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Quantum size effect in the electron exchange between a H™ ion and a thin metal disk
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The resonant charge transfer (RCT) between a hydrogen anion and a thin aluminum disk is investigated by
means of the wave-packet propagation method that does not exploit the perturbation theory. The RCT on a thin
metal disk is found to exhibit quantum size effects due to the finite size of the disk. Survival amplitude of ion
state has been calculated as a function of the distance to the ion-surface in a normal collision. It is shown that
depending on the projectile velocity, the ion can interact with disk as if with bulk metal, thin film or nano-
structure with the energy quantized by polar and normal coordinates.
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I. INTRODUCTION

RCT is one of the most important processes occurring
during atom-surface interaction. The RCT process deter-
mines the charge state of scattered and sputtered particles
that contains knowledge about elemental composition and
structure, as well as about electronic properties of the sur-
face. Besides the RCT process has a great impact on a num-
ber of phenomena occurring on a surface, that take place
during secondary ion-emission, scattering, desorption, ca-
talysis and surface modification.

At present the charge exchange between an atomic par-
ticle and bulk metal has been well studied."? Tunneling
along the surface normal is energetically favorable, and an
atomic electron propagates indefinitely deep into the metal.
In this case, there is no possibility for a reverse electron
transition to the atom. Electron transfer is qualitatively dif-
ferent for systems with finite size.>* The blocking of electron
propagation along the surface normal, which is the preferen-
tial direction for tunneling, should have the biggest effect on
the RCT. One can mention the recent studies of the effect of
the projected band gap along the surface normal for the (111)
surfaces of noble metals. In that case, free electron propaga-
tion along the surface normal is not possible in a certain
energy range and this leads to the existence of quantized
states for perpendicular motion—surface and image states.’
The latter generate two-dimensional (2D) electronic continua
at the surface: electron motion confined to the directions per-
pendicular to the surface and quasifree parallel to the surface.
The existence of a band gap and of 2D surface continua has
been shown to lead to significant alterations in the RCT. The
theoretically predicted quasiblocking of the RCT in certain
systems and the dominance of the 2D surface state con-
tinuum in the RCT process®~® have been observed experi-
mentally, both in scattering conditions.”!°

Island-films on a surface are an interesting example of
systems with confined electron motion. A thin metal disk can
be chosen as a physical model of such systems. This study is
focused on determining certain features of the electron trans-
fer between a negative hydrogen ion and an aluminum disk
by means of the wave-packet propagation (WPP)
method.'"'? Specifically, some interesting relationships that
demonstrate the quantum size effect can be obtained by vary-
ing the disk radius at a fixed disk thickness and a fixed dis-
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tance between the atom and the disk. In the dynamic case
(i.e. for a particle impinging on a surface) the influence of
the projectile velocity on electron exchange is studied and
the conditions required for the quantum size effect to be
manifested are identified.

Section II below describes the problem and the method of
solution. Section III is devoted to the results on the H™ ion-
disk charge transfer for a fixed ion-surface distance (static
situation), and Sec. IV addresses the results obtained for an
ion moving in front of the surface (dynamic situation). Fi-
nally, Sec. V contains the concluding remarks.

II. THE PROBLEM FORMULATION AND SOLUTION

The goal is to calculate the electron transfer between a
negative hydrogen ion and a metal disk. Electron energy in-
side the disk is quantized by two coordinates - normal and
polar (z,p). It is necessary to know the quantized energy
values for the problem analysis. As a first approximation one
can assume that energy quantization by one coordinate
doesn’t depend on other coordinate. Therefore the set of dis-
crete energy levels for normal coordinate coincides with dis-
crete energy levels for a film of the same thickness.

In the static situation (fixed ion-surface distance) it is re-
quired to find the principal parameters of electron transfer
such as the energy position (E) and ion-level width (I"). Ton-
level width characterizes the probability of electron transfer
per unit of time (I'~ 1/ 7, where 7 is the lifetime of an atomic
electron). The differences resulting from the disk radius be-
ing finite can be revealed by comparing electron exchange on
a thin disk with electron exchange on a thin film of the same
thickness.'3!* The presence of the quantum size effect can be
determined by investigating how the principal electron ex-
change parameters depend on the disk radius.'

In the dynamic situation (ion is moving toward the sur-
face) the goal is to understand how the projectile velocity
influences the electron transfer. We assume that the hydrogen
core approaches the surface from infinity along the surface
normal to the disk center following a classical straight-line
trajectory, at a constant velocity.'® The charge state of hydro-
gen was calculated by WPP method (see description below).
The previous studies have shown that projectile velocity es-
sentially influences on charge exchange.!®> Moreover if the
projectile velocity is high enough, electron transfer with low-
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dimension systems can be described by classical rate equa-
tion. The WPP analysis of ion-surface charge exchange for
various collision velocities and its comparison with results
obtained with rate equation for disk, film and bulk metal can
be used to determine the projectile velocity impact on elec-
tron transfer and on whether the quantum size effect appears.

A. Rate equation

For a number of systems under study (e.g. bulk metal) the
approach of wide-band can be used.'”!8 It can be shown that
RCT process can be described by rate equation, with electron
transfer rates depending on the level width of bound
states: 192!

dP(t)=-T"- P(¢) - dt, (1)

where P(¢) - is the probability of the state with electron re-
maining at the atomic particle, and I" - is ion level width.

B. Wave-packet propagation (WPP) method

The WPP method consists in studying the time evolution
of the electron wave function.”!> The time-dependent wave
function ,(r,t) is a solution of the Schrédinger equation
with the Hamiltonian

H=T+ Ve—H+ Ve—surf’ (2)

where T:—%A is the electron kinetic energy. V,_p(r)
=—(1+1/r)-exp(=2r) = (ay/r*)-exp(~rj/r?) is the interac-
tion potential between an electron and an atomic core (r is
the radial electron-atom distance in atomic units, ay=2.25
and r5=2.547).""22 The interaction potential between an
electron and a disk V,_g, is calculated as conjunction of
conduction band bottom (V,=15.9 eV) with classical self-
image potential of the electron (—1/4z) according to the Jen-
nings approach.”® Originally, Jennings potential is one-
dimensional, so a superposition of Jennings potential along
normal and polar coordinate is used in order to obtain two-
dimensional disk potential. When the disk radius is ex-
tremely large the disk potential becomes identical to the po-
tential of a film of the same thickness. This fact confirms the
appropriateness of the above approach.

We consider a cylindrically symmetric case when the pro-
jection of electron angular momentum onto the symmetry
axis is zero. The calculations are performed using the cylin-
drical coordinates (p—z). The following substitution is used
to improve the solution convergence

-
flr, ) =Np- lr.1). 3)
The Schrodinger equation is transformed accordingly:
df(r7 t) -~
—— = Hf(r,1), 4
L f(r,1) 4)
H=T,+ Ty+ Ve + Ve surps (5)
where
D N 1 d(d)l ©)
7247 T 2 pdp\Pap)
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The time behavior of the electron wave function is calcu-
lated using the evolutionary operator U(A7):

flrt+ A0 = UAD) - f(r,1);  U(A?) = exp(= iHA?). (7)

where At is the time step in numerical calculations.
To improve the accuracy of calculations, the evolutionary
operator is divided into three components as

At - At
U(Ar) =exp —lHlE -exp\— iH,At) - exp _ZHIE

+0(AP), (8)

where

Hl = Tz + Ve—H+ Ve—surf; H2 = Tp' (9)

The exponential operators are estimated using the follow-
ing procedure:

1-i(At/2)H

— + O(AP). (10)
1 +i(At/2)H

exp(— iHAr) =

For numerically solving the Schrodinger equation, the
wave function is calculated at discrete points of the p—z
space.

C. Eigenenergies and ion level width

In the static situation electron transfer is studied with a
given initial electron wave function ,(r), which is the H™
outer electron wave function. The WPP method is used to
determine ¢(r,t). Then we determine the survival amplitude
of the free-ion bound state or, equivalently, the electronic
wave packet autocorrelation function

AW = (Y (N|y(r,0)), (1)

and its Laplace transformation

== | a0 =L [ dre g lptrn,

0 0
(12)

The real part of g(w) gives n(w), that is the projected
density of states (DOS). Note that the density n(w) has a
Lorentzian peak at the resonance position, i.e., at the energy
of the quasibound state of hydrogen. It can be used to extract
the resonance characteristics, that are (E) and (I'). However,
this procedure is accurate only if the propagation is calcu-
lated in a long time interval until the wave packet entirely
leaves the atom in order to reach the convergence of Laplace
transformation (12). This requires extremely long propaga-
tion times in the case of very narrow resonances. To avoid
long propagation times, we analyze the autocorrelation func-
tion as the superposition of several exponential terms, with
parameters determined using the least-squares method:

L
A1) = 2 ajexp{—i(E;— il ))1}. (13)
j=1
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FIG. 1. Solution to the Schrodinger equation for a disk of
50 a.u. radius. The thick solid line shows the disk potential along
the polar coordinate. Horizontal lines denote discrete energy levels
below ion level (=1.3 eV). The solid curve shows a plot of the
squared modulus of the wave function (arb. units) for upper energy
level.

III. RESULTS FOR THE STATIC SITUATION

A considerable number of calculations have been made
for a disk of 15 a.u. thickness (3 monolayers) and 50 a.u.
radius; the ion-surface distance was 12 a.u. (Note that we
use the atomic system of units with m,=e=f=1; 1 a.u. of
distance equals to 0.53 A, 1a.u. of time equals to
2.419-107"7s, and 1la.u. of velocity equals to
2.188- 108 cm/s). The thickness value of 15 a.u. was chosen
because the charge exchange with film of the same thickness
was investigated in previous studies.'>!* Hydrogen ion en-
ergy depends on the ion-surface distance as E, (z)=A—1/4z,
where A is the affinity level. Specifically, E, (12 a.u.)
=-1.3 eV. The electron motion along the polar coordinate is
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quantized due to the finite disk radius, so discrete energy
levels inside the disk arise. The energy restrictions should be
taken into account: an electron can occupy only the discrete
levels inside the disk with energy not higher than the ion
level energy. There are three energy levels for the disk of
50 a.u. radius, which meet the energy restrictions (Fig. 1).
The accuracy of the formulated energy restrictions is con-
firmed below (the electron occupies the highest available en-
ergy level inside the disk; this fact also confirms correctness
of the chosen disk potential and the calculated energy levels).

Electron exchange between an atomic particle and a thin
metal film was described in details in Ref. 13. Figure 2
shows the time evolution of electron transfer for an alumi-
num disk and an aluminum film of the same thickness. One
can see that, during the initial stage of ion-surface interaction
(up to 30 a.u. of time) no discrete features are observed on
the surface. The wave function distributions for the disk and
film are the same, and they correspond to the case of a bulk
metal. To put it in a simpler way, the electron has no time to
“sense” the finite size of the disk/film.

During the second stage (100 a.u. of time), the non-
monotonic distribution of wave packet along the normal co-
ordinate is visible for both disk and film, which results from
discrete energy structure. However, the spatial distribution of
the wave function for the disk remains identical to that for
the film. The physical explanation for this is as follows: an
electron reaches the remote disk/film border and, having re-
flected, continues its motion in the backward direction. Thus
interference with a forward-moving wave packet occurs.
From the beginning of the interference, the electron wave
packet mainly propagates parallel to the surface. Until the
radial boundary of the disk is reached, non-monotonic struc-
tures of electron density along the radial coordinate are not
observed.

Film

FIG. 2. (Color online) Capture
dynamics for external electron of

H~ for disk and film of 50 a.u.

radius and 15 a.u. thickness. The
patterns show the spatial distribu-
tion of an electron at subsequent
moments of time (30, 100, 500
and 1000 a.u.). Darker regions
correspond to regions where there
is a higher probability of finding

an electron. For clarity, the re-
gions with a lower probability of
finding an electron are shown in
white. Solid lines show the ion
geometrical position and disk/film
boundaries. They are marked
“film”, “jon”, “disk” (thickness),
and “disk radius”.

Disk radius

>
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FIG. 3. Energy width I' of H™ level as a function of disk radius.
The disk thickness is 15 a.u.; the ion-disk spacing is 12 a.u.

The differences in charge transfer between the disk and
the film become evident at the third stage of electron transfer,
which lasts from 500 to 1000 a.u. of time. When the elec-
tron wave packet reaches the polar disk boundary, it is forced
to move backwards to the center of the disk. Three electron-
density maxima appear due to the interference along the po-
lar coordinate. It should be stressed that the geometrical lo-
cation and shape of these maxima corresponds to square
modulus of the wave function of the highest energy level
available in the disk (Fig. 1), so the electron mainly occupies
the highest available energy level inside the disk. Note that
the formation of a discrete structure over the polar coordinate
always occurs after the discrete structure along the normal
coordinate has been formed even in the case of the disk
radius being smaller than the disk thickness. The reason for
this is that the transfer of an electron along the surface nor-
mal is more energetically favorable. Thus, an electron, hav-
ing been transferred to metal, continues to move until it
reaches the remote boundary (stage 1). Then it moves in
parallel to the surface (stage 2) and the discreteness along the
polar coordinate becomes substantial (stage 3).

Quantum size effect

Ion-level width is shown in Fig. 3 as a function of disk
radius. One can see that this function exhibits a non mono-
tonic character (hydrogen level width as a function of thin
film thickness also exhibits non monotonic character and
abrupt variation?). A qualitative explanation for this depen-
dence can be obtained considering the discrete structure of
the energy levels inside the disk.

Resonant tunneling is known to be the primary channel of
the charge transfer for the problem considered. An ion elec-
tron undergoes a transition from the ion level to the nearest
available energy level inside the disk. Resonant-tunneling
rate is determined by the difference between these two en-
ergy levels. This fact explains the non monotonic depen-
dence of ion-level width on the disk radius. The maximal
values of the level width coincide for those values of disk
radius at which a new discrete energy level becomes
available.! The difference between the ion energy level and
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FIG. 4. (Color online) Survival probability for an H™ ion ap-
proaching a disk of 15 a.u. thickness and 50 a.u. radius. The solid
curves are calculated using the WPP method. Squares and circles
denote the solution of rate equation obtained using level width cor-
responding to static disk and bulk metal. Triangles correspond to
WPP results for a film of 15 a.u. thickness (3 ML).

the nearest energy level inside the disk is minimal at this
moment. Thus electron transfer proceeds most efficiently due
to resonance. The described dependence (Fig. 3) clearly
demonstrates the quantum size effect during the electron ex-
change between an atomic particle and a thin metal disk,
which is an example of a low-dimensional system.

IV. DYNAMIC STUDY OF THE ELECTRON TRANSFER

WPP study was also applied to the case of an H™ ion
approaching the surface at a constant perpendicular velocity.
At the initial moment electron wave packet is distributed
according to the H™ outer electron wave function. The calcu-
lations begin at the large ion-surface distance, where ion-
surface interaction is negligible (as it was checked zj,
=40 a.u. certainly satisfy the above condition). The WPP
provides the wave packet autocorrelation function A(r) and
survival amplitude P(r)

P(1) = |A(n)]*. (14)

Figure 4 presents the survival probability P(r) of the H~
ion as a function of the distance as it approaches the surface
for various collision velocities from 0.003 a.u. up to
0.1 a.u. (1 a.u. of velocity equals to 2.188-10% cm/s). One
can see that projectile velocity substantially affects the elec-
tron exchange. If the collision velocity is high the exponen-
tial decay takes place, otherwise survival amplitude exhibits
oscillations i.e., a transient recapture of the electron by the
moving hydrogen occurs.

One can see that for the high projectile velocities
(0.1 a.u.) electron transfer can be represented by rate equa-
tion with level width corresponding to bulk metal. Thus the
projectile interacts so rapidly that there is no time to reveal
the discrete structure of energy inside the disk and electron
transfer occurs similarly for a thin disk, a film and bulk
metal.

In the medium range of collision velocities (0.025 a.u.)
the hydrogen survival amplitude dependence on ion-surface
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distance for a disk is close to the case of a film, but differs
from the bulk metal case. Thus the ion-surface interaction is
slow enough to feel the discrete structure of the film and disk
along the normal coordinate. At the same time the interaction
is sufficiently fast, to avoid the quantization along the polar
coordinate, because the wave packet has not enough time to
reach the disk radial boundary.

For the small collision velocities (less than 0.0125 a.u.)
charge transfer between H™ ion and thin disk can be repre-
sented neither by rate equation nor by WPP calculation for a
thin film.

Thus the dynamical system behavior qualitatively differs
for various ranges of collision velocities: the specific disk
characteristics that stipulate the quantum size effect have an
effect at small collision velocities; while in the medium ve-
locity range the disk acts as a film of the same thickness; and
at high velocities charge exchange with a disk is similar to
charge exchange with bulk metal.

V. CONCLUSIONS

This paper addresses the principal features of electron ex-
change between H™ ion and a thin metal disk. Both static
(fixed ion-surface distance) and dynamic (ion is moving to-
ward the surface) situations were investigated by means of
wave-packet propagation method. The investigation per-
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formed leads us to the following conclusions about atomic-
particle electron exchange with a thin metal disk:

(1) The electron transfer between a negative hydrogen
ion and a thin disk is characterized by the formation of a
discrete electron-density distribution, which has maxima
along the coordinates (p,z). This is caused by interference of
the wave packets.

(2) It has been shown that electron transfer between an
ion and a thin disk starts to exhibit quantum size effect with
disk radius changing. This quantum size effect exists only for
small collision velocities.

(3) It is demonstrated that in the interaction between an
ion and metal disk the charge transfer with the disk can pro-
ceed as charge transfer with bulk metal, thin film or nano-
structure with energy quantized by two coordinates, depend-
ing on the projectile velocity.
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