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van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-
infinite solid is studied using thermal quantum field theory in the Matsubara formulation. We show that the
friction to linear order in the sliding velocity can be obtained from the equilibrium Green functions and that our
treatment can be extended for bodies with complex geometry. The calculated friction agrees with the friction
obtained using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation
theorem. We show that it should be possible to measure the van der Waals friction in noncontact friction
experiment using state-of-the-art equipment.
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I. INTRODUCTION

A great deal of attention has been devoted to the problem
of noncontact friction between nanostructures, including, for
example, the frictional drag force between electrons in two-
dimensional quantum wells1–3 and the friction force between
an atomic force microscope tip and a substrate.4–13 The in-
terest in noncontact friction is, at least in part, because of the
importance of noncontact friction for ultrasensitive force de-
tection experiments. The ability to detect small forces is in-
extricably linked to friction via the fluctuation-dissipation
theorem. According to this theorem, the random force that
makes a small particle jitter also cause friction if the particle
is dragged through the medium. The detection of single spins
by magnetic resonance force microscopy,14 which has been
proposed for three-dimensional atomic imaging15 and quan-
tum computation,16 will require force fluctuations �and con-
sequently the friction� to be reduced to unprecedented levels.
In addition, the search for quantum gravitation effects at
short length scale,17 and future measurements of the Casimir
and van der Waals forces,18 may eventually be limited by
noncontact friction effects.

In noncontact friction the bodies are separated by a poten-
tial barrier thick enough to prevent electrons or other par-
ticles with a finite rest mass from tunneling across it, but
allowing interaction via the long-range electromagnetic field,
which is always present in the gap between bodies. The pres-
ence of an inhomogeneous tip-sample electric field is diffi-
cult to avoid, even under the best experimental conditions.6

For example, even if both the tip and the sample were me-
tallic single crystals, the tip would still have corners and
more than one crystallographic plane exposed. The presence
of atomic steps, adsorbates, and other defects will also con-
tribute to the spatial variation of the surface potential. This is
referred to as the “patch effect.” The surface potential can
also be easily changed by applying a voltage between the tip
and the sample. An inhomogeneous electric field can also be
created by charged defects embedded in a dielectric sample.
The relative motion of the charged bodies will produce fric-
tion which is denoted as “electrostatic friction.”

The electromagnetic field can also be created by the fluc-
tuating current density due to thermal and quantum fluctua-

tions inside the bodies. This fluctuating electromagnetic field
gives rise to the well-known long-range attractive van der
Waals interaction between two bodies19,20 and is responsible
for radiative heat transfer. If the bodies are in relative mo-
tion, the same fluctuating electromagnetic field will give rise
to a friction which is denoted as “Van der Waals friction.”

The origin of van der Waals friction is closely connected
with the van der Waals interaction. The van der Waals inter-
action arises when an atom or molecule spontaneously de-
velops an electric dipole moment due to quantum fluctua-
tions. The short-lived atomic polarity can induce a dipole
moment in a neighboring atom or molecule some distance
away. The same is true for extended media, where thermal
and quantum fluctuation of the current density in one body
induces a current density in the other body; the interaction
between these current densities is the origin of the van der
Waals interaction. When two bodies are in relative motion,
the induced current will lag slightly behind the fluctuating
current inducing it, and this is the origin of van der Waals
friction.

The van der Waals interaction is mainly determined by
exchange of virtual photons between the bodies �connected
with quantum fluctuations�, and does not vanish even at zero
temperature. On the other hand, van der Waals friction, at
least to lowest order of perturbation theory, and to linear
order in the sliding velocity, is determined by exchange of
real photons, and vanishes at zero temperature.

To clarify the origin of van der Waals friction let us con-
sider two flat parallel surfaces, separated by a sufficiently
wide vacuum gap, which prevents electrons from tunneling
across it. If the surfaces are in relative motion �velocity v� a
frictional stress will act between them. This frictional stress
is related with an asymmetry of the reflection coefficient
along the direction of motion; see Fig. 1. If one body emits
radiation, then in the rest reference frame of the second body
these waves are Doppler shifted which will result in different
reflection coefficients. The same is true for radiation emitted
by the second body. The exchange of “Doppler shifted pho-
tons” is the origin of van der Waals friction.

The van der Waals friction originates from two types of
processes. �a� Photons are created in each body with opposite
momentum and the frequencies of these photons are con-
nected by vqx=�1+�2, where qx is the momentum transfer.
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�b� A photon is annihilated in one body and created in an-
other. The first process �a� is possible even at zero tempera-
ture, and gives rise to a friction force which depends cubi-
cally on sliding velocity.21,22 The second process �b� is
possible only at finite temperatures, and gives rise to a fric-
tion which depends linearly on the sliding velocity. Thus,
process �b� will give the main contribution to the friction at
sufficiently high temperatures, and at not too large velocities.

In contrast to the van der Waals interaction, for which
theory is well established, the van der Waals friction is still
controversial topic. As an example, different authors have
studied the van der Waals friction between two flat surfaces
in parallel relative motion using different methods, and ob-
tained results which are in sharp contradiction to each other.
The first calculation of the van der Waals friction was done
by Teodorovich.23 Teodorovich assumed that the force of
friction can be calculated as the ordinary van der Waals force
between bodies at rest, whose dielectric function depend on
the velocity due to the Doppler shift. However, from the
dynamical modification of the Lifshitz’s theory it follows22

that it is not true. Later the same approach was used by
Mahanty24 to calculate the friction between molecules. Both
theories predict wrong nonzero friction at zero temperature
and to linear order in the sliding velocity. The same nonzero
linear friction at zero temperature was predicted in Refs. 25
and 26. In Ref. 27 it was shown that the basic equation in
Refs. 25 and 26 is incorrect, and a correct treatment gives a
friction which, to linear order in the sliding velocity, van-
ishes at T=0 K. Schaich and Harris developed a theory28

which describes the dependence of friction on the tempera-
ture T and on the separation d. However in their calculations
they made some unphysical approximations, and as a result
they did not get the correct final formula for the friction for
parallel relative motion. For normal relative motion they
considered only the case of zero temperature where, to linear
order in the sliding velocity, the friction is determined by
higher order processes related with the renormalization of the
electron self-energy. The friction obtained in Refs. 29–31
vanishes in the limit of infinite light velocity c→�. How-
ever, at least for short distances, one can neglect retardation

effects when calculating the van der Waals friction �as for the
van der Waals interaction�. Pendry21 assumed zero tempera-
ture and neglected retardation effects, in which case the fric-
tion depends cubically on the velocity. Persson and Zhang32

obtained the formula for friction in the limit of small veloci-
ties and finite temperature using a simple quantum mechani-
cal approach, again neglecting retardation effects. In Ref. 27
Volokitin and Persson developed a theory of the van der
Waals friction based on the dynamical modification of the
well known Lifshitz theory19 of the van der Waals interac-
tion. In the nonretarded limit and for zero temperature this
theory agrees with the results of Pendry.21 Similarly, in the
nonretarded limit and for small sliding velocity this theory
agrees with the study of Persson and Zhang.32

In Refs. 9 and 10 the theory was extended to two flat
surfaces in normal relative motion. For resonant photon tun-
neling between surface localized states, normal relative mo-
tion results in a different result as for parallel relative mo-
tion. It was shown that the friction may increase by many
orders of magnitude when the surfaces are covered by adsor-
bates, or can support low-frequency surface plasmons Refs. 9
and 10. In this case the friction is determined by resonant
photon tunneling between adsorbate vibrational modes, or
surface plasmon modes. When one of the bodies is suffi-
ciently rarefied, this theory Refs. 9 and 10 gives the friction
between a flat surface and a small particle, which in the
nonretarded limit agrees with the results of Tomassone and
Widom.33 A theory of the van der Waals friction between a
small particle and flat surface, which takes into account
screening, nonlocal optic effects, and retardation effects, was
developed in Ref. 27.

At present there are many theories of the van der Waals
friction, which frequently contradict each other, but a rigor-
ous theory based on quantum field theory has not been pre-
sented. A quantum field theory for the van der Waals inter-
action was developed in Ref. 20, where the van der Waals
stress tensor was expressed in terms of finite-temperature
Green’s functions. This theory can be applied to some prob-
lem which cannot be solved using Lifshitz theory of the van
der Waals interaction.20 In particular, this approach was used
in Ref. 34 to obtain the van der Waals force between a sphere
and a semi-infinite slab. Due to the great importance of the
van der Waals friction for understanding the origin of non-
contact friction, in this article we develop a rigorous theory
of the van der Waals friction based on quantum field theory.

This article is organized as follows. In Sec. II we present
a short overview of the basic idea of the quantum field theory
of the van der Waals friction. We show how to obtain the van
der Waals friction in terms of the finite-temperature Green’s
functions of the electromagnetic field. As applications we
derived the van der Waals friction between two semi-infinite
solids �Sec. III�, and between a small particle and a semi-
infinite solid �Sec. IV�, for both parallel and normal relative
motion. These calculations confirm early results obtained us-
ing he dynamical modification of the Lifshitz theory and the
fluctuation-dissipation theorem, and shows that the Lifshitz
theory can be applied to bodies in relative motion. However,
the quantum field theory is more general and can be applied
for bodies with complex geometry. In Sec. V we show that
the van der Waals friction can be greatly enhanced for high-

FIG. 1. �Color online� The electromagnetic waves emitted in the
opposite direction by the body at the bottom will experience oppo-
site Doppler shift in the reference frame in which the body at the
top is at rest. Due to the frequency dispersion of the reflection
coefficient these electromagnetic waves will reflect differently from
the surface of the body at the top, which give rises to momentum
transfer between the bodies. This momentum transfer is the origin
of van der Waals friction.
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resistivity metals, for dielectrics with strong absorption at
low frequencies, and for two-dimensional �2D� systems, e.g.,
2D-electron systems on dielectric substrates, or incommen-
surate layers of adsorbed ions exhibiting acoustic vibrations.
Section VI presents the conclusions and the outlook. Appen-
dixes A and B contain some details of the derivations of the
Green functions of the electromagnetic field used in Secs. III
and IV.

II. GENERAL FORMALISM

There are two approaches to the theories of the van der
Waals interaction and the van der Waals friction. In the first
approach the fluctuating electromagnetic field is considered
as a classical field which can be calculated from Maxwell’s
equations with the fluctuating current density as the source of
the field, and with appropriate boundary conditions. This ap-
proach was used by Lifshitz in the theory of the van der
Waals interaction19 and by Volokitin and Persson for the van
der Waals friction.10,22 The calculation of the van der Waals
friction is more complicated than of the van der Waals force
because it requires the determination of the electromagnetic
field between moving boundaries. The solution can be found
by writing the boundary conditions on the surface of each
body in the rest reference frame of this body. The relation
between the electromagnetic fields in the different reference
frames is determined by the Lorenz transformation. The ad-
vantage of this approach is in that, in principle, it can be used
for the calculation of friction for arbitrary relative velocities.
However, the calculations become very complicated for bod-
ies with complex geometry, and the solutions are only known
for two parallel plane surfaces,10,22 and between a small par-
ticle and plane surface.27

In the second approach the electromagnetic field is treated
in the frame of the quantum field theory.35 This approach was
used in Ref. 20 to obtain the van der Waals interaction for an
arbitrary inhomogeneous medium all parts of which are at
rest. Here we will use a similar approach to calculate the van
der Waals friction.

For two bodies in slow uniform relative motion �velocity
v� the force acting on either body may be written as F=F0

−�
↔

·v, where the adiabatic force F0 is independent of v, and

�
↔

, the so-called friction tensor, is defined by

�
↔

= �kBT�−1Re�
0

�

dt�F̂�t�F̂�0�� . �1�

Here �¯� represents thermal average of the fluctuating force
in the equilibrium state at fixed separation d between the

bodies, and F̂�t� is the force operator in the Heisenberg rep-
resentation. Equation �1� is a consequence of the fluctuation-
dissipation theorem.36 For the interaction between a localized
and an extended system, Eq. �1� has been derived by several
authors �Schaich,37 d’Agliano et al.,38 Nourtier39� and is also
valid for two extended systems. In the context of the van der
Waals friction Eq. �1� was used by Schaich and Harris,28 but
their treatment is incomplete.

In the case of extended systems the fluctuating force op-
erator can be expressed through the operator of the stress
tensor �̂ik

F̂i =� dSk�̂ik, �2�

where the integration is over the surface of one of the bodies
and

�̂ik =
1

8�
�EiEk + EkEi + BiBk + BkBi − �ik�E2 + B2�� , �3�

where Ei and Bi are the electric and magnetic induction field
operator, respectively. The calculation of the force-force cor-
relation function can be done using the methods of the quan-
tum field theory.35,40 Such calculations are described in Sec.
III for two plane parallel surfaces, and in Sec. IV for a small
particle and plane surface, for both parallel and normal rela-
tive motion. The advantage of this approach is that it only
involves finding of the Green’s functions of the electromag-
netic field for the equilibrium system with fixed boundaries.
Thus, this approach can be easily extended to bodies with
complex geometry. However, it is restricted to small relative
velocities.

III. VAN DER WAALS FRICTION BETWEEN TWO PLANE
SURFACE

A. Parallel relative motion

Assume that the xy plane coincides with one of the sur-
faces. For parallel relative motion the friction coefficient ��

=�xx=�yy. Using the methods of quantum field theory35 the
expression for the friction coefficient �1� for parallel relative
motion can be written in the form

�� = lim
�0→0

Im
Gxx

R ��0 + i��
�0

, �4�

where Gxx
R is the retarded Green’s function determined by

Gxx
R ��� =

i

�
�

0

�

dtei�t�F̂x�t�F̂x�0� − F̂x�0�F̂x�t�� , �5�

where

F̂x =� dSz�̂xz, �6�

where the surface integral is taken over the surface of the
body at z=0,

�̂xz = �ExEz + EzEx + BxBz + BzBx�/8� . �7�

The function Gxx
R can be obtained by analytic continuation in

the upper half of � plane of the temperature Green’s function
Gxx���, determined on the discrete set of point i�n

= i2�n /	 by the formula

Gxx�i�n� = −
1

�
�

0

	

d
ei�n
�T
F̂x�
�F̂x�0�� , �8�

where n is an integer and 	= � /kBT. T
 is the time-ordering
operator. The function Gxx�i�n� can be calculated using stan-

QUANTUM FIELD THEORY OF VAN DER WAALS FRICTION PHYSICAL REVIEW B 74, 205413 �2006�

205413-3



dard techniques of quantum field theory35,40 and can be rep-
resented through the Green’s functions of the electromag-
netic field

Dij
EE�r,r�,i�n� = Dij�r,r�,i�n�

= −
1

�
�

0

	

d
ei�n
�T
Êi�
�Êj�0�� , �9�

where the retarded Green functions Dij�r ,r� ,�� obey the
equations35

��i�k − �ik�
2�Dkj�r,r�,��

− ��/c�2� d3x��ik�r,r�,��Dkj�r�,r�,��

= �4��2/c2��ij��r − r�� , �10�

�� j��k� − � jk��2�Dik�r,r�,��

− ��/c�2� d3x��kj�r�,r�,��Dik�r,r�,��

= �4��2/c2��ij��r − r�� . �11�

For the plane surface it is convenient to decompose the elec-
tromagnetic field into s- and p-polarized plane waves. Intro-
ducing q̂=q /q and n̂= �ẑ� q̂�, where q is the surface compo-
nent of the wave vector, the Green’s tensor is given by

DEE
↔

�r,r�� =� d2q

�2��2 �n̂Dnn
EE�z,z�,q�n̂ + q̂Dqq

EE�z,z�,q�q̂

+ ẑDzz
EE�z,z�,q�ẑ + ẑDzq

EE�z,z�,q�q̂

+ q̂Dqz
EE�z,z�,q�ẑ�eiq·�x−x��, �12�

where we have taken into account that Dnz
EE=Dnq

EE=0 �see
Appendix A�. For two plane parallel surfaces the solution of
Eqs. �10�, �11� is derived in Appendix A. Using the methods
of the quantum field theory35,40 for the Green function Gxx
we get

Gxx�i�n� =
�A

16�2	
� d2q

�2��2	
�m

qx
2

q2 �Dqq
EE�q,i�m,z,z��

�Dzz
EE�− q,i�n − i�m,z,z�� + Dqz

EE�q,i�m,z,z��

�Dzq
EE�− q,i�n − i�m,z,z�� + Dqq

BB�q,i�m,z,z��

�Dzz
BB�− q,i�n − i�m,z,z�� + Dqz

BB�q,i�m,z,z��

�Dzq
BB�− q,i�n − i�m,z,z���z=z�=0, �13�

where A is the surface area, and Dij
BB�q , i�m ,z ,z�� is given

by35

Dij
BB�r,r�,i�n� = − 
 c

�n
�2

eilkejst�l�s�Dkt
EE�r,r�,i�n� ,

�14�

where eijl is the completely asymmetric unit tensor. In Eq.
�13� we omitted terms involving product of Green’s func-
tions associated with the p- and s-polarized electromagnetic
field because, after the frequency summations, they cancel
each other. Even without any detailed calculations it is clear
that such terms must give zero contribution to the friction
because the p- and s-polarized waves must give independent
contributions to the friction.

Performing the frequency summations in Eq. �13� �see
Appendix B� gives

xx =
�

8�3�
0

�

d�
−
�n

��
� � d2q

�2��2

qx
2

q2�Im DqqIm Dzz

−
q2

4
 �

�z
Im Dqq�
 �

�z�
Im Dqq��

+ 
 c

�
�4

q2Im Dnn
�2

�z � z�
Im Dnn

− 
 �

�z
Im Dnn�
 �

�z�
Im Dnn���

z=z�=0
, �15�

where n���= �exp��� /kBT�−1�−1. Using Eqs. �A9�, �A13�,
�A15� for the Green’s functions in Eq. �15�, the contribution
to the friction from the propagating �q�� /c� waves
becomes

�
rad =

�

8�3�
0

�

d�
−
�n

��
��

q�/c
d2qqx

2 � Re
1 + R1pR2pe2id − R1p − R2pe2id

1 − e2idR1pR2p
�Re
1 + R1pR2pe2id + R1p + R2pe2id

1 − e2idR1pR2p
�

− 
Im
R1p − R2pe2id

1 − e2idR1pR2p
�2

+ �p → s�� =
�

8�2�
0

�

d�
−
�n

��
��

0

�/c

dqq3 �1 − �R1p�2��1 − �R2p�2�
�1 − e2idR1pR2p�2

+ �p → s� . �16�

where the symbols �p→s� denotes the term which is obtained from the first one by replacement of the reflection amplitude Rp

for p-polarized waves by the reflection amplitude Rs for s- polarized waves. Similarly, the contribution to the friction from the
evanescent electromagnetic waves �q�� /c�:
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�
evan =

�

8�3�
0

�

d�
−
�n

��
��

q��/c
d2qqx

2 � − Im
2R1pR2pe−2��d − R1p − R2pe−2��d

1 − e−2��dR1pR2p
� � Im
2R1pR2pe−2��d + R1p + R2pe−2��d

1 − e−2��dR1pR2p
�

− 
Im
R1p − R2pe−2��d

1 − e−2��dR1pR2p
�2

+ �p → s�� =
�

2�2�
0

�

d�
−
�n

��
��

�/c

�

dqq3e−2��d Im R1pIm R2p

�1 − e−2��dR1pR2p�2
+ �p → s� . �17�

Equations �16� and �17� were first derived in Ref. 22 using
the dynamical modification of the Lifshitz theory.

B. Normal relative motion

For two plane surfaces in normal relative motion the force
operator is given by

F̂z =� dSz�̂zz, �18�

where

�̂zz = �EzEz − ExEx − EyEy + BzBz − BxBx − ByBy�/8� .

�19�

The friction coefficient for normal relative motion can be
obtained from the analytical continuation in the upper part of
� plane of the Green function Gzz�i�n� which is determined
by

Gzz�i�n� =
�A

32�2	
� d2q

�2��2	
�m

qx
2

q2 �Dzz
EEDzz

EE + Dqq
EEDqq

EE

+ Dnn
EEDnn

EE − Dzq
EEDzq

EE − Dqz
EEDqz

EE − Dzn
EBDzn

EB

− Dnz
EBDnz

EB + Dqn
EBDqn

EB + Dnq
EBDnq

EB + �E ↔ B�� ,

�20�

where the arguments of the Green functions in Eq. �20� are
the same as in Eq. �13�, �E↔B� denotes the terms which can
be obtained from the first terms by permutation of the upper
case indexes E and B and

Dij
EB�r,r�,�n� =

c

�n
ejkl�k�Dil

EE�r,r�,�n� , �21�

Dij
BE�r,r�,�n� = −

c

�n
eikl�kDlj

EE�r,r�,�n� . �22�

Performing similar calculations as for the parallel relative
motion we get

� =
�

16�3�
0

�

d�
−
�n

��
� � d2q

�2��2 � ��Im Dqq�2 +
4

q4 �Im Dzz�2 +
2

2
 �

�z
Im Dzz�2� + 
 c

�
�44�Im Dnn�2

+ 
 �2

�z � z�
Im Dnn�2

+ 22
 �

�z�
Im Dnn�z,z���2��

z=z�=0
. �23�

Substitution the expressions for the Green’s functions from Eqs. �A9�, �A13�, �A15� in Eq. �23� gives the contribution to the
friction from the propagating waves

�
rad =

�

16�3�
0

�

d�
−
�n

��
��

q��/c
d2q2 � 
Re

1 + R1pR2pe2id − R1p − R2pe2id

1 − e2idR1pR2p
�2

+ 
Re
1 + R1pR2pe2id + R1p + R2pe2id

1 − e2idR1pR2p
�2

+ 2
Im
R1p − R2pe2id

1 − e2idR1pR2p
�2

+ �p → s�� =
�

4�2�
0

�

d�
−
�n

��
��

0

�/c

dqq2

�
�1 − �R1p�2�R2p�2�2 + ��1 − �R1p�2�R2peid + �1 − �R2p�2�R1p

* e−id�2

�1 − e2idR1pR2p�4
+ �p → s� . �24�

In a similar way one can obtain the contribution to the friction from the evanescent electromagnetic waves
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�
evan =

�

4�3�
0

�

d�
−
�n

��
��

q��/c
d2q��2 � 
Im

2R1pR2pe−2��d − R1p − R2pe−2��d

1 − e−2��dR1pR2p
�2

+ 
Im
2R1pR2pe−2��d + R1p + R2pe−2��d

1 − e−2��dR1pR2p
�2

− 2
Im
R1p − R2pe−2��d

1 − e−2��dR1pR2p
�2

+ �p → s�� =
�

�2�
0

�

d�
−
�n

��
��

�/c

�

dqq��2e−2��d

� ��Im R1p + e�−2��d��R1p�2Im R2p��Im R2p + e�−2��d��R2p�2Im R1p� + e�−2��d��Im �R1pR2p��2�
1

�1 − e−2��dR1pR2p�4
+ �p → s� .

�25�

Equations �24� and �25� were first presented without deriva-
tion in Ref. 9. In Ref. 10, Eqs. �24� and �25� were derived
using the dynamical modification of the semiclassical Lif-
shitz theory19 of the van der Waals interaction, and the Rytov
theory41–43 of the fluctuating electromagnetic field.

IV. VAN DER WAALS FRICTION BETWEEN A SMALL
PARTICLE AND PLANE SURFACE

A. Parallel relative motion

For parallel relative motion the friction coefficient ��

=�xx=�yy. The Lorentz force acting on a small particle lo-
cated at point r0 can be written in the form

F̂x = pk
�

�xk
Ex�r� +

1

c
�jyBz − jzBy��

r=r0

, �26�

where p and j are the dipole moment and current operators
of the particle, respectively. E and B are the external electric
and magnetic induction field operators, respectively. The in-
teraction of the electromagnetic field with the particle is de-
scribed by the Hamiltonian

Hint = −
1

c
A�r0� · j , �27�

where A�r� is the vector potential operator. Taking into ac-
count that

j =
�

�t
p , �28�

� � E =
1

c

�

�t
B �29�

one can prove that the friction coefficient is determined by
Eq. �4�, where

Gxx
R ��� =

i

�
�

0

�

dtei�t � �pk�t�
�

�x
Ek�r,t�pl�0�

�

�x�
El�r�,0�

− pl�0�
�

�x�
El�r�,0�pk�t�

�

�x
Ek�r,t��

r=r�=r0

, �30�

where summation over repeated indexes is assumed. Per-
forming similar calculations as in Sec. III and using the re-
lation

E�r,t� = −
1

c

�

�t
A�r,t� �31�

gives

�� =
2�

�
�

0

�

d�
−
�n

��
�� 	

k=x,y,z
Im �kk

�2

�x � x�
Im Dkk�r,r�,��

− 2 Re ��xx����zz
* ����
 �

�x
Im Dxz�r,r0,���2�

r=r�=r0

,

�32�

where Dij�r ,r�� are the Green’s functions of the electromag-
netic field for one plane surface. These Green functions can
be obtained from the Green functions for the two-plane sur-
face geometry �see Appendix A� by putting R2p�s�=0. The
polarizability of the particle

�kk��� =
i

�
�

0

�

dtei�t�pk�t�pk�0� − pk�0�pk�t�� �33�

can be written as

�ii��� =
�ii

0���
1 − �ii

0���Dii�r0,r0�
, �34�

where �ii
0��� is the free-particle polarizability. While deriv-

ing Eq. �32� we also used the identity

Im �xx���Im�zz���
�

�x
Dxz�r,r0,��

�

�x
Dxz�r,r0,��� + Im �zz���Im�xx���

�

�x
Dxz�r,r0,��

�

�x
Dxz�r,r0,���

− 2 Im�xx���
�

�x
Dxz�r,r0,���Im�zz���

�

�x
Dxz�r,r0,��� = 2 Re��xx����zz

* ����
 �

�x
Im Dxz�r,r0,���2

. �35�
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B. Normal relative motion

The friction coefficient for a particle moving normal to
the sample surface can be obtained from calculations very
similar to those for parallel relative motion. In this case the
Green’s function Gxx

R must be replaced by Gzz
R , where

Gzz
R ��� =

i

�
�

0

�

dtei�t � �pk�t�
�

�z
Ek�r,t�pl�0�

�

�z�
El�r�,0�

− pl�0�
�

�z�
El�r�,0�pk�t�

�

�z
Ek�r,t��

r=r�=r0

. �36�

Performing similar calculations as in Sec. IV A we get

�� =
2�

�
�

0

�

d�
−
�n

��
�

�	
k=x,y,z

�Im �kk���
�2

�z � z�
�Im Dkk�r,r�,��

+ Im��kkDkk�r,r0,��Dkk�r�,r0,����

+  �

�z
Im��kk���Dkk�r,r0,����2�

r=r�=r0

. �37�

For a spherical particle with radius R, Eq. �37� is only valid
if R�d. In the nonresonant case �kk

0 �R3 and Dkk�d−3.
Thus in this case �D��R /d�3�1 and we can neglect the
screening effects. For a spherical particle �kk=�, and using
the formula �which is valid in the nonretarded limit, formally
obtained as c→�, see Ref. 27 and also Appendix A�

	
k=x,y,z

Dkk�r,r�,�� = 4�� d2qq

�2��2 �e−q�z−z��

+ Rp�q,��e−q�z+z���eiq�x−x�� �38�

we get from Eqs. �32� and �37�

�� = 2
�

�
�

0

�

d�
−
�n���

��
��

0

�

dqq4e−2qdIm Rp�q,��Im ����

�39�

and ��=2��. Equations �32� and �37� were obtained in Ref.
27 using the dynamical modification of the semiclassical Ry-
tov theory41–43 of the fluctuating electromagnetic field, and
Eq. �39� was derived in Ref. 33 using the fluctuation-
dissipation theorem.

V. VAN DER WAALS FRICTION BETWEEN DIELECTRICS
AND TWO-DIMENSIONAL SYSTEMS

In Refs. 44 and 10 it was shown that the van der Waals
friction between good conductors �kBT /4����1, where �
is the conductivity� is extremely small. However the van der
Waals friction can be greatly enhanced for high resistivity
materials �kBT /4����1�. Thus, for two surfaces in parallel
relative motion, using the reflection amplitude in the electro-
static limit �d�c�� /4��kBT�1/2�

Rp =
� − 1

� + 1
, �40�

we get from Eq. �17�

� � 0.05
�

d4

kBT

4� � �
, �41�

and from Eq. �35�, ��10�. However, the macroscopic
theory which was used in obtaining Eq. �40� is only valid
when the average separation between the conduction elec-
trons in the solids is much smaller than the length scale of
variation of the electric field, which is determined by the
separation d. Thus the lowest value of the conduction elec-
tron concentration is nmin�d−3 and according to Drude for-
mula the lowest value of the conductivity is �min�e2
 /md3.
Thus, the maximum of the friction, for which the macro-
scopic theory is valid, can be estimated as

�max � 0.05
�

d4

kBT

4� � �min
� 0.05

mkBT

4�e2
d
. �42�

The friction coefficient � for an atomic force microscope tip
with the radius of curvature R�d can be estimated using the
“proximity approximation.”45,34 This approximation was pro-
posed for the van der Waals interaction but there is no reason
why this approximation will not be valid for the van der
Waals friction. In this approximation the tip and sample are
treated as a set of piecewise parallel planes. The accuracy of
this scheme was checked in Ref. 34. Thus for the friction
coefficient for a spherical tip we get

��
s � 2��

0

�

d����d + �2/2R� = 0.05
2�R

3d3

kBT

4��
�43�

and the maximum of friction can be estimated as

��max
s � 0.05

2�R

3d3

kBT

4��min
� 0.1

mkBTR

4�e2

. �44�

For 
�10−16 s, R�1 �m, and T=300 K we get �max
�10−15 kg/s. This friction is two orders of magnitude
smaller than the friction observed in a recent experiment at
d=10 nm.6 Similarly, in the case of a cylindrical tip we get

��
c � 2w�

0

�

d���d + �2/2R� =
21/2�

64
�R

d

kBTw

4��d3 , �45�

where w is the width of the tip, and the maximum of friction
can be estimated as

��max
c �

21/2�

64
�R

d

kBTw

4��mind
3 �

21/2�

64
�R

d

mkBTw

4�e2

.

�46�

For w=7 �m, d=10 nm, and with the other parameters as
above, Eq. �46� gives friction of the same order of magnitude
as it was observed in the experiment.6

Recently a large electrostatic noncontact friction has been
observed between an atomic force microscope tip and thin
dielectric films.13 The van der Waals friction will also be
large for dielectrics with high absorption at low frequencies.
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As an example we consider the van der Waals friction be-
tween thin water films adsorbed on transparent dielectric
substrates such as silica or mica. Water has an extremely
large static dielectric function of around 80. The low fre-
quency contribution to the dielectric function, responsible for
this large static value, is due to relaxation of the permanent
dipoles of the water molecules. It can be accurately described
by the Debye46 theory of rotational relaxation. The theoreti-
cal fit of the experimental data is given by47

���� = 4.35 +
C

1 − i�/�0
, �47�

where C=72.24 and �0=1.3�1011 s−1. We note that water
has large absorption in the radio-frequency range at ���0,
and shows in this region of the spectrum anomalous disper-
sion. In this frequency range the dielectric constants �2 of
mica or silica are nearly constant �and real� and ��3 � ��2,
where �3 denotes the dielectric function of water. For a pla-
nar film with thickness h and dielectric function �3��� on top
of a substrate with the dielectric function �2��� the reflection
amplitude

Rp =
Rp31 − Rp32exp�− 2qh�

1 − Rp31Rp32exp�− 2qh�
, �48�

where

Rpij =
�i − � j

�i + � j
. �49�

For qh�1 and q−1�d� ��3 �h /�2 the reflection amplitude
can be approximated by

Rp � 1 −
2

�3qh
. �50�

Substituting Eq. �50� into Eq. �17� and using the “proximity
approximation” we obtain the friction between a cylindrical
atomic force microscope tip and a sample

��
c =

� � R1/2w

6�2C2h2d3/2
 kBT

��0
�2

. �51�

For h=1 nm and with the other parameters the same as
above we get ��

c=4.8�10−12 kg/s. The friction observed in
Ref. 6 has the same weak distance dependence as predicted
by Eq. �51�, but is one order of magnitude smaller than pre-
dicted by Eq. �51�.

Another enhancement mechanism of the van der Waals
friction is connected with resonant photon tunneling between
adsorbate vibrational modes localized on different surfaces.
In Refs. 9 and 10 we have shown that resonant photon tun-
neling between two surfaces separated by d=1 nm, and cov-
ered by a low concentration of potassium atoms, result in a
friction which is six orders of the magnitude larger than for
clean surfaces. The adsorbate induced enhancement of the
van der Waals friction is even larger for Cs adsorption on
Cu�100�. In this case, even at low coverage ���0.1�, the
adsorbed layer exhibits an acoustic branch for vibrations par-
allel to the surface,48 and according to Ref. 12, at small fre-
quencies the reflection amplitude is given by Ref. 12

Rp = 1 −
2qa�q

2

�2 − �q
2 + i��

, �52�

where �q
2=4�nae*2aq2 /M, e* is the ion charge and a is the

separation between an ion and the image plane. Substituting
Eq. �52� in Eq. �17�, and assuming that

a

�d
�4�nae*2a

Md2 � 1,

and using the “proximity approximation,” for a cylindrical
tip we get

��
c � 0.68

kBTa2R0.5w

�d5.5 . �53�

For Cs adsorption on Cu�100� the damping parameter � was
estimated in Ref. 12 as ��1011 s−1. Using this value of � in
Eq. �53� for a=2.94 Å,48 R=1 �m, w=7 �m, T=293 K at
d=10 nm we get �� �10−15 kg/s, which is two orders of
magnitude smaller than the friction observed in Ref. 6 at the
same distance. However, in this case the van der Waals fric-
tion is characterized by a much stronger distance dependence
��1/d5.5� than observed in the experiment ��1/dn, where
n=1.3±0.2�. Thus, at small distances the van derWaals fric-
tion will be larger than friction observed in 6, and can thus
be measured experimentally. Figure 2 shows how the friction
between the copper tip and the copper substrate depends on
the distance d for clean surfaces, and when the surfaces of
the tip and the substrate are covered by a low concentration
of the Cs atoms. In comparison with the adsorbate covered
surfaces, the friction between two clean surfaces at the sepa-
ration d=1 nm is eleven orders of the magnitude smaller.
However, the friction between clean surfaces shown in Fig. 2
was calculated using the local optic approximation, where
the spatial variation of the dielectric function is neglected.
For parallel relative motion nonlocal optic effects are very
important,10 and when it is taken into account, at d=1 nm the

FIG. 2. The friction coefficient associated with the van der
Waals friction between a copper tip and a copper substrate, both
covered by low concentration of cesium atoms, as a function of the
separation d. The cylindrical tip is characterized by the radius of
curvature R=1 �m and the width w=7 �m. The other parameters
correspond to Cs adsorbed on Cu�100� at the concentration na

=1018 m−2 �coverage ��0.1� �Refs. 11 and 48�: e*=0.28e, �
=1011 s−1, a=2.94 Å, T=293 K. �The base of the logarithm is 10.�
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friction between the adsorbate covered surfaces will be seven
orders of the magnitude larger than the friction between
clean surfaces.

VI. SUMMARY AND CONCLUSION

We have used thermal quantum field theory in the Mat-
subara formulation to calculate the van der Waals friction
between two plane parallel surfaces, and between a small
particle and plane surface, for both parallel and normal rela-
tive motion. The friction calculated in this approach agrees
with the friction calculated using a dynamical modification
of the Lifshitz theory, which is based on the fluctuation-
dissipation theorem. In quantum field theory the calculation
of the friction to linear order in the sliding velocity is re-
duced to finding the equilibrium Green functions which obey
Maxwell-type equations. Thus, using numerical methods de-
veloped for classical electrodynamics, this approach can be
used to obtain the van der Waals friction between bodies
with complex geometry. We have shown that the van der
Waals friction between high-resistivity metals, dielectrics
with strong absorption in radio-frequency range, and two-
dimensional systems can be measured in noncontact friction
experiments using state-of-the-art equipment. The theory can
be used as a guide for designing and interpreting.
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APPENDIX A: THE GREEN FUNCTIONS FOR TWO
PLANE SURFACES

Suppose that the half-space z�0 is occupied by a solid
with the reflection amplitude R1p�q ,�� and R1s�q ,�� for p-
and s-electromagnetic fields, respectively. Similarly, the half-
space z�d is occupied with a solid with the reflection am-
plitude R2p�q ,�� and R2s�q ,��. The region 0�z�d is as-
sumed to be vacuum. Here q is the surfaces component of
the wave vector k= �q ,�, where = ��� /c�2−q2�1/2. Since
the system is homogeneous in the x= �x ,y� plane, the Green
function Dij�r ,r�� can be represented by the Fourier integral

Dij�r,r�� =� d2q

�2��2eiq·�x−x��Dij�z,z�,q� . �A1�

In the xy plane it is convenient to choose the coordinate
axes along the vectors q̂=q /q and n̂= ẑ� q̂. In this coordi-
nate system Eqs. �10� and �11� for the Green functions be-
come


2 +
�2

�z2�Dnn�z,z�� = −
4��2

c2 ��z − z�� , �A2�


�2

c2 −
�2

�z2�Dqq�z,z�� − iq
�

�z
Dzq�z,z�� = −

4��2

c2 ��z − z�� ,

�A3�

2Dzq�z,z�� − iq
�

�z
Dqq�z,z�� = 0, �A4�

2Dzz�z,z�� − iq
�

�z
Dqz�z,z�� = −

4��2

c2 ��z − z�� , �A5�

2Dqz�z,z�� + iq
�

�z�
Dqq�z,z�� = 0. �A6�

The equations for Dqn and Dzn turn out to be homogeneous
so these Green functions vanish. Solving the system of equa-
tions �A2�–�A6� amounts to solving two equations: Eq. �A2�
for Dnn, and the equation for Dqq which follows from Eqs.
�A3� and �A4�


2 +
�2

�z2�Dqq�z,z�� = − 4�2��z − z�� . �A7�

Dqz, Dzq, and Dzz for z�z� are obtained from Eqs. �A4�–�A6�
as

Dqz
R = −

iq

2

�

�z�
Dqq, Dzq =

iq

2

�

�z
Dqq, �A8�

Dzz =
q2

4

�2

�z � z�
Dqq. �A9�

In the vacuum gap 0�z�d the solution of equation �A2�
has the form

Dnn�z,z�� = −
2�i�2

c2 ei�z−z�� + vneiz + wne−iz. �A10�

At the boundaries z=0 and z=d the amplitude of the re-
flected wave is equal to the amplitude of incident wave times
to the corresponding reflection amplitude. The Green func-
tion Dnn is associated with the s-polarized electromagnetic
field, and the boundary conditions for it gives

vn = R1s
wn +
2�i�2

c2 eiz�� for z = 0, �A11�

wn = R2se
2id
vn +

2�i�2

c2 e−iz�� for z = d . �A12�

Using Eqs. �A10�–�A12� we get

Dnn�z,z�� = −
2�i�2

c2 �ei�z−z��

+
R1sR2se

2id�ei�z−z�� + e−i�z−z���
�s

+
R1se

i�z+z�� + R2se
2ide−i�z+z��

�s
� , �A13�

�s = 1 − e2idR2sR1s. �A14�

Equation �A7� for Dqq is similar to Eq. �A2� for Dnn, and the
expression for Dqq

R can be obtained from expression �A13� by
replacements of the reflection amplitude
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Dqq = 
c

�
�2

Dnn�Rs → − Rp� . �A15�

The calculation of the reflection amplitude for s- and
p-polarized waves constitutes separate problems, which can
be solved taking into account nonlocal effects. For the local
optic case the reflection amplitude are determined by the
well known Fresnel formulas

Rip =
�i − i

�i + i
, Ris =

 − i

 + i
, �A16�

where �i is the complex dielectric constant for body i:

i =��2

c2 �i − q2. �A17�

APPENDIX B: FREQUENCY SUMMATIONS

All the sums over �m in Eq. �13� can be calculated in a
similar way. Thus, as an illustration, we consider only one
sum

1

	
	
�m

Dqz
EE�q,i�m�Dzq

EE�− q,i�n − i�m� . �B1�

According to the Lehmann representation, the Green’s func-
tion can be written in the form

D�	
EE��n,r,r�� =

1

�
�

−�

�

dx
��	

EE�x,r,r��
x − i�n

, �B2�

where

��	
EE��,r,r�� = 	

n,m
exp�F − En��E��r��nm�E��r���mn

��1 − e−	�mn���� − �mn� .

Using Eq. �B2� and standard rules for the evaluation of a
sum such as Eq. �B1� �Ref. 40� we get

1

	
	
�m

Dqz
EE�q,�m�Dzq

EE�− q,i�n − i�m�

= �
−�

�

d����qz
EE�q,��Dzq

EE�− q,i�n − ���n��� + �Dqz
EE�q,i�n

− ���zq
EE�− q,����n��� + 1�� , �B3�

where n���= �exp��� /kBT�−1�−1. Using Eqs. �A8� and �A9�
in �B3� we get

�

	
	
�m

Dqz
EE�q,i�m�Dzq

EE�− q,i�n − i�m�

= − q2 �

�
�

−�

�

d�

�
 �

�z�

�qq
EE��,z,z��

2���
�

�z

Dqq�i�n − �,z,z��
2�i�n − ��

�n���

+ 
 �

�z�

Dqq
EE�i�n − �,z,z��

2�i�n − ��
�

�z

�qq
EE��,z,z��

2���
��n��� + 1�� ,

�B4�

where 2���= �� /c�2−q2. Replacing i�n→�0+ i� and taking
the imaginary part of Eq. �B4� gives, in the limit �0→0, the
following contribution to the friction coming from Eq. �B4�:

lim
�0→0

1

�0
Im lim

i�n→�0+i�

�

	
	
�m

Dqz
EE�q,i�m�Dzq

EE�− q,i�n − i�m�

= −
2 � q2

�4 �
0

�

d�
−
�n

��
�
 �

�z
Im Dqq����

�
 �

�z�
Im Dqq���� . �B5�
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