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The theory of order-disorder phenomena in binary alloy thin films of AB3 type is considered in the context
of long-range and short-range order parameters. The paper is based on the model introduced in connection with
the surface melting and surface disordering considerations in the approach to the samples with the restricted
dimension when it requires the construction of a thermodynamically inhomogeneous system consisting of
homogeneous subsystems whose entropy determination needs then the pair entropy approximation. Among
others, two effects seem to be of particularly great interest: namely, the crossover of the site occupancy in the
surface layer and the shift of atoms in the surface plane between two kinds of lattice sites. These effects
influence the diffuse low-energy electron diffraction, surface melting, or spin-wave resonance conditions.
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I. INTRODUCTION

In the present paper order-disorder phenomena including
the distribution of chemical composition are discussed in
terms of the long-range order as well as the short-range order
in binary alloys and their films whose surfaces play an es-
sential role.

The considerations concerning the long-range order be-
havior are based on the model applied by Valenta and
Sukiennicki1 which takes into account the Valenta approach2

to the description of thin films in the form of monoatomic
layers parallel to the surfaces and treated in the sense of Néel
sublattices. This assumption leads to the single-site entropy
term which is factorized with respect to the order parameter
in the monoatomic planes. In this case we can apply the
approach to the samples with restricted dimension, including
thin films, based on a thermodynamic construction of the
thermodynamically inhomogeneous system consisting of ho-
mogeneous subsystems.3,4

The aim of the present paper is to extend the model dis-
cussed in Ref. 3 to the case when the short-range order be-
havior is taken into account. The presented formulation is
valid for an arbitrary crystallographic lattice although an ex-
ample is shown in the case of fcc structure for illustration.

The short-range order behavior is considered in terms of
the pair entropy term whose calculations are given for thin
films in the present paper in analogy to the approaches dis-
cussed by Kikuchi5 and Morán-López and Falicov6 as well
as López-Chávez and Castillo Alvarado7 who applied it in
the case of bulk materials. The fcc lattices were also consid-
ered in this context by Sanchez and de Fontaine.8

The model introduced by Valenta and Sukiennicki1 was
applied to the case of the disorder description in dilute alloy
ferromagnetic thin films.9 The influence of structural disor-
der on the magnetization and the Curie temperature was
studied using generalized Valenta equations in Bragg-
Williams approximations.10 However, the critical concentra-
tion of disordered binary magnetic alloys was predicted us-
ing more advanced methods11 whose applications were
discussed also in, e.g., Refs. 12 and 13 in connection with

the surface magnetism existence. An excellent review of the-
oretical results concerning surface and thickness effects in
binary magnetic alloys is presented in Ref. 14. Papers based
on differential or the integral operator techniques have also
contributed to the description of structurally disordered mag-
netic media; in particular, the influence of surface amor-
phization or recrystallization on the magnetic properties of
thin films was discussed �e.g., Refs. 15 and 16�.

The order-disorder phase transition at the surface of bi-
nary alloys structure was studied within the Landau theory
for fcc lattice17 as well as considerations for bcc �110� binary
alloy thin films were presented.18 Moreover, the thermody-
namics of finite-size effects was considered.19 Studies have
shown that surfaces can influence the thermodynamic prop-
erties in a substantial way by introducing surface-induced
order.20 The order-disorder transition was described in the
usual way by subdividing the lattice into two interpenetrating
sublattices � and � and by determining the lattice order by
means of the long-range order parameter.20,21 In this context
the present paper similar to Refs. 17–21 is a continuation of
Ref. 3 devoted to the description of binary-alloy thin-film
properties and to their discussion in terms of the pioneering
work of Ref. 1 which is taken into account as the background
of the entropy considerations.

The theory of ordering in fcc lattices was developed for
systems with first- and second-neighbor interactions8 de-
scribed by the Ising model as well as calculated in the
tetrahedron-octahedron approximation of the cluster varia-
tion method.22 The different statistical-mechanics approxi-
mations for the study of antiferromagnetism in the fcc lattice
were compared and discussed in the context of real charac-
teristics of samples.23 The cluster variation method was also
applied to evaluate the critical temperature for fcc Ising
ferromagnets.24 The method is very effective and relatively
convenient for calculations.25 The paper can be used as an
alternative background for the construction of a model con-
taining short-range order correlations in its entropy formula-
tion in contrast to our approach based on pair probability
configurations consequently to the approach given in Ref. 1.
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Short-range order is explicitly presented in connection
with the diffuse scattering experiments of electrons on binary
alloys.26 In this case there is a coincidence with the present
paper since our aim consists also in the application of the
short-range order correlations found in this paper to diffuse
low-energy electron diffraction �DLEED� measurements.

A development in the investigations of order-disorder
phenomena in binary alloy thin films,27 independently of
magnetic films behavior,28 consists, first of all, in the predic-
tion of an interesting phenomenon, i.e., surface disordering,
discussed in analogy to the surface melting.3 Moreover, in
this case an interpretation of the disordering kinetics is pro-
posed in connection with the behavior of disorder which ap-
pears as a layer-by-layer process starting from the surface
planes.

In the present paper we discuss short-range order behav-
ior. Its profile across a film results from the variational prin-
ciple formulated for the free energy F which consists of the
internal energy U and entropy S terms: F=U−TS. The paper
deals with the pair entropy contribution formulated by means
of the pair probability standing for the number of possible
configurations for a given distribution of concentration of
two kinds of atoms. Each configuration is described by the
probability of the nearest-neighboring site occupation with
respect to the central site. Then, the particular probabilities
allow us to define the long-range order and, first of all, the
short-range order parameter which is related to the pair cor-
relations. These probabilities describe also the internal en-
ergy term. In particular, the correlations at the surface are
interesting from their physical applications in the case of the
low-energy electron diffraction considerations. The numeri-
cal results collect various situations for the long- and short-
range order behavior. Their description and interpretation are
summarized in the concluding remarks.

II. PAIR ENTROPY FORMULATION

In order to calculate the entropy with respect to its pair
contribution which is responsible for the short-range order
correlations we introduce the cumulant representation �e.g.,
Ref. 29�. Taking into account the expression for the total
entropy we can write it in the form �e.g., Ref. 30�

S = �
r

�r + �
�rr��

��rr� − �r − �r�� �1�

when we neglect the cumulants of the higher order than 2. In
this case �r stands for the single-site entropy while �rr� is the
pair entropy contribution per one atom.

We can see from Eq. �1� that the entropy has then two
contributions: one of them corresponding to the single-site
entropy and the second one describing the pair entropy. The
contribution of single-site entropy in homogenous systems,
including bulk samples for n=N, can be written as

S1 = �
r

�r − �
�rr��

��r + �r�� = N2n�1 −
1

2
N2n2z�1, �2�

where

�1 = kB ln g1, �3�

with the probability g1 taking into account all the configura-
tions of atoms and z standing for the nearest neighbors. The
contribution of pair entropy in homogenous systems, includ-
ing three-dimensional bulk n=N samples or two-dimensional
plates n=1, can be written as

S2 = �
�rr��

�rr� =
1

2
N2nz�2. �4�

The pair entropy is then given by

�2 = kB ln g2, �5�

with the probability g2 standing for the number of possible
configurations for a given distribution of concentration and a
distribution of both the long- and short-range order param-
eters.

Let us now analyze an infinite, in the surface plane, thin
film of fcc binary alloy AcB�1−c� with film thickness of n
monoatomic layers having the �111� surface orientation. We
divide the film into n monoatomic layers labeled by i. Each
layer can be considered then as a homogenous sublattice
from the thermodynamic point of view although the film is
not now a homogenous thermodynamic system. In order to
describe the lattice long-range order, the fcc lattice is also
divided into two sublattices � and �. In the perfectly ordered
case, all � sites are occupied by A atoms and the � sites are
occupied by B atoms. In the completely disordered case, the
probabilities to find an A atom in � and � sites are the same
�cf. Ref. 27� and similary the atoms B are situated in the sites
� and � with the same probabilites.

The lattice order parameter t�i�, describing the difference
in concentrations between the � and � sublattices appearing
in the monolayer i, is defined by27

t�i� = pA
��i� − pA

��i� = pB
��i� − pB

��i� . �6�

The symbols pC
��i� denote the probability of finding C

atoms in the � sublattice. These probabilities are normalized
by27

pA
��i� + pB

��i� = 1, pB
��i� + pA

��i� = 1. �7�

The concentration of atoms A in the monoatomic layer i is
given by

x�i� = pA
��i�F� + pA

��i�F�, �8�

while the concentration of atoms B in the same layer can be
written as

y�i� = 1 − x�i� = pB
��i�F� + pB

��i�F�, �9�

where F� and F� are the relative numbers of � and � sites,
respectively.

With all these definitions it is possible to write the layer-
dependent probabilities as functions of the layer-dependent
concentration x�i� and the lattice order parameter t�i�:
namely,27

pA
��i� = x�i� + F�t�i� ,
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pA
��i� = x�i� + F�t�i� ,

pB
��i� = 1 − x�i� + F�t�i� ,

pB
��i� = 1 − x�i� + F�t�i� . �10�

It is worth while to notice that formulas �10� are identical
with those used in Ref. 10 Next, we can write15

g1
� = � F�N2n

F�N2npA
� � �11�

for bulk systems where n=N and

g1
� = �ig1

��i�, g1
��i� = � F�N2

F�N2pA
��i�

� �12�

for thin-film geometry.
Using now, as usual, the Stirling formula, we obtain

�1
� = kB�

C

F�pC
� ln pC

� �13�

for bulk systems and

�1
� = kB�

i
�
C

F�pC
��i�ln pC

��i� �14�

for the considered thin-film system,27 where the summation
over C runs over A and B.

The single-site contribution to the entropy given by Eq.
�1� is then determined by the relations

�
r

�r = N2�
�

�1
� �15�

and

�
�rr��

��r + �r�� = N2n�
���

�1
�r�→��, �16�

where r�→�� stands for the nearest neighbors of atoms in the
position �� when the central atom is situated at the site �. Of
course, in the case of thin films, we have

�
r

�r = N2�
i

�
�

�1
��i� �17�

and

�
�rr��

��r + �r�� = N2�
i

�
���

�1
��i�r�→��

i �18�

instead of Eqs. �15� and �16�, respectively.
When we consider the quantity g1 its factorization �12�

with respect to g1�i� is evident and it is described taking into
account the derivation reported in Ref. 1. Unfortunately, the
factorization of g2 with respect to g2�i� is not obvious be-
cause of the interactions between the sites localized perpen-
dicularly to the monoatomic layers. Therefore, we need to
define properly the two-site probabilities which determine
the quantity g2: namely, the following.

�i� The probability pAA
���i� means the conditional probabil-

ity that site � is occupied by atoms A and site � is occupied
also by atoms A while both sites belong to the same mono-
atomic layer i.

�ii� The probability pAB
���i� means the conditional probabil-

ity that site � is occupied by atoms A and site � is occupied
by atoms B while both sites belong to the same monoatomic
layer i.

�iii� The probability pBA
���i� means the conditional prob-

ability that site � is occupied by atoms B and site � is occu-
pied by atoms A while both sites belong to the same mono-
atomic layer i.

�iv� The probability pBB
���i� means the conditional prob-

ability that site � is occupied by atoms B and site � is occu-
pied also by atoms B while both sites belong to the same
monoatomic layer i.

Generally, we can formulate the probabilities pCC�
��� �i� for

�� ,���� �� ,�� and �C ,C��� �A ,B� defined in the similar
way: namely, the following.

The probability pCC�
��� �i� means the conditional probability

that site � is occupied by atoms C and site �� is occupied by
atoms C� while both sites belong to the same monoatomic
layer i.

Moreover, in the case of pair entropy formulation, we can

consider the probabilities pCC�
��� �i , i±1� which are defined in

analogy to pCC�
��� �i� as follows.

The probability pCC�
��� �i , i±1� means the conditional prob-

ability that site � is occupied by atoms C and site �� is
occupied by atoms C� while site � belongs to the mono-
atomic layer i and site �� belongs to the nearest-neighboring
monoatomic layer i±1.

In order to factorize the pair entropy �14� we consider the
position index r= �i , j� where j belongs to the monoatomic
plane in which the system is homogenous and i labels the
monoatomic planes in the direction of film thickness. Thanks
to this description we can see that the probabilities describ-
ing the behavior of atoms in the positions in two nearest

neighboring planes pCC�
��� �i , i±1� should be factorized in the

form

pCC�
��� �i,i ± 1� = pC

��i�pC�
���i ± 1� , �19�

which assures the factorization procedure for the entropy.
Taking into account the above assumption we can con-

sider the pair entropy �5� only in the planes i while the en-
tropy contribution due to the nearest-neighboring layer inter-
actions is reduced to the single-site entropy term. In order to
determine the pair entropy term given by Eq. �14� we can see
that �rr�=� j j��i� does not depend in fact on j and j� due to
the homogeneity in the plane i. Moreover,

g2
��� = �ig2

����i� �20�

is then factorized with respect to the monoatomic layers i
according to Eqs. �12�; however now, not only is the long-
range order parameter t�i� inhomogeneous with respect to the
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layers i, but also the short-range order parameter s�i� has its
distribution perpendicular to the surface.

III. ORDER PARAMETERS IN TERMS OF THE PAIR
PROBABILITIES

Let us now consider the relations between the pair prob-

abilities pCC�
��� �i� and the single-site probabilities pC

��i�. It is
easily to notice that the probability pA

��i� denoting the occu-
pation of the site � by atoms A in layer i is equal to the sum
of the pair probabilities pAA

���i� and pAB
���i� which denotes the

occupation of site � by atoms A independently of the occu-
pation of site � by atoms A or B. Thus, we obtain

pAA
���i� + pAB

���i� = pA
��i� ,

pAA
���i� + pBA

���i� = pA
��i� ,

pBB
���i� + pBA

���i� = pB
��i� ,

pBB
���i� + pAB

���i� = pB
��i� , �21�

and similarly for other proper combinations of the possible
configurations of atoms.

The relations �21� allow us to define the long-range order
parameter t�i� in terms of the pair probabilities,

t�i� = pAB
���i� − pBA

���i� �22�

or

t�i� = pBA
���i� − pAB

���i� �23�

and to show that the definitions �22� and �23� are equivalent
to the definitions �6� introduced by means of the single-site
probabilities pC

��i�.
In analogy to the definition of the long-range order pa-

rameter we can introduce now the definition of the short-
range order parameter s�i� as

1 − s�i� =
pAB

���i� + pBA
���i�

pA
��i�pB

��i� + pB
��i�pA

��i�
, �24�

which can be interpreted in terms of the correlations which
represent its nature from the physical point of view.

Taking into account the general procedure we can calcu-
late pAA

���i�, pAB
���i�, pBA

���i�, and pBB
���i� by means of the rela-

tions �10�, �22�, and �24�. Similarly, we can introduce all the

probabilities pCC�
��� �i� which are collected in the Appendix in

their explicit forms.
We are ready now to construct the pair entropy term. The

probability g2
��� can be expressed by

g2
��� = � F�N2

F�N2pA
� �� F�N2pA

�

F�N2pAA
����� F�N2pB

�

F�N2pBB
���� , �25�

whose interpretation is the following: the probability g2
���

determines the conditional probability that the F�N2 atoms in
the position � is divided into two groups gathering F�N2pA

�

and F�N2pB
� atoms which have their neighbors of the same

type A or B, respectively.
Taking into account the Stirling approximation for the

Boltzmann entropy representation we obtain

�2
��� = kB�

CC�

F�pCC�
��� ln pCC�

��� , �26�

which contributes to the entropy given by Eq. �1� as follows

�
�rr��

�rr� =
1

2
N2n�

���

�2
���r�→�� �27�

in analogy to formulas �15� and �16�. The same procedure
leads to the expression

�
�rr��

�rr� =
1

2
N2�

i
�
���

�2
����i�r�→��

ii �28�

for thin films where

�2
����i� = kB�

CC�

F�pCC�
��� �i�ln pCC�

��� �i� �29�

in analogy to Eq. �14�. Finally, the entropy �1� is given by

S = − kBN2��
i�C

F��1 − z�
i �pC

��i�ln pC
��i�

+
1

2�
i

�
���

�
CC�

F�r�→��
i pCC�

��� �i�ln pCC�
��� �i�	 , �30�

where

z�
i = �

��

r�→��
i . �31�

The entropy �30� corresponds to the case when the system
is constructed by homogenous subsystems represented by
monoatomic layers i. When the system is homogenous all the
quantities appearing in Eq. �30� do not depend on i; i.e., the
system represents the bulk sample.

It is worthwhile to remark that the factorization �19� ap-
plied to the entropy derivation in the form �1� in order to
obtain Eq. �30� is equivalent to the situation that the nearest
neighbors r�→��

i are confined to those in the monoatomic
layer i:

r�→��
i = r�→��

ii . �32�

In this case, however, the results are not providing the
bulk solution. The expression �30� describes very well the
bidimensional case when we consider a planar sample. On
the other hand, we can understand the numbers r�→��

i as
those corresponding to the nearest neighbors in three-
dimensional space:

r�→��
i = r�→��

ii + r�→��
ii−1 + r�→��

ii+1 . �33�

In this case both the limiting solutions for three-dimensional
and two-dimensional samples are properly achieved.

The role of factorization is evident in the case of calcula-
tions of the internal energy. The interactions between the
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nearest neighbors are then divided into those considered in
plane i and those between the layers i and i±1. Thus we can
write

U = −
1

2�
i

�
���

�
CC�

F�r�→��
ii pCC�

��� �i�VCC� −
1

2�
i

�
���

�
CC�

F�pC
��i�

�
r�→��
ii+1 pC�

���i + 1� + r�→��
ii−1 pC�

���i − 1��VCC�, �34�

where we use the relation �19� which introduces the de-
cupling of the second term in Eq. �34�.

The free energy of binary alloy thin films, namely,

F = U − TS , �35�

where U is given by Eq. �34� and S is given by Eq. �30� with

respect to the pC
��i� and pCC�

��� �i� dependent on t�i� and s�i�
defined by Eqs. �22� and �24�, is a functional whose minimi-
zation leads to the distribution of the long- and short-range
order parameters as well as to the distribution of the concen-
trations x�i� or y�i� given by Eq. �8� or �9�, respectively.

IV. PAIR CORRELATIONS

The physical interpretation of the introduced pair prob-

abilities pCC�
��� �i�, collected in the Appendix, refers to the

physical correlations which, first of all, play an important
role for the description of the diffuse low-energy electron
diffraction.31,32 The correlations are determined by

�pC
��i�pC�

���i�� = pCC�
��� �i� − pC

��i�pC�
���i�; �36�

hence, due to the definition �24�, we can express the corre-
lations of the alloy components by the single-site occupation
probabilities pC

��i� and the short-range order parameter s�i�.
The surface correlations determined by Eq. �36� for i=1

are responsible for the surface scattering of electrons in dis-
ordered systems. The surface reflects electrons by the diffuse
scattering potential which depends on the interaction be-
tween surface and the substrate due to its modification by the
short-range order. This property can be observed in the dif-
fuse LEED intensity expressed in terms of �i� the form factor,
which contains physical information about the geometrical
arrangement of surface atoms and their position with respect
to the substrate atoms, and �ii� the structure factor, which
depends on the statistical distribution of surface atoms at the
bidimensional surface lattice sites.

The last term is determined by means of the Fourier trans-
form of pair correlation functions taking their form �36� in
the case of binary alloy surfaces. We can see from Eq. �36�
that the scattering intensity is expressed by the short-range
order parameter whose symmetry can be checked experimen-
tally.

The present approach leads to two pictures. First of all,
the correlations have the bidimensional symmetry below
some critical value of the crossover film thickness. In this
case the correlations perpendicular to the surface are marked
in fact by the short-range order parameter profile—more pre-
cisely, by its gradient when the number of neighbors is given

by Eq. �32�. The second case corresponds to the three-
dimensional radial symmetry when the nearest neighbors are
taken in the form �33�. Thus, symmetry of the correlations is
proper for the films sufficiently thick, above the crossover
thickness. The correlations are then of the spherical symme-
try and they behave properly close to the case when the
space is isotropic.

The transition from the region where the symmetry is of
bidimensional character to the region where the symmetry is
of three-dimensional behavior can be evaluated by means of
the critical film thickness parameter found from the minimi-
zation approach with respect to the critical value of the thick-
ness. The problem is of general nature and its experimental
verification is one of the forthcoming tasks discovered due to
the pair energy contribution being taken into account.

V. NUMERICAL RESULTS

As an example we will consider a thin film of the AB3
alloy �Ni3Fe� with �111� surface orientation. Permalloy is
chosen for illustration in analogy to the paper by Valenta and
Sukiennicki1 where the interactions are also confined to the
case of a lattice order parameter description only. In this case
the � sublattice consists of all corner sites and the � sublat-
tice consists of all the face-centered sites. All � sites have six
� sites as nearest neighbors in the plane while all � sites
have two � sites and four � sites as nearest neighbors in the
plane. In the next plane, all � sites have three � sites as
nearest neighbors while all � sites have one � site and two �
sites as nearest neighbors. The quantities F� ,r�→�� appearing
in the relation for internal energy U and entropy S for bulk
sample take the values

F� =
1

4
, F� =

3

4
, r�→� = 0, r�→� = 12,

r�→� = 4, r�→� = 8,

while in the case of thin films they take the following values:

F� =
1

4
, F� =

3

4
, r�→�

ii = 0, r�→�
ii = 6,

r�→�
ii = 2, r�→�

ii = 4,

r�→�
ii±1 = 0, r�→�

ii±1 = 3, r�→�
ii±1 = 1, r�→�

ii±1 = 2.

The considered system is described by the pairwise lattice
interactions in the nearest-neighbor approximation. The lat-
tice interactions are defined by three parameters VAA, VBB,
and VAB=VBA. We also define �cf. Ref. 27� the quantity V
=VAB− 1

2 �VAA+VBB� which takes a positive value for ordering
alloy and a negative value for the segregating one. We con-
fine our considerations to the case off ordering for which we
discuss here the long-range order together with the short-
range order and the concentration distribution in thin films.
In order to relate our calculations to the case of Ni3Fe alloys
we assume the value of V which corresponds to the phase
transition temperature Tt taken for the bulk sample as an
experimental data.

First, we present the case of bulk material. In Fig. 1 we
show the temperature dependence of the long-range order
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parameter t and the short-range order parameter s. At the
lattice order-disorder phase transition temperature �t=0� we
can clearly see the discontinuous slop of the short-range or-
der parameter but it does not drop to zero. Using now these
dependences we can calculate all the two-site probabilities
given in explicit form in the Appendix. Figure 2 presents
these probabilities in three graphs, each of them for a differ-
ent pair of sites. In the low-temperature region the probabili-
ties showing the stoichiometric arrangement have the highest
values. With increasing temperature we observe smooth con-
tinuous changes in all probabilities until the order-disorder
phase transition temperature when a jump is seen. The most
probable local arrangement of atoms above this phase tran-
sition temperature is B-B at all types of sites lying in the
nearest-neighbor distances. We can also see that all prob-
abilities of finding together atoms A-B or B-A are the same
as well as that the finding of pair A-A is the least probable
situation. In Fig. 3 we present the correlation functions cal-
culated from expression �36� for all possible arrangements
with respective to Fig. 2.

The temperature dependence of the long- and short-range
order parameters as well as the concentration of A compo-
nents in the case of a thin film constructed with five mono-
atomic layers is shown in Fig. 4. From all curves we can
draw a very clear conclusion that there are three temperature
intervals with different specific behavior of these parameters.
The first one pronounced the most in the concentration
curves is placed between T /Tt=0.48 and 0.59. The second
one, evidently seen in the short-range order curves, takes
place between T /Tt=0.69 and 0.75, while the last one is
connected with the order-disorder phase transition occurring
at a given temperature Tt. These different regions are con-
nected with different distributions of alloy components in the
direction perpendicular to the film surface. In the insets we
present the distribution across the film thickness for T /Tt
=0.54, 0.71, and 0.83. For the long-range order parameter we
observe that disordering begins at the film surfaces in all
cases although for higher temperatures its difference between
the surface and the rest of the sample is larger. For the A
concentration we can see that the distribution changes its
character. For the temperatures from the first mentioned in-

terval there are more A components in the surface layer
while for the rest of the temperatures this relation is inversed
and we additionally observe the oscillations in concentration.
Thus, we can conclude that migration of elements forming
the thin film takes place. For the short-range order parameter
we can also see the different character of its distribution
across a film but the interpretation of this fact is not so easy.
In order to make it clear we have to calculate all two-site
probabilities �see the Appendix� using values of all three
parameters for a given temperature. Figures 5 and 6 present
these probabilities in the graphs first for the different pairs of
sites and second for different pairs of components for all
monoatomic layers composing the film. We can seen now
that all of the above-mentioned temperature intervals are
connected with specific characteristics for nearest-neighbor
site occupation. Thus, it is sufficient to take into account only
the probability behavior for an interpretation of the short-
range order parameter and of the concentration distribution.

First of all, we can see that the probability curves show
different behavior between these curves in the surface layers
and those situated deeper in the sample while the differences

FIG. 1. Temperature dependence of the long-range order param-
eter t and the short-range order parameter s in the case of bulk.

FIG. 2. Two-site probabilities calculated from Eqs. �A1�–�A3� in
the case of bulk.
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between the second and third layers are only connected with
values keeping the same character of the main behavior.
Analyzing the probability curves at the first layer from the
point of view of the given pair sites occupancy �Fig. 5� we
can see the following.

�i� The crossover between A-B type and B-B type of oc-
cupancy for �� sites appears at lower temperature �T*� than
the phase transition temperature �T /Tt=1� while it is at the
same temperature �T*=Tt� in the internal layers;

�ii� There is no evident difference in the case of ��-site
occupancy. The points T* and Tt are almost equivalent.

The same kind of analysis can be applied from the point
of view of nearest-neighboring pairs of atoms occupying dif-
ferent sites. In this case, we can see �Fig. 6� that the pairs
B-B are favorite in the interval �T* ,Tt�, i.e., above the cross-
over temperature T*. The same character can be seen for the
behavior of the A-A pair distribution. The A-A pair number at

��=�� sites decreases above T̃ while its number increases
at �� sites. From the point of view of the physical mecha-
nism the above fact is equivalent to the shift of a part of A
-A pairs from �� sites to �� positions.

Thus we can see that two new effects can be observed at
the surface of binary-alloy thin films: �i� the crossover effect
which consists in perturbation of the stoichiometric distribu-
tion of A-B and B-B pairs of atoms in the temperature inter-
val close to the phase transition and �ii� the shift of A-A pairs
of atoms from the �� and �� sites to the �� positions.
These effects appear at the surface layer in the temperature
interval close to the phase transition point. The crossover
temperature �T* /Tt�=0.77 is higher than the shift tempera-

ture �T̃ /Tt�=0.59. It is worthwhile to notice that these tem-
peratures are just below the intervals seen in the Figs. 4�a�
and 4�b�. Both of them do not exist in fact in the internal
layers. More precisely speaking the crossover temperature
interval �T* ,Tt� is reduced to zero while the shift interval
drastically approaches the phase transition temperature.

In Figs. 7 and 8 we present the cross section of the pa-
rameters in the direction perpendicular to the film surface for
different thin-film thicknesses calculated in two cases men-

FIG. 3. Correlation functions calculated from �36� for all pos-
sible atoms arrangements.

FIG. 4. Temperature dependence of the long-range order, short-
range order parameters, and the concentration of A components in
the case of a thin film constructed with five monoatomic layers. The
insets present the distributions across the film thickness for T /Tt

=0.54, 0.71, and 0.83.
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tioned in Sec. III by relations �32� and �33�, respectively. The
results are obtained for the temperature T* /Tt=0.76 which
corresponds to the region close to the phase transition. The
square points in Fig. 7 represent the values of parameters t, s,
and x calculated for one monoatomic plane—i.e., the pure
two-dimensional �2D� situation—while square points in Fig.
8 represent the values of these parameters calculated for the
nearest neighbors in three-dimensional space. The value for
parameter t is not visible in Fig. 7�a�, being zero for the
considered temperature. We can see in Fig. 8�a� that the
value of the long-range order parameter in the middle layer is
going towards the bulk value when the film thickness in-
creases. In the case of the short-range order parameters 
Figs.
7�b� and 8�b�� we observe that their values tend to a single
plane value or bulk value when the film thickness decreases
or increases in the case of 2D or 3D, respectively. The situ-
ation is different in the case of the A-component concentra-
tion distribution. Their values for the limiting situations are
the same and they are equal to 0.25. For both cases the value

of the concentration parameter in the middle layer goes to-
wards this mean value when the film thickness is increased.
For all the above parameters their distribution across a film
thickness is more pronounced in the case of a three-
dimensional approach than in the case of a two-dimensional
treatment.

The numerical experience33 shows that there is no evident
numerical limitations in our case of performed calculations
for fcc �001� surfaces �Cu3Au� in order to obtain a qualita-
tive agreement with the experimental data34,35 reported in
Ref. 36. However, the construction of the functional pre-
sented here depends on the geometry �bulk 3D or films 2D�
when short-range order s�i� is introduced 
cf. Eq. �24��. It
means that the construction of the correlations is confined to
the definition of s�i� which is well established only for ho-
mogeneous sublattices equivalent to layers parallel to the
surfaces. The transversal correlations remain at the mean-
field approximation level due to the Néel concept of inhomo-
geneous thermodynamics.37 In this context the breakdown of

FIG. 5. Two-site probabilities
for different pairs of sites in the
case of a thin film constructed
with five monoatomic layers.
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mean-field theory as compared with the cluster variation
method and explained in a model with first- and second-
neighbor interactions26 should be analyzed more precisely.
Moreover, a more general approach to the description of or-
dering effects in alloys and to determine phase diagrams is
reviewed in the book by Ducastelle.38 Many real fcc struc-
tures are marvellous examples of the Ising model in the con-
text of its applicability and justification of its use in an ef-
fective form. This evaluation is very stimulating to continue
the discussion of alloy properties in terms of the mean-field
approximation. The structural and phase stability of alloys is
also considered in Ref. 39.

However, it is worthwhile to notice that the pair approxi-
mation applied, even in the case of bulk fcc binary systems,
has some limitations due to more basic reasons; e.g., the
stability of various ordered structures found experimentally
in fcc and bcc binary alloys can only be demonstrated by
using higher than the nearest-neighbor pair interactions.24

The analysis of the calculations allows us to conclude then
that the results for bcc structure are well established in the
pair approximation while the fcc bulk structure description is

in this case of poorer quality. The bulk phase diagram for fcc
binary alloys is not well described when compared with the
Monte Carlo calculations reported in Ref. 22. This kind of
limitation appears in any of similar formulations containing
the pair approximation.5,8 The same level of accuracy con-
cerns the results obtained in the present paper for thin films.

VI. CONCLUDING REMARKS

We present a theory of order-disorder phenomena in bi-
nary alloy thin films of AB3 type. The paper is an extension
of our approach to the surface melting and surface disorder-
ing description in binary alloys thin films based on the ther-
modynamic approach to small particles when they should be
treated as thermodynamically inhomogeneous systems.4 Our
extension consists in the introduction of the short-range or-
der parameter whose determination needs calculations of the
entropy in terms of the pair entropy approximation.

The particular calculations concern the Ni3Fe alloys,
showing various kinds of the order parameter behavior.

FIG. 6. Two-site probabilities
for different pairs of components
in the case of a thin film con-
structed with five monoatomic
layers.
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Among others, two effects seem to be of great interest,
particularly in the case of diffuse low-energy electron dif-
fraction applications. There are the crossover of the site oc-
cupancy at the surface layer and the shift of atoms from one
type of lattice sites to another type in the surface plane. Their
physical significance discussed in Sec. V shows their appli-
cability in the case of diffuse LEED measurements. The cor-
relation effects connected with different surface textures are
used in DLEED calculations in order to determine the local
structure of the disordered surface.

Diffuse LEED illustrates the role of boundary conditions
introduced by the surface and its texture which is of particu-
lar importance in the dynamics of standing waves in the film
thickness direction. This situation can be observed in the
case of the spin-wave resonance �SWR� whose conditions
depend on the surface state determined by the texture of
magnetic samples, e.g., Ni3Fe, which is a Permalloy mate-
rial. In the considered example, we can distinguish at least
two areas in temperature values. The low-temperature condi-
tion is described by the low-temperature distribution of the
alloy components. In the high-temperature region, but below
the Curie point, the boundary conditions relate to the texture
modified due to the shift effect. The spin-wave resonance
picture is expected then to be changed with respect to that in
the low-temperature region.

The boundary conditions, similarly to the case of diffuse
LEED as well as of SWR, play an essential role also in the
surface melting description. Taking into account the discus-
sion presenting the surface melting and the surface disorder-
ing as phenomena of different origins3 we consider their in-
terdependence for three surface orientations.40 The local
surface melting temperature and the thickness dependence of
the global melting temperature have been then found. In this
context the different textures discussed here bring new situ-
ations which enrich examples of different conditions, simi-
larly to the different surface orientations, for the surface
melting.

It is worthwhile to notice that the conditions for DLEED
and SWR are of static character contrary to the conditions for
surface melting which exhibits a dynamical nature of the
process with respect to the temperature dependence.

Finally, we would like to underline that the most original
point of the present paper is related to the methodological
aspect of the theory and its simplicity. The approach contain-
ing the short-range order parameter is introduced in its effec-
tive form and evaluated by means of a numerical treatment.

FIG. 7. Cross section of the parameters t, s, and x in the direc-
tion perpendicular to the film surface for different thin-film thick-
nesses calculated in the case described by relation �32�.

FIG. 8. Cross section of the parameters t and s in the direction
perpendicular to the film surface for different thin-film thicknesses
calculated in the case described by relation �33�.
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APPENDIX

A list of pair probabilities in their explicit forms:

pAA
���i� = pA

��i� − 
1 − s�i���x�i�
1 − x�i�� +
1

4
t�i�
1 − 2x�i��

+
3

16
t2�i�	 −

1

2
t�i� ,

pAB
���i� = 
1 − s�i���x�i�
1 − x�i�� +

1

4
t�i�
1 − 2x�i�� +

3

16
t2�i�	

+
1

2
t�i� ,

pBA
���i� = 
1 − s�i���x�i�
1 − x�i�� +

1

4
t�i�
1 − 2x�i�� +

3

16
t2�i�	

−
1

2
t�i� ,

pBB
���i� = pB

��i� − 
1 − s�i���x�i�
1 − x�i�� +
1

4
t�i�
1 − 2x�i��

+
3

16
t2�i�	 +

1

2
t�i� , �A1�

pAA
���i� = pA

��i� − 
1 − s�i���x�i�
1 − x�i�� +
1

4
t�i�
1 − 2x�i��

+
3

16
t2�i�	 +

1

2
t�i� ,

pAB
���i� = 
1 − s�i���x�i�
1 − x�i�� +

1

4
t�i�
1 − 2x�i�� +

3

16
t2�i�	

−
1

2
t�i� ,

pBA
���i� = 
1 − s�i���x�i�
1 − x�i�� +

1

4
t�i�
1 − 2x�i�� +

3

16
t2�i�	

+
1

2
t�i�r ,

pBB
���i� = pB

��i� − 
1 − s�i���x�i�
1 − x�i�� +
1

4
t�i�
1 − 2x�i��

+
3

16
t2�i�	 −

1

2
t�i� , �A2�

pAA
���i� = pA

��i� − 
1 − s�i���x�i�
1 − x�i�� −
1

4
t�i�
1 − 2x�i��

−
1

16
t2�i�	 ,

pAB
���i� = 
1 − s�i���x�i�
1 − x�i�� −

1

4
t�i�
1 − 2x�i��

−
1

16
t2�i�	 ,

pBA
���i� = 
1 − s�i���x�i�
1 − x�i�� −

1

4
t�i�
1 − 2x�i��

−
1

16
t2�i�	 ,

pBB
���i� = pB

��i� − 
1 − s�i���x�i�
1 − x�i�� −
1

4
t�i�
1 − 2x�i��

−
1

16
t2�i�	 . �A3�
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