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We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering
cross section from a one-dimensional �1D� system explicitly accounting for excitonic effects. The result should
prove useful for analyzing the Raman resonance excitation profile line shapes for a variety of 1D systems
including carbon nanotubes and semiconductor quantum wires. We apply this formalism to a simple 1D model
system to illustrate the similarities and differences between the free electron and correlated electron-hole
theories.
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I. INTRODUCTION

Raman scattering is a standard optical spectroscopy tech-
nique used to characterize the excitation spectrum of a ma-
terial system. If the exciting or scattered light frequency is
nearly commensurate with an electronic transition of the ma-
terial, the scattered Raman signal intensity is greatly
enhanced.1 Hence, resonant Raman scattering not only serves
as a probe of a structure’s vibrational modes, but can also
provide valuable information about the nature of a material’s
electronic structure.

For three-dimensional �3D� bulk semiconductors,2 2D
quantum wells,3,4 0D self-assembled quantum dots,5 and
semiconductor microcrystallites,6 a Kramers-Heisenberg ap-
proach to the theory of one-phonon resonant Raman scatter-
ing �1phRRS�, based on either free electron-hole states
�FEH� or Wannier excitonic states have been well developed.
But, to our knowledge, a theory of 1phRRS incorporating
excitonic effects has not been developed for a quantum con-
fined 1D system. Here we construct an expression for the
resonant Raman scattering cross section from a 1D system
incorporating Wannier excitons as the intermediate electronic
states. Specifically, we derive a general expression that is
useful for analyzing the Raman spectra of a variety of 1D
systems.

SWNTs are of particular interest since there has been de-
cisive theoretical7–9 and experimental10,11 evidence that exci-
tonic states dominate the optical properties of these systems.
In studying SWNTs, 1phRRS is a standard optical technique
utilized to locate electronic resonances and to determine the
diameter of the tube under study. With the ability to perform
tunable 1phRRS on a single SWNT and map out the full
Raman scattering resonant excitation profile �REP�,12 a
theory of 1phRRS that explicitly accounts for the excitonic
intermediate states of the scattering process is necessary.

The organization of this paper is as follows. In Sec. II, we
develop a general expression for the 1phRRS cross section of
a 1D system. First, we solve a 1D Schrödinger equation for
the Wannier exciton wave functions and energy eigenvalues.
We use the wave functions to construct the appropriate inter-
action Hamiltonians necessary to describe the Raman scat-
tering process. In Sec. III, we illustrate the influence of ex-

citonic states on the 1phRRS cross section, for the particular
case of a two-subband model. Finally, in Sec. IV we present
a summary of the work and a comparison between 1phRRS
and 1D absorption.

II. THEORY OF ONE-PHONON RAMAN SCATTERING
FROM A ONE-DIMENSIONAL SYSTEM

The general 1D material systems we consider are illus-
trated in Fig. 1. We imagine either system is illuminated by a
laser beam of fixed frequency �l, propagation direction q� l,
and polarization e�l. The inelastically scattered radiation
propagates in direction q�s with fixed polarization e�s and is
collected so that its spectral content �s may be analyzed with
a spectrometer. Without loss of generality, we focus on the
Stokes scattering process. Microscopically, an incident pump
photon interacts with the unexcited system and creates an
electronic excitation that scatters a phonon before relaxing
radiatively back to its ground state by emitting a photon. We
use Fermi’s golden rule to determine the Stokes differential
Raman scattering cross section integrated over all scattered
photon wave numbers. The resulting expression is1

d�RRS

d�
=

�s
3ns

3nlVcrystal
2

�lc
4�2���2 �Wi→f��l,e�l;�s = �l − �p,e�s��2,

�1�

where c is the speed of light in free space, ni is the refractive
index of the material evaluated at frequency �i, Vcrystal is the

FIG. 1. �Color online� Two typical one-dimensional quantum
confined systems. �a� illustrates a rectangular quantum wire and �b�
a cylindrical tube.

PHYSICAL REVIEW B 74, 205405 �2006�

1098-0121/2006/74�20�/205405�7� ©2006 The American Physical Society205405-1

http://dx.doi.org/10.1103/PhysRevB.74.205405


volume of the material system, and �Wi→f�2 is the transition
probability from initial system state i, with a single pump
photon, to a final state f , with a single scattered photon and a
single phonon. Using third-order time-dependent perturba-
tion theory, the transition matrix element �Wi→f�2 from initial
state �initial� to final state �final� can be expressed as

Wi→f = �
a,b

�final�Ĥint�b��b�Ĥint�a��a�Ĥint�initial�
�Einitial − Eb − i�b��Einitial − Ea − i�a�

, �2�

where the sum over a and b is over all permissible interme-

diate states, Ej is the energy associated with state j, Ĥint is the
appropriate interaction Hamiltonian �to be defined below�, � j
is a phenomenological broadening parameter that incorpo-
rates the finite lifetime of intermediate states j=a, b and i is
the imaginary unit �−1. To evaluate Eq. �2�, we will use the
language of second quantization and specify the states in the
occupation number representation. In this notation, a general
state is a direct product of state vectors where each compo-
nent state vector belongs to the sector of the Hilbert space
appropriate for the excitation; �state�= �electronic�
� �phonon� � �photon�. We label each state by the number of
quanta in a given mode. For example, �photon�
= �0q�s,e�s

,1q� l,e�l
� when there is a single photon in the laser mode

and there is no scattered photon. The role of the interaction

Hamiltonian, Ĥint, in this perturbative treatment is to allow
quanta to be exchanged between the different sectors of Hil-

bert space. Ĥint can be expressed as Ĥint= Ĥint
�X−R�+ Ĥint

�X−L�

where we have decomposed the interaction Hamiltonian into

a piece Ĥint
�X−R� that couples the excitons with the photons

�R=radiation� and a piece Ĥint
�X−L� that couples the excitons

with the phonons �L=lattice�. Here it is important to note
that the intermediate electronic excitations will be treated as
correlated electron holes, or excitons, and not as free elec-
trons and holes.

Upon substitution of Ĥint into Eq. �2� and requiring energy
conservation, we find there are six possible pathways or
probability amplitudes that can contribute to �Wi→f�2. In the
following we focus only on the contribution of the resonant
path because the other five pathways make a comparatively
negligble contribution to the cross section. The contribution
of the resonant pathway can be expressed as

Wi→f = �
a,b

�final�Ĥint
�X−R��b��b�Ĥint

�X−L��a��a�Ĥint
�X−R��initial�

���l − ��p − Eb − i�b����l − Ea − i�a�
,

�3�

where a and b now refer only to intermediate states associ-
ated with electronic excitations in the material. To proceed
further we define the exciton-radiation interaction Hamil-

tonian Ĥint
�X−R�, assuming the minimal coupling interaction and

retaining only the term linear in the electromagnetic vector
potential, written in second quantized notation as2

Ĥint
�X−R� = �

X,K� cm

q� ,e�

Tcv
X �K� cm�D̂

X,K� cm

†
âq� ,e� + Tcv

*X�K� cm�D̂X,K� cm
âq� ,e�

† ,

�4�

where the exciton-radiation coupling constant can be ex-
pressed as

Tcv
X �K� cm = k�e − k�h� =

e

mo

� 2��

Vcrystal�n2 �X2�eiq� ·r�e� · p̂� �X1�

�5�

and D̂X,Kcm
, D̂X,Kcm

† ��âq� ,e� , âq� ,e�
† �	 are the annhilation and cre-

ation operators for excitons �photons	, e is the electronic

charge, mo is the bare electron mass, p̂� is the electronic mo-
mentum operator, and �Xj� are exciton wave functions.

Similarly, focusing only on phonon creation processes, the
exciton-lattice interaction Hamiltonian for coupling with a
single-phonon branch can be expressed as

Ĥint
�X−L� = �

X1,K� cm,1X2,K� cm,2

Q�

SX1

X2�Q� �D̂
X2,K� cm,2

†
D̂X1,K� cm,1

b̂
Q�
†

, �6�

where the exciton-lattice coupling constant is

SX1

X2�Q� � = �X2�C�r�e�e−iQ� ·r�e − C�r�h�e−iQ� ·r�h�X1� �7�

and Q� is the phonon momentum, b̂
Q�
†

is the phonon creation
operator, and C�rj� depend on the details of the exact
exciton-phonon interaction and can model either bulk or con-
fined phonon modes. Two common examples of exciton-
phonon interactions are deformation potential coupling and
Fröhlich coupling.13 To determine the explicit form of both

Ĥint
�X−R� and Ĥint

�X−L� we need expressions for the 1D exciton
wave functions �Xj� so that we can evaluate the appropriate
coupling constants.

To obtain expressions for the exciton wave functions, we
will use both the effective mass approximation and the en-
velope function approximation.14 These approximations re-
duce the complicated problem of solving the Schrödinger
equation, for the two-particle Bloch wave function to solving
the following modified Schrödinger equation:15


−
�2

2me
*�e

2 −
�2

2mh
*�h

2 + V�r�e� + V�r�h� + V3�r�e,r�h����r�e,r�h�

= E��r�e,r�h� �8�

for the envelope function ��r�e ,r�h� of the exciton where the
influence of the periodic crystal potential has been incorpo-
rated into the problem by replacing the bare electron �hole�
mass with the effective electron (hole) mass me

* �mh
*�. Multi-

plying the solution of Eq. �8� by the Bloch functions of the
conduction uc�r�� and valence band uv�r�� �for the unconfined
system� we calculate the approximate two-particle Bloch
wave function 	�r�e ,r�h����r�e ,r�h�uc�r�e�uv�r�h�. In Eq. �8�,
V�r� j� is the potential that confines particle j and V3�r�e ,r�h� is
the 3D Coulomb potential. Assuming we have solved the
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problem of electron and hole confinement, we can expand
the exciton envelope function in the basis of the confined
electron and hole wave functions as

��r�e,r�h� = �
�le

a,le
b,lh

a,lh
b�

integers

eiKcmZcm
x
�le

a,le
b,lh

a,lh
b��zr = ze − zh�

�f le
a
�xe

a�f le
b
�xe

b�f lh
a
�xh

a�f lh
b
�xh

b� , �9�

where xi
j denotes the jth coordinate for particle i, f li

j
is the

complete and orthonormal confined wave function for par-
ticle i in subband labeled by li

j confined in the jth coordinate
direction and, anticipating a change to center of mass coor-

dinates along the unconfined direction, 
x
�le

a,le
b,lh

a,lh
b��zr=ze−zh�

is a function characterizing the relative motion of the elec-
tron and hole. In Eq. �9�, we have assumed that the confining
potential is along two spatial directions and unconfined mo-
tion is along a third orthogonal direction. For example, in
Fig. 1�a�, electronic motion is confined along the x and y
directions while it is unconfined along the z direction. If we
began with a material system that was initially 2D, and then
further confined along one spatial direction, e.g., nanotubes,
we would suppress all functions and coordinates in Eq. �9�
labeled with b. Equation �9� expresses the two-particle enve-
lope function as a superposition of confined electron and
hole states, weighted by a function describing the 1D exci-
tonic state associated with the subbands �le

a , le
b , lh

a , lh
b�. Finally,

we substitute Eq. �9� into Eq. �8� and project the resulting
equation over a set of confined wave functions with labels
�le

a , le
b , lh

a , lh
b�. Here we assume that the electron and hole are

strongly confined and we neglect the possibility of subband
coupling due to the Coulomb potential, a reasonable assump-
tion for large subband energy spacing, and arrive at the fol-
lowing, effective 1D Schrödinger equation for the relative
motion of the electron and hole:


−
�2

2�

d2

d2zr
+ V1−ef f

�le
a,le

b,lh
a,lh

b��zr��
x
�le

a,le
b,lh

a,lh
b��zr�

= Ex
�la

e,lb
e,la

h,lb
h��Kcm�
x

�le
a,le

b,lh
a,lh

b��zr� , �10�

where �−1=1/me
*+1/mh

* is the electron and hole effective

reduced mass and Ex
�le

a,le
b,lh

a,lh
b��Kcm� is the exciton binding en-

ergy. Ex
�le

a,le
b,lh

a,lh
b��Kcm� is expressible as Ex

�le
a,le

b,lh
a,lh

b��Kcm�=E

−Egap
bare−Ee

�le
a,le

b�−Eh
�lh

a,lh
b�− ��2Kcm

2 /2M� where we will define

Egap=Egap
bare−Ee

�le
a,le

b�−Eh
�lh

a,lh
b� in what follows: M =me

*+mh
*,

Ee
�le

a,le
b� �Eh

�lh
a,lh

b�	 is the confinement energy of the electron
�hole	 in the �le

a , le
b� ��lh

a , lh
b�	 subbands, �2Kcm

2 /2M is the cen-

ter of mass motion of the exciton, and V1−ef f
�le

a,le
b,lh

a,lh
b��zr� is ex-

pressed as

V1−ef f
�le

a,le
b,lh

a,lh
b��zr� = �

−



dxe
adxe

bdxh
adxh

b�f le
a
�xe

a��2�f le
b
�xe

b��2

��f lh
a
�xh

a��2�f lh
b
�xh

b��2V3�r�e,r�h� . �11�

The previous equation is an average of the full 3D Coulomb

potential weighted by the probabilities of finding the electron
and hole along the confined directions. The averaging results
in a potential that depends only on the electron and hole
coordinates along the unconfined direction. In what follows
we label the exitonic states as X= �x ,Kcm , le

a , le
b , lh

a , lh
b�. The

label x is discrete or continuous depending on whether the
exciton is bound or unbound, Kcm is the exciton center of
mass momentum, and �le

a , le
b , lh

a , lh
b� label the subbands of the

electron and hole that comprise the exciton.
To simplify the following calculations, we follow

Loudon16 and model V1−ef f
�le

a,le
b,lh

a,lh
b��zr� as

V1−ef f
�le

a,le
b,lh

a,lh
b��zr� = V1−ef f�zr� = −

e2

���zr� + zo�
, �12�

where � is the dielectric constant of the material and zo is a fit
parameter. It is possible, using the confined electron and hole
wave functions, to evaluate Eq. �11� and find a value of zo
such that Eq. �12� is a good approximation to Eq. �11�.
Therefore, though suppressed, zo implicitly depends on the
subband wave functions, labeled by �le

a , le
b , lh

a , lh
b�, used to ap-

proximate Eq. �11�. The inclusion of zo in Eq. �12� removes
the singularity at the origin of the 1D Coulomb potential and
allows us to solve Eq. �10�. The solution of Eq. �10� for the
1D excitonic relative motion wave function has been dis-
cussed in detail in other works and we refer the reader to
these references.15,17

Using the solution to Eq. �8�, we evaluate the momentum
matrix element in Eq. �5� between the exciton vacuum �X1�
= �0� and an excited exciton state �X2�= �X�. We find the
exciton-radiation coupling is expressed as18

Tcv
X �Kcm� =

e

mo

� 2��

Vcrystal�n2e� · p�cv �
�le

a,le
b,lh

a,lh
b�

Y
le
a

lh
a

Y
le
b

lh
b

�
x
*�le

a,le
b,lh

a,lh
b��zr = 0��Kcm=ke−kh,q, �13�

where

p�cv =
1

Vunit
�

Vunit

dr�uc
*�r�� i

�
� uv�r��� �14�

is the momentum matrix element of the Bloch functions over
a unit cell of volume Vunit,

Y
le
j

lh
j

=� dxjf le
j
�xj�f lh

j
�xj� �15�

is an integral calculating the overlap of the subband electron
and hole wave functions across the domain xj with j=a ,b,


x
*�le

a,le
b,lh

a,lh
b��zr=0� is the envelope function of the 1D electron-

hole relative motion of the type x exciton between subbands
�le

a , le
b , lh

a , lh
b� evaluated at zero electron-hole separation and

�Kcm=ke−kh,q is the Kronecker delta function expressing con-
servation of momentum along the unconfined direction. We

point out that Y
le
j

lh
j

is equal to �le
j ,lh

j when the electron and hole

experience identical confinement potentials, which we will
use in Sec. III.
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Similarly, we evaluate Eq. �7� between two excited exci-
ton states �X1� and �X2�. We find the exciton-lattice coupling
constant is expressible as

SX1

X2 = �Kcm,1,Kcm,2+Q��lh,2,lh,1
Cle,1

le,2BX1

X2��eQ�

− �le,2,le,1
Clh,1

lh,2BX1

X2��hQ�	 , �16�

where �e=mh
* /M, �h=−me

* /M, �lj,2,lj,1
implies the jth particle

stays in its subbands after the exciton scatters from the pho-
non, and the phonon mediated intermediate excitonic state
coupling has been decomposed into a piece related to the
exciton relative motion wave function:

BX1

X2�Q� =� dzr
x2

*�le,2
a ,le,2

b ,lh,2
a ,lh,2

b ��zr�e−iQzr
x1

�le,1
a ,le,1

b ,lh,1
a ,lh,1

b ��zr�

�17�

and a piece depending on the details of how the possibly
confined phonon13 couples with the confined electron and
hole

Cli,1

li,2 =� dxi
adxi

bf*li,2
a

�xi
a�f*li,2

b
�xi

b�C�xi
a,xi

b�f li,1
a

�xi
a�f li,1

b
�xi

b�

�18�

with i=e or i=h.
We now substitute Eq. �13� and Eq. �16� into Eq. �3� and

assume the photon momentum may be neglected when com-
pared to the electron and hole crystal momentum �the
k-selection rule�

Wi→f = �
X1,X2

M�le,2
a ,le,2

b ,lh,2
a ,lh,2

b �

�le,1
a ,le,1

b ,lh,1
a ,lh,1

b �

cv

�

x2

�le,2
a ,le,2

b ,lh,2
a ,lh,2

b ��0�BX1

X2�Q = 0�
x1

*�le,1
a ,le,1

b ,lh,1
a ,lh,1

b ��0�

���l − ��p − Eb − i�b����l − Ea − i�a�
,

�19�

where the coupling constant is given by

M�le,2
a ,le,2

b ,lh,2
a ,lh,2

b �

�le,1
a ,le,1

b ,lh,1
a ,lh,1

b �

cv
=

e2�2���2�e�s · p�vc
* ��e�l · p�cv�

mo
2Vcrystal

��s�lnsnl

Y
le,2
a

*lh,2
a

Y
le,2
b

*lh,2
b

Y
le,1
a

lh,1
a

�Y
le,1
b

lh,1
b

��lh,2,lh,1
Cle,1

le,2 − �le,2,le,1
Clh,1

lh,2	 . �20�

Finally, substituting Eq. �19� and Eq. �20� into Eq. �1� we
arrive at

d�RRS

d�
=

e4�s
2ns

c4mo
4�l

2nl� �
X1,X2

M̄�le,2
a ,le,2

b ,lh,2
a ,lh,2

b �

�le,1
a ,le,1

b ,lh,1
a ,lh,1

b �

cv

�

x2

�le,2
a ,le,2

b ,lh,2
a ,lh,2

b �BX1

X2
x1

*�le,1
a ,le,1

b ,lh,1
a ,lh,1

b �

���l − ��p − Eb − i�b����l − Ea − i�a��
2

,

�21�

where M̄ is defined in a similar manner to Eq. �20�, but the

constants have been factored out and we have supressed the
arguments in both 
x

l and BX1

X2. The double summation ex-
tends over all intermediate excitonic states.

Equation �21� is the central result of the paper and pro-
vides a general expression for calculating the scattering cross
section of resonant Raman scattering, using third-order time-
dependent perturbation theory, from a 1D quantum confined
structure when the intermediate electronic excitations are ex-
citonic in nature. In Eq. �21�, we have factored the numerator
into a part that depends on the relative motion of the 1D
excitons and a part that is a function of both the electron and
hole subband confined wave functions and the Bloch func-
tions from which the exciton is built. The utility of this de-
composition is that we can focus explicitly on how the 1D
exciton influences the Raman scattering cross section. If we
are interested in a particular material system, and wish to
obtain an absolute value for its Raman scattering cross sec-
tion, it would be necessary to evaluate all the system-specific
matrix elements in Eq. �20�. It should be noted that Eq. �21�
allows for the possibility of Raman scattering between both
bound and unbound intermediate excitonic states. In the next

FIG. 2. �Color online� �a� The free electron electronic structure,
�b� the free electron density of states, �c� the excitonic electronic
structure, and �d� the unbound excitonic Kcm=0 density of states
and bound exciton oscillator strengths. In �a�, the free electron en-
ergies are functions of the electron crystal momentum, whereas in
�c�, the excitonic energies are functions of the exciton center of
mass momentum. The dispersion associated with the bound exci-
tons has not been illustrated since in exciton mediated transtions,
only Kcm=0 transitions are allowed due to conservation of momen-
tum. In addition, in �a� and �c�, an outgoing Stokes resonance is
illustrated where the dashed horizontal line corresponds to a virtual
electronic state and a solid horizontal line corresponds to a real
electronic state. In each case, a photon of energy ��l causes an
electronic transition to a virtual state, followed by the electronic
excitation relaxing to a real, electronic state by emitting a phonon of
energy ��p. Finally, the electronic system returns to its ground state
by emitting a photon of energy ��s. This can be compared to the
free electron mediated transitions where only vertical transitons are
allowed, but ke is not constrained to be 0.
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section we calculate the Raman scattering cross section for a
model 1D system with only a single conduction and valence
subband for which we assume the potentials confining the
electron and hole are identical for simplicity.

III. TWO-SUBBAND MODEL

In this section, we give an explicit expression for Eq. �21�
when the material system is composed of only a single con-
duction and valence subband ��le

a , le
b , lh

a , lh
b�= �1e

a ,1e
b ,1h

a ,1h
b�	

and the electron and hole experience identical confining po-
tentials. This is the simplest model system that exhibits in-
teresting physical results. Figure 2�a� illustrates the single
particle band structure for the system which is assumed to be
known. Using the single particle band structure and wave
functions, we can solve Eq. �10� for the exciton energy ei-
genvalues, and visualize the electronic structure of our ma-
terial system in Fig. 2�c�. Incorporating excitonic effects has
resulted in a series of bound states below the quantum con-

fined system’s energy gap of Egap
bare+Ee

�1e
a,1e

b�+Eh
�1h

a,1h
b� in addi-

tion to the usual continuum of states above this energy gap.
As discussed in Loudon,16 the internal energy label for
bound exciton states is no longer constrained to a set of
postive integers, but is describable by a set of positive real
numbers. Within this two-subband approximation, we can
simplify Eq. �21� as follows:

d�RRS

d�
��l;�s = �l − �p� = R�Lbound��l;�s = �l − �p�

+ Lunbound��l;�s = �l − �p��2, �22�

where Lbound and Lunbound are functions that characterize the
influence that the bound and unbound excitons have on the
Raman scattering cross section and we have collected all the
constants of Eq. �21� in R. In this two-subband model, tran-
sitions between intermediate exciton states, with different
values of x, are forbidden by BX1

X2 in Eq. �17� when we as-
sume the k-selection rule and neglect the phonon momentum
Q. For transitions between different excitonic states to be
possible, there must be a nonzero overlap between the two
intermediate states that participate in the Raman scattering
process. Overlap can arise if the excitons are derived from
conduction and valence subbands with different effective
masses and therefore have unequal Bohr radii.

Specific expressions for Lbound and Lunbound are

Lbound��l;�s = �l − �p�

= �
n

�
n�0��2

��s − Egap +
R*

n2 − i�b���l − Egap +
R*

n2 − i�a�
�23�

and

Lunbound��l;�s = �l − �p� = �
Egap

Ec

dE
�
E�0��2

�Egap − E���s − Egap − E − i�b����l − Egap − E − i�a�
, �24�

where for the bound �unbound� case x=n �x=E�, R* is the
effective exciton Rydberg, Ec is an energy cutoff to the above

integral, Egap=Egap
bare+Ee

�1e
a,1e

b�+Eh
�1h

a,1h
b�, and the summation in

Eq. �23� includes only even envelope functions. In Eq. �23�
�Eq. �24�	, the sum over all intermediate states has been re-
duced to a sum �an integral	 over the label associated with
the internal energy of the exciton.

With Eqs. �23� and �24�, we use both the bound and un-
bound exciton relative motion wave functions to evaluate the
line shape of the exciton mediated Raman scattering cross
section. In evaluating the bound and unbound wave functions
with Eq. �10�, we have freedom in how we choose zo, the
parameter introduced to make the 1D Coulomb potential fi-
nite at the origin. The closer zo is to zero, the greater the 1D
character of the problem we are solving. Since the majority
of physical systems exhibiting properties characteristic of a
1D system typically are not truly 1D, finite values of zo are
physically reasonable. For example, in a SWNT, the tube
radius provides a natural length scale for zo. The procedure
to correctly determine zo is to select zo such that Eq. �12�
approximates Eq. �11�.

Before evaluating the full line shape function Eq. �22�, we
will focus on the individual contributions of the bound and

unbound excitons. Figure 3 illustrates the contributions of
the first four bound excitons to the bound line shape function
Eq. �23� as a function of laser energy ��l. The two peak
structure apparent in the 1phRRS cross section mediated by
each bound exciton is a result of an incoming and an outgo-
ing resonance. These resonances are associated with the in-
coming �laser� or outgoing �scattered� photon being coinci-
dent in energy with the bound exciton internal energy. The
dependence of the 1phRRS on excitation frequency is com-
monly referred to as a REP and we will adhere to this termi-
nology. In Fig. 3, all exciton REPs are normalized relative to
the ground state exciton mediated transition �the top figure�.
To calculate each REP, we assumed a dephasing of �a=�b
=5 meV, a phonon of energy ��p=32 meV, and we set

Egap=Egap
bare+Ee

�1e
a,1e

b�+Eh
�1h

a,1h
b� to be the zero of the energy

scale. In addition, we chose the Rydberg R*=100 meV. The
reason for choosing this value is that it sets the ground state
exciton binding energy to approximately 500 meV, a value
determined in recent measurements on SWNTs.10 It is clear
in Fig. 3 that the ground state exciton dominates the bound
exciton mediated line shape function. The contribution to the
REP from the ground state exciton is nearly 3 orders of mag-
nitude stronger than that of the next bound excited exciton.
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Next, with the same set of parameters, we compare the
unbound exciton contribution to the exciton-mediated REP
with the contribution of the strongest bound exciton. To
make this comparison we plot Eq. �23� and Eq. �24� in Fig.
4�a�. The strength of the bound exciton-mediated REP is
nearly 2 orders of magnitude larger than the unbound exci-
ton. It is clear that �
x�0��2 strongly influences how effi-
ciently a given exciton can mediate the 1phRRS process.
Similar to the effect in 1D absorption,15 �
x�0��2 acts to sup-
press and shift the contribution of the unbound exciton to the
exciton mediated REP.

With an understanding of how both the bound and un-
bound exciton contribute individually to the REP, we now
evaluate Eq. �22� for the full exciton-mediated 1phRRS REP.
Since we will compare our result with the REP of the FEH
theory for 1phRRS, we quote the result for the free electron-
hole theory Raman scattering cross-section1

d�RRS
FEH

d�
��l;�s = �l − �p�

=
e4�s

2ns

c4mo
4�l

2nl

�2

�2�p
2� 1

����l − ��p − Egap − i�b�

−
1

����l − Egap − i�a�
�2

. �25�

Figure 4 compares Eq. �22� with Eq. �25�. It is immediately
clear from Fig. 4�a� that the energies at which the system
strongly Raman scatters incident laser light is shifted to the
lowest bound exciton. Nonetheless, there is a small feature at
the band gap associated with light Raman scattered using
unbound exciton-intermediate states. In addition, the incom-
ing and outgoing peaks are more pronounced in the exciton-
mediated REP as compared to the FEH REP. Practically,
though, such small qualitative differences in the REP are
likely to be experimentally undetectable. Besides the gross
shift in energy, the REPs generated by both theories appear
quite similar.

At this point it is important to recall that, in solving Eq.
�10�, we set the ratio of the potential cutoff to the exciton
Bohr radius, zo /aX, equal to 0.2. If we further reduce zo
→0, the lowest bound exciton will only become more domi-
nant in mediating the REP. With this in mind, we finally
investigate the dependence of the exciton mediated REP on
zo /aX. In particular, we now set zo /aX=1. Physically, the
Bohr radius of the exciton is equal to the cutoff of the 1D
Coulomb potential and, as zo increases, the system becomes
less 1D. In Fig. 5, we keep all input parameters from Fig. 4
fixed except zo /aX is changed to 1.

First, the higher excited bound excitons �Figs. 5�b�–5�e�	
make larger individual contributions to the exciton-mediated
REPs. When we examine the full exciton mediated REP, we
find there is some structure in the vicinity of the the free
electron band gap. We can understand this structure as fol-
lows. As the binding energy of the ground state exciton de-
creases, the relative strength of the scattering process medi-
ated by the lowest bound exciton �as compared to the other
bound excitons� also decreases. In addition, the REPs that we
have attributed to the various bound excitons begin to over-

lap. In fact, as the overlap increases, the REP at a fixed ��l
is the result of a quantum interference between all excitonic
pathways that can contribute effectively to the scattering pro-
cess.

IV. CONCLUSION

We have developed a general theory for calculating the
exciton-mediated one-phonon resonant Raman scattering
cross section for 1D quantum confined systems �Eq. �21�	. In
studying a model two-subband system, we found that the
exciton was strongly bound when zo is small compared to the

FIG. 3. �Color online� �a� 1S, �b� 2S, �c� 3S, and �d� 4S bound
exciton REP. In all figures, zo /aX=0.2, �=5 meV, R*=100 meV,
and ��p=32 meV. The double peak structure in the REP is due to
both an incoming resonance, when ��l=Egap, and an outgoing reso-
nance, when ��s=Egap.

FIG. 4. �Color online� Comparison of the normalized �a� exciton
mediated REP with �b� free electron-hole mediated REP. In �a� and
�b�, �=5 meV, R*=100 meV, and ��p=32 meV. In addition, in
�a�, zo /aX=0.2. Notice in �a� the small contribution of the unbound
excitons.
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exciton Bohr radius aX. In this limit of small zo, the ground
state exciton dominates the 1phRRS REP. The contribution
to the REP from unbound excitons with energies in the range
of the single particle gap energy is quenched. The quenching
is similar in origin to the suppression of the exciton-mediated
absorption coefficient at energies above a 1D material sys-
tem’s bare energy gap; the ground state exciton carries all the
spectral weight in the transition.15 As the Coulomb potential
cutoff zo is increased, the ground state becomes more weakly
bound, and we found that both the higher excited bound and
unbound excitons begins to contribute to the 1phRRS REP.
As zo approaches the excitonic Bohr radius aX, the REP, at a

fixed laser frequency, is the result of a quantum interference
between all contributing intermediate excitonic pathways.
The interferences lead to a complicated structure at the single
particle energy gap. The shape of the 1phRRS REP provides
a qualitative indicator of how much spectral weight the
ground state exciton carries in mediating the 1phRRS pro-
cess.

The sensitivity of the 1phRRS REP to changes in the po-
tential cutoff is a physically important effect. Although the
cutoff is introduced to make the analytic solution of the
Schrödinger equation with the 1D Coulomb potential trac-
table, the majority of physically realizable quantum confined
1D systems are more accurately described as quasi-1D. For
example, both semiconductor quantum wires and SWNTs
have finite spatial extent in the directions perpendicular to
the direction of unconfined motion. The finite extent in these
spatial directions lends itself naturally to the introduction of
a cutoff in the Coulomb potential.

In applying our results to specific material systems, such
as semiconductor quantum wires or SWNTs, it is necessary
to evaluate matrix elements specific to each material system.
Though not discussed in this work, we also observe that if
we allow for the possibility of more than two subbands, it
becomes possible to observe true double resonances in the
1phRRS REP. Specifically, the phonon could scatter the in-
termediate exciton between two real, bound states. We leave
such investigations to future work.
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