence time should be long com-
pared to the gate time. Moreover, when the excited state
linewidth is large compared to the lower level splitting �spin
Zeeman splitting�—which is the case with GaAs dots—
energy selectivity is not well defined, even for long pulses.

A proposal which does not explicitly require selectivity
between the two transitions is available,8 but as will now be
explained it implicitly requires long pulses when the spin
Zeeman splitting is small. Specifically, in Ref. 8 two pulses
with a definite phase relation are used. Both pulses act on
both transitions. To remove fast oscillating terms, the condi-
tion

FIG. 1. �Color online� Energy levels of the three-level system,
comprised by the two electron spin eigenstates of �x and by the
trion.
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�B � � j�t� �1�

is imposed, where 2�B is the spin Zeeman splitting and � j is
the Rabi frequency of pulse j. The axis of rotation depends
on the ratio of the two Rabi frequencies and the phase be-
tween the two pulses. The angle of rotation is given by the
time integral of

�2 =
�

2
−��↑

2 + �↓
2 + ��

2
�2

, �2�

where � is the detuning. From the last relation, it is evident
that in order to achieve large rotation angles, long pulses are
needed, since the Rabi frequency is bounded from Eq. �1�.

Another proposal9 suggested to use a 	 pulse to populate
the trion state for some time, during which the precession of
the spin is used so that the �z̄� state acquires a phase and
subsequently a second 	 pulse recovers the �z� state popula-
tion by stimulated emission. This method of rotating requires
populating the trion state for a significant amount of time, so
that trion decay will significantly deteriorate the fidelity. The
operation will moreover be slowed down when the spin Zee-
man splitting is small. It also provides a scheme for rotations
only about the growth axis.

III. PROPOSAL OF ROTATIONS ABOUT Z

In the current proposal, contrary to the use of any kind of
selectivity between the two transitions, we choose a pulse
with sufficient bandwidth to act on both transitions. The
Hamiltonian in the ��z̄� , �z� , �T�	 basis has the form

H = 
 0 �B 0

�B 0 ��t�ei�0t

0 ��t�e−i�0t 
T
� . �3�

It is evident from the above form of the Hamiltonian, that the
pulse only couples the �z� state to the excited trion state. The
�z̄� state is indirectly coupled through the B field, as shown
schematically in Fig. 2. Therefore, for small spin Zeeman
splitting compared to the pulse bandwidth we can view in
our qualitative discussion the three-level system as two sys-
tems of dimensions 2 and 1, consisting of ��z� , �T�	 and ��z̄�	,

respectively. This of course is an approximation, strictly
valid only in the B→0 limit. For finite B we really have two
two-level systems sharing a common state. Clearly, fast reso-
nant pulses of area 2	 and arbitrary pulse shape will induce
a minus sign to the �z� relative to the �z̄� state, due to the
SU�2� character of the pseudospin. This amounts to a 	 ro-
tation of the spin about z.3,10 We propose the use of analyti-
cally solvable off-resonant 2	 pulses to design rotations
about z by an arbitrary angle, for which we provide an ana-
lytical expression.

It is well known that for a two-level system the sech pulse
shape of Rosen and Zener11 �RZ� yields an exactly solvable
evolution, for arbitrary detuning. As was more recently
shown, the RZ pulse belongs to a class of exactly solvable
pulse shapes.12 In what follows, we will make use of the
properties of the RZ pulses in the context of the three-level
system to design z rotations.

IV. REVIEW OF THE ROSEN-ZENER SOLUTION

Consider a two-state system, initially in the ground state,
�g�, with the two levels coupled by a time dependent Hamil-
tonian with a sech envelope and central frequency �o:

� sech��t�ei�0t � f�t�ei�0t, �4�

where � is the Rabi frequency, � is the bandwidth of the
pulse. Moving to the interaction picture, the problem reduces
to solving two coupled first order equations or, equivalently,
one second order equation of the form

FIG. 2. �Color online� Alternative depiction of the � system: the
two lower levels are the eigenstates of �z but not energy eigenstates,
since they are perpendicular to the magnetic field. This basis is
more suitable for imposing selection rules when circularly polarized
light is used because it is just the one spin state ��z�� that couples to
the trion. The other one ��z̄�� is coupled through the magnetic field.

FIG. 3. �Color online� Bloch vector representation of the pseu-
dospin; The pulse bandwidth is fixed ��=1� and the detuning var-
ies: �=0 red �dark grey� curve�, �=1 blue �black� curve� and �
=0.5 green �light grey� curve�. The plot is in the rotating frame of
the laser, not that of the unperturbed system.
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c̈e + �i� − ḟ/f�ċe + f2ce = 0, �5�

where cg �ce� is the coefficient of the ground �excited� state,
� is the detuning, and with the initial condition ce�−��=0.
By the change of variable

� =
1

2
tanh��t� + 1� , �6�

RZ bring the equation into the form of the hypergeometric
equation, where

a =
�

�
, �7�

c =
1

2
�1 + i

�

�
� . �8�

After imposing the initial conditions, the coefficients of the
ground ��g�� and excited ��e�� states are

cg = F�a,− a,c*,�� , �9�

ce = − i
a

c*�1−cF�a + 1 − c,1 − a − c,2 − c,�� . �10�

We see from Eq. �10� and by use of the properties of the
hypergeometric function that when

� = � �11�

there is no population transfer to the excited state for t→�,
i.e., ce���=0, and instead the pseudospin vector undergoes a
full cycle from �g� to �e� and back to �g� with the ground state
having acquired a phase factor

cg��� = −
� + i�

� − i�
� e−i, �12�

tan  =
2��

�2 − �2 . �13�

For � fixed, the path will be determined by the detuning, as
shown in Fig. 3.

V. USE OF RZ PULSES FOR RAMAN QUBIT ROTATION

For an arbitrary sech pulse, the evolution operator of the
whole three-level system, under the approximation of slow
precession �B�� is given by

U �

1 0 0

0 F�a,− a,c*,�� −
ia

c
�cF�a + c,− a + c,1 + c,��

0 −
ia

c*�c*
F�a + c*,− a + c*,1 + c*,�� F�a,− a,c,�� � . �14�

To have a unitary operation, it is necessary that Eq. �11� is
satisfied, i.e., the trion state gets only virtually excited. We
will refer to such pulses as “transitionless.” Mathematically,
this translates to a=1. We are also only interested in the form
of U after the passage of the pulse, when z=1. Then U be-
comes

U � 
1 0 0

0 1 − 1/c* 0

0 0 1 − 1/c
� � 
1 0 0

0 e−i 0

0 0 ei � . �15�

The truncated evolution operator, in the 2�2 spin space
is described by the unitary matrix

Uspin � �1 0

0 e−i� = e−i/2�ei/2 0

0 e−i/2� . �16�

A phase between the �z� and �z̄� states translates to a rotation
about the z axis by an angle . So, while for a true two-level
system the induced phase of a transitionless pulse is trivial
when all the population is initially in the �z� state, for the
three-level system it yields a nontrivial rotation about the z

axis. The expression for the angle of rotation may be simpli-
fied:

tan


2
=

sin 

1 + cos 
=

�

�
⇒  = 2 arctan

�

�
. �17�

VI. NUMERICAL SIMULATION AND EXPERIMENTAL
PROPOSAL

Equations �16� and �17� are our main theoretical results.
To check how well this theory works for actual three level
systems and with decoherence and unintended dynamics in-
cluded, we simulate the spin beats of an optical experiment
in the dots.

The optical experiments on quantum dots are usually per-
formed at 4 K, which is well above the spin Zeeman splitting
for GaAs.1,13 We are thus starting with a completely mixed
state of the qubit and initializing it with optical pumping.1

We propose to use an RZ pulse which will probabilistically
initialize the spin to −0.5 polarization, as in Ref. 3. A �+
polarized pulse creates a spin vector �SV� initially pointing
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along −z and precessing about the static B field. We see that
by setting �=� /2 and �=0 all the population of the �z� state
is transferred to the trion, which subsequently decays inco-
herently to the two lower states provided that the trion state
linewidth is small compared to the spin Zeeman splitting so
that spontaneously generated coherence �SGC�1,14 may be
ignored. In Sec. VII we will investigate the effect of SGC
along with the other deteriorating mechanisms. We also
stress that SGC has been taken into account in all our nu-
merical simulations.

Since the designed operation is a rotation about the z axis,
the SV should not be affected when the incident control
pulse finds it at a dip or peak, i.e., at �z̄� or �z�, respectively.
On the other hand, the most prominent effect should be when
the SV is pointing along the y direction, which is the case in
our simulations.

To experimentally achieve a transitionless pulse, the Rabi
frequency of the initializing pulse could be doubled or pref-
erably a separate pump-probe experiment with the control
pulse in place of the pump may be performed. The transi-
tionless pulse induces a large initial spike and then the spin
beats essentially vanish, as shown in Fig. 4. The physics is
simple: the transitionless pulse only virtually excites the
trion, ideally transferring no population, so that it may not be
used for initialization via optical pumping. Once the pulse
duration and Rabi frequency of the control pulse are fixed,
the detuning will be varied from �=0, which renders a 	
rotation, to �=� / tan�	 /8�, which yields a 	 /4 rotation.

In our simulations we have used two or three pulses: an
initializing pulse, a control pulse, and in the case of �	 a
second control pulse to recover the beats and prove unitarity.
Experimentally, a third �or fourth� pulse, the probe, will be
used to perform the measurement of the spin. The time re-

FIG. 4. �Color online� Differential transmission signal �DTS� of
transitionless pulse on mixed state. Virtually no beats are generated
when �=�. Here, �=0.4 meV and �=0.

FIG. 5. �Color online� Differential transmission signal �DTS�
representing rotation of the spin in a GaAs dot by 	 with a resonant
pulse of �=0.4 meV. The time where the control pulse is centered
is indicated by the arrow.

FIG. 6. �Color online� DTS representing rotation of the spin in a
InAs dot by 	. The pulse is resonant with �=0.8 meV. The arrow
indicates the incidence time of the control pulse.

FIG. 7. �Color online� Bloch sphere depiction of the spin gen-
eration and rotation of Fig. 5. Initially there is no SV, and its gen-
eration along the −z direction is shown. During the rotation the
population is moved outside the 2�2 spin subspace and the SV
shrinks �line inside the sphere, corresponding to the arrow of Fig.
5�. The 	 rotation about the z axis is implemented when the SV is
pointing along −y. Note that the Bloch sphere itself has been shrunk
to a radius of 0.5 for clearer depiction.
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solved probe signal is called the differential transmission sig-
nal �DTS� as it measures the difference between the probe
signal with the pump on and that with the pump off. When
both a co-circularly and cross-circularly polarized probe is
used and the difference is taken1 the quantity measured is
�zz−�TT−�z̄z̄+�TT. For a �+ polarized pump, as in our case,
and after the decay of the trion level ��TT=0� the quantity
measured is �zz−�z̄z̄, i.e., the z component of the SV. The
duration of the pulses is taken to be about 6 ps for GaAs,
close to those used in Ref. 1, which translates to about �
=0.4 meV. We take the spin Zeeman splitting to be 40 �eV,
which corresponds to a B field of about 6.5 T.1 For InAs
dots, we take �=0.8 meV and the spin Zeeman splitting to
be 0.1 meV, which corresponds to B�2.3 T.6 The trion de-
cay rate for GaAs is also taken from Ref. 1, equal to
0.01 meV. For InAs dots it is about 0.6 �eV.15 The spin
dephasing has been chosen conservatively equal to 0.5 �eV
for both kinds of dots.

For a 	 rotation of the spin, the degree of unitarity of the
operation is evident in the beat amplitude after the control
pulse, Figs. 5 and 6 for GaAs and InAs dots, respectively. In
Fig. 7 a Bloch vector illustration of the spin generation and 	
rotation �corresponding to Fig. 5� is shown. To demonstrate
the unitarity of the control pulse for a rotation angle other
than 	, a second control pulse is used to rotate the SV back
to the yz plane and thus recover the initial beat amplitude, as
shown in Fig. 8 for GaAs and in Fig. 9 for InAs. We note that
the beats are not recovered completely due to errors originat-
ing from the trion decay and the �small but finite� precession
of the spin during the operation. We will ignore spin dephas-
ing in the following discussion on fidelity.

The spin will be measured via a weak probe. Given that a
�+ polarized probe measures the z component of the SV, the
actual angle of rotation in the experiment will be given by

exp = arccos
A1

A0
, �18�

where A0 and A1 are the beat amplitudes before and after the
control pulse respectively, as in Ref. 16.

VII. FIDELITY

A. Initialization

The initialization process described above ideally yields a
50% fidelity. However, the mechanism that undermines the
fidelity of the initialization is SGC, as mentioned above.14

SGC is suppressed by making the spin Zeeman splitting
larger.1,14 Our numerical simulations show that the fidelity of
initialization is about 40% for GaAs, even for relatively large
Zeeman splittings. Since the initialization is far from perfect
anyway, we will not worry about SGC effects.

A more important issue is a possible uncertainty in the
Rabi frequency, stemming from limited knowledge of the
dipole matrix element between �z� and �t�. Deviation of the
Rabi frequency from � /2 will limit the generated polariza-
tion. In Sec. VIII we discuss how to maximize the polariza-
tion by use of adaptive feedback loops.

Finally, valence band mixing will affect the spin polariza-
tion by altering the selection rules. Again, by use of a feed-
back loop that scans through the polarization of the laser, a
true � configuration is reached. This, also discussed in Sec.
VIII, will also allow for correction due to valence band mix-
ing in the subsequent control of the spin.

FIG. 8. �Color online� Differential transmission signal �DTS�
representing spin rotation in a GaAs dot by 	 /2 with pulse of �
=0.4 meV and �=�. The pump is centered at 50 ps, when the beats
start and the central times of the control pulses are indicated by the
arrows.

FIG. 9. �Color online� DTS showing the rotation of the spin in a
InAs dot by 	 /2. The pulse parameters are �=�=0.8 meV. The
arrows indicate the incidence time of the two control pulses.

FIG. 10. �Color online� Fidelity of the operation as a function of
the pulse bandwidth for GaAs dots. Large bandwidth corresponds to
fast pulses, and therefore smaller time intervals of trion excitation.
Here the angle of rotation equals 	. The uncertainty in the laser
electric field is 15%.
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B. Rotation

The fidelity is given by16,17

F = ����Ũ†Uid����2, �19�

where � is the initial state, Ũ and Uid are the actual and ideal
operations, respectively, and the average is to be taken over
the relevant �in our case 2�2� Hilbert space. If we define

I = Ũ†Uid, �20�

then the fidelity becomes

F =
1

3�
i

�Iii�2 +
1

6�
i�j

�Iij�2. �21�

The purity of the operation is given by17

P = Tr��out
2 � =

1

3�
i

TrRii
2 +

1

6�
i�j

Tr�RiiRjj + RijRji� ,

�22�
where Rij = Ũ�ijŨ

†.
The fidelity of the operation deteriorates due to the fol-

lowing mechanisms: the decay of the trion state during the
optical pulse, the spin precession during the pulse action, and
the spin dephasing. The dominant mechanism is the former;

it is irreversible and will degrade the unitarity of the opera-
tion, with the effect being stronger for longer pulses and for
pulses closer to resonance. Obviously, the shorter the pulse
the higher the fidelity; however, there may be a lower bound
to how short a pulse can be, as there seems to be an upper
bound on pulse strength the system can accommodate. Fig-
ure 10 shows the fidelity as a function of the pulse band-
width. Smaller detunings correspond to larger rotation
angles, Eq. �17�, so that the fidelity is lower for large rotation
angles, and is close to perfect for small angles, as shown in
Figs. 11 and 12 for GaAs and InAs dots, respectively.

On the other hand, the precession of the spin vector dur-
ing the action of the control pulse is a reversible evolution,
and will not affect the purity of the operation. It will, how-
ever, cause a tilt to the axis of rotation, affecting the fidelity.
In principle, this can be taken into account by choosing this
alternate axis of rotation instead of insisting on rotations
about z. In our case, however, it does play a small role in the
loss of fidelity, more so for longer pulses.

As in the initialization case, uncertainty in the Rabi fre-
quency and valence band mixing will affect the fidelity of the
rotation. In the next section we discuss how to overcome
these effects by use of feedback loops. Once this process is
carried out for initialization, the appropriate pulses will au-
tomatically be known for the rotation.

FIG. 11. �Color online� Fidelity of the opera-
tion as a function of the angle of rotation for
GaAs dots. Large angles correspond to pulses
closer to resonance, yielding loss of fidelity due
to �real� trion excitation. Here the bandwidth has
been taken equal to 0.3 meV and the uncertainty
in the laser electric field is 15%.

FIG. 12. �Color online� Fidelity of the opera-
tion as a function of the angle of rotation for InAs
dots. Large angles correspond to pulses closer to
resonance, yielding loss of fidelity due to �real�
trion excitation. Here the bandwidth has been
taken equal to 0.8 meV. The uncertainty in the
laser electric field is 15%.
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VIII. OVERCOMING ERRORS WITH FEEDBACK LOOPS

A. Uncertainty in laser parameters

Experimentally, the Rabi frequency may not be exactly
known if the polarization matrix element between �z� and �T�
has not been measured; one way to find the optimal value of
the Rabi frequency is fixing the pulse duration and scanning
the intensity until the response �spin polarization� is maxi-
mized. Actually, even if the pulse duration is not precisely
known, we can devise a feedback loop which combined with
the analyticity of our solution will yield the maximum polar-
ization, i.e., will pick the pulse with �=� /2. By use of the
evolution operator of Eq. �14�, we can find the trion popula-
tion after the passage of the pulse. The truncated evolution
operator for time t→� and for resonant pulses takes the
form

��� = 0� � 
1 0

0 cos���

2
� � , �23�

where ��=2	
�

� is the pulse area. Action of � on a mixed
density matrix yields

� = 
1/2 0

0 1/2 cos2���

2
� � . �24�

The feedback loop we propose consists of the laser, which is
connected to a computer which also records the measure-
ments from each run, and a pulse shaper. The pulse band-
width is fixed but not precisely known. The initial value of
the Rabi frequency �laser power� is also unknown, call it �1.
After the trion decays, the signal is proportional to the spin
polarization. The maximum of the beats then is given by

P1 =
A

2
sin2��1

�
	� , �25�

where A is some unknown constant related to the measure-
ment process. The value P1 is recorded and in the next run
the Rabi frequency is doubled, �2=2�1. The next run will
thus yield

P2 =
A

2
sin2�2�1

�
	� . �26�

The ratio is

P1/P2 =

sin2��1

�
	�

sin2�2�1

�
	� ⇒�P2

P1
= cos��2	

2�
� ⇒ �2

=
�

2	
arccos�1

2
�P2

P1
� . �27�

Therefore, in the third run the Rabi frequency should be
chosen to be

�3 =
	�2

arccos�1

2
�P2

P1
� , �28�

which is the target value, � /2. This is the maximum SV that
can be generated at a single shot, shown in Fig. 13 �compare
to Figs. 14 and 15 for a stronger and weaker pulse, respec-
tively�. An advantage of this scheme is that knowledge of
neither the pulse duration nor the Rabi frequency are re-
quired. It is also an indirect way of determining the dipole
matrix element between �z� and �T�.

B. Finite valence band mixing

In the presence of valence band mixing, the Hilbert space
is no longer 3�3. We account here for mixing between the

� 3
2 � �� 3̄

2
�� and the � 1̄

2 � �� 1
2
�� trions. Since in all cases the elec-

trons are in the same orbital and in a spin singlet state, we
list only the hole states

FIG. 13. �Color online� Initialization using a sech pulse with
�=0.4 meV and �=� /2.

FIG. 14. �Color online� Initialization with a pulse with �
=0.4 meV and �=1.5 � /2.

FIG. 15. �Color online� Initialization with a pulse with �
=0.4 meV and �=0.5 � /2.
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�HH + � = −
1
�2

��X + iY�↑� , �29�

�LH − � =
1
�6

��X − iY�↑� +�2

3
�Z↓� , �30�

�LH + � = −
1
�6

��X + iY�↓� +�2

3
�Z↑� , �31�

�HH − � =
1
�2

��X − iY�↓� , �32�

where �X± iY� and �Z� are the l=1 spherical harmonics with
m= ±1 and m=0, respectively. The corresponding trion

states will be denoted by �H� �=�T�� , �L̄� , �L� , �H̄�.
When valence band mixing is included, the valence

Hamiltonian in the ��H� , �L̄� , �H� , �L�	 basis is

H = 


H v 0 0

v* 
L 0 0

0 0 
H v

0 0 v* 
L

� , �33�

where v is the coupling between heavy and light hole. The
dot potential has been assumed such that the mixing between

�H� ��H̄�� and �L� ��L̄�� is zero. To solve the eigenvalue equa-
tion, it helps to redefine the zero of energy by subtracting

̄ /2�


L+
H

2 ; then we get

H = 

− a v 0 0

v* a 0 0

0 0 − a v

0 0 v* a
� , �34�

where a=

L−
H

2 .
By diagonalizing within the blocks, the solution is given

by the following eigenvalues and eigenstates:

�± = ± �a2 + v2, �35�

C1,− = 

cos

�

2

− sin
�

2

0

0

� � �Hl̄� , �36�

C1,+ = 

sin

�

2

cos
�

2

0

0

� � �L̄h� , �37�

C2,− = 

0

0

cos
�

2

− sin
�

2

� � �Hl̄� , �38�

C2,+ = 

0

0

sin
�

2

cos
�

2

� � �L̄h� . �39�

The angle � is defined through

cos � =
a

�a2 + v2
, �40�

and v is taken to be real.
Restoring the zero of energy, we can write the Hamil-

tonian in the new basis ��Hl̄� , �L̄h� , �H̄l� , �Lh̄�	 as

H = 


̄

2
− � 0 0 0

0

̄

2
+ � 0 0

0 0

̄

2
− � 0

0 0 0

̄

2
+ �

� . �41�

If �+ light is used, propagating along z and centered at the
HH trions �with energy 
̄

2 −�� the trion states of higher en-
ergy can be ignored by frequency selectivity. In the presence
of the mixing we will have a 4�4 Hamiltonian instead of
the 3�3 from the previous sections, where mixing was ig-

nored. In the ��z� , �z̄� , �Hl̄� , �H̄l�	 basis, where state �Hl̄� ��H̄l��
represents a state with largest contribution from the �H� ��H̄��
the total Hamiltonian, including the dipole interaction, is

H4 = 

0 �B � cos

�

2
0

�B 0 0
1
�3

� sin
�

2

�* cos
�

2
0


̄

2
− � 0

0
1
�3

�* sin
�

2
0


̄

2
− �

� .

�42�

From Eq. �42� it is clear that when a �+2	 sech pulse is
used, there is actually some error in the rotation scheme of
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the previous sections, due to an incomplete Rabi cycle in-

volving the new state �Hl̄�, and also due to some population

transfer to the �H̄l� state. Although this is going to be a very
small effect �compared, for example, to the decay of the trion
state during the pulse action�, we can compensate for it by
changing the polarization of the applied field and recover a
3�3 � system, which will allow us to use our rotation
scheme, as proposed in Sec. V. To find the target polariza-
tion, we assume elliptical polarization

cxx̂ + icyŷ �43�

and require

�H̄l��cxx̂ + icyŷ��z̄� = 0. �44�

Solving Eq. �44� for the c’s along with the normalization
condition cx

2+cy
2=1, we find

cx
0 =

1
�2

cos
�

2
−

1
�6

sin
�

2

�cos2 �

2
+

1

3
sin2 �

2
�1/2 , �45�

cy
0 =

1
�2

cos
�

2
+

1
�6

sin
�

2

�cos2 �

2
+

1

3
sin2 �

2
�1/2 . �46�

Then a three-level system is recovered, consisting of the

states �z�, �z̄�, and �Hl̄�, and our rotation scheme may be
carried out.

To determine the desired polarization, knowledge of �,
and thus cx

0 ,cy
0, is not necessary. Instead, a feedback loop can

be devised, in the spirit of the one described in Sec. VIII A
The Hamiltonian for arbitrary elliptical laser polarization

cxx̂+ icyŷ is given by

H = 

0 �B �+ 0

�B 0 0 �−

�+
* 0


̄

2
− � 0

0 �−
* 0


̄

2
− �

� , �47�

where

�+ = − �
�cx + cy�

�2
cos

�

2
− �

�cx − cy�
�6

sin
�

2
, �48�

�− = �
�cx − cy�

�2
cos

�

2
+ �

�cx + cy�
�6

sin
�

2
. �49�

Initially the density matrix is taken to be in a spin ensemble
�=diag�1/2 ,1 /2 ,0 ,0�. After the pulse we have

�=diag� 1
2 cos2 �+

2 , 1
2 cos2 �−

2 , 1
2 sin2 �+

2 , 1
2 sin2 �−

2
�, where �±

=
2	�±

� . The signal then, ignoring SGC, will be

P =
A

2
�cos2 �+

2
− cos2 �−

2
� =

A

4
�cos �+ − cos �−�

= −
A

2
sin

�+ + �−

2
sin

�+ − �−

2
.

Inserting the expressions for the angles �±, we get

P =
A

2
sin�2	�

�
cy� 1

�6
n

�

2
−

1
�2

cos
�

2��
� sin�2	�

�
cx� 1

�6
sin

�

2
+

1
�2

cos
�

2��
�

A

2
sin��1	c�sin��2	�1 − c2� . �50�

The feedback loop is designed as follows: First, we pick c
=cx=1/�5 and the signal is

P1 =
A

2
sin��1	

�5
�sin�2�2	

�5
� . �51�

For the second run, we choose c→2c we get

P2

P1
=

cos��1	/�5�
cos��2	/�5�

, �52�

which after some algebra becomes

P2

P1
=

cos��1	/�5�

cos��1	

2�5
+�2	2�2

5�2 −
3�1

2	2

20
� , �53�

where

�1 =
2�

�
� 1

�6
sin

�

2
+

1
�2

cos
�

2 � . �54�

Equations �53� and �54� can be solved numerically and thus
determine �, from which the target polarization will be
found from Eqs. �45� and �46�, so that in the third run the
ideal polarization will have been reached.

For small angle �, i.e., small mixing, the small-angle ap-
proximation may be employed to obtain an analytical solu-
tion for the polarization of the third run in terms of the sig-
nals from the first two runs. In this limit, we have for �1

�1 �
2�

�
� �

2�6
+

1
�2

� , �55�

and � is then

� =
�30�

	�
cot� 2	�

�10�
�P1 − P2

P1 + P2
. �56�
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IX. ERRORS DUE TO INCOMPLETE RABI FLOP OF
EXCITONS

A crucial feature in our scheme is the complete Rabi flop
of the trion with a 2	 pulse. Rabi oscillations for excitons in
quantum dots have been demonstrated experimentally,18 but
they do exhibit distinct features compared to atoms. In Ref.
19 exciton population was measured as a function of the
pulse area. For areas larger than 	, the Rabi oscillations were
shown to degrade considerably and the exciton was not
flopped all the way back to the vacuum by a 2	 pulse. This
effect was seen by several groups,19,20 and it was attributed
to itinerant excitons, phonons, and coupling to wetting layer
states.21 Rabi oscillations between spins and trion states were
demonstrated recently in ensemble experiments to have the
same feature.3 We note that for for practical use of our
scheme this issue certainly has to be addressed, but for ex-
perimental demonstration the rotation should be evident
�with a fidelity loss� even in the presence of the damped Rabi
flop. In a future work, we will take into account the deterio-
rating mechanism and try to correct for it via pulse shaping
and feedback loops.

X. ROTATIONS ABOUT OTHER AXES

A full set of rotations about one more axis would allow
for an arbitrary rotation when combined with the rotations
about z. Using the heavy-hole trion state, we can obtain ro-
tations about x using again RZ pulses, albeit a lot slower
ones, by frequency selectivity. If, e.g., a pulse is slow enough
to excite only one of the two spin states along x, then a 2	
RZ pulse, otherwise exactly the same as above, will cause a
rotation about x. Clearly, we would have to pay the price of
slow pulses, which is exactly what we set off to avoid. Pos-
sibly use of higher trion states �e.g., light hole trions� and/or
tilting the optical axis away from z may allow for more ef-
ficient rotations about axes other than z.

XI. ENSEMBLE STUDY

The experiment may also be performed in an ensemble of
dots. Both pump and probe pulses should be modulated at

different frequencies,22 whereas the control is left unmodu-
lated, so that only the SV initialized by the pump is mea-
sured, and the control is measured to all orders in the control
field.

In our simulations, we take into account the inhomogene-
ity of the g factors by an ensemble average over the Gaussian
distribution with a full width at half maximum �FWHM� of
�g=0.08g0,1 and the inhomogeneity of the trion energies by
a Gaussian, with a FWHM of about 3 meV.23 The central
spin Zeeman splitting is 50 �eV, so that it may represent
GaAs dots in a high magnetic field. The pulse bandwidth is
again chosen to be 0.3 meV. We have simulated the en-
semble response for two different rotation angles, =	,
shown in Fig. 16 and =	 /2, shown in Fig. 17, cf to Figs. 5
and 8, respectively.

The first prominent feature of the plots is that the gener-
ated polarization drops by almost an order of magnitude
compared to the single spin case. This is due to the contri-
bution of the nonresonant dots to the beat signal. It also
exhibits a spike, even for �=� /2. Moreover, the operation
itself deteriorates significantly compared to the single dot, cf.
Figs. 16 and 6 for example. However, the beat amplitude is
found to be somewhat recovered by the second rotation in
the =	 /2 case, and in the =	 case, although the opera-
tion is far from unitary, the phase changes according to the
theory. We therefore conclude that for demonstration pur-
poses the ensemble should also work.

XII. CONCLUSIONS

We have shown how the analytically solvable sech pulses
for a two-level system �Rosen-Zener pulses� may be used in
a � type system when the two transitions share a common
polarization and are close in frequency. The analyticity of the
RZ pulses enables us to derive an analytical expression for
the angle of rotation. Use of short pulses improves the fidel-
ity of our scheme. Numerical simulation shows a fidelity of
at least 96% for a realistic choice of parameters. Our scheme
can be used to rotate about the growth direction the spin of
electrons trapped in quantum dots via Raman transitions

FIG. 16. DTS representing ensemble spin rotation by 	 using a
resonant pulse with �=0.4 meV. The fidelity of the rotation is a lot
lower than the single-qubit case. The arrow indicates the time of
incidence of the control pulse.

FIG. 17. DTS representing ensemble spin rotation by 	 /2. To
demonstrate that the operation is a rotation, a second pulse is used
to restore the beats. The two arrows indicate the incidence times of
the two control pulses.
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involving the heavy hole trion. Thus, it does not supplant the
full rotations in Ref. 8. However, it suggests the possibility
for an experimental demonstration without need of address-
ing a single dot.
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