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An analytical expression for the first-order density matrix of a charged, two-dimensional, harmonically
confined quantum gas, in the presence of a constant magnetic field is derived. Our approach is nonpertabative,
and is therefore exact for any temperature and magnetic field strength. We also present a useful factorization of
the Bloch density matrix in the form of a simple product with a clean separation of the zero-field and
field-dependent parts. This factorization provides an alternative way of analytically investigating the effects of
the magnetic field on the system, and also permits the extension of our analysis to other dimensions, and/or
anisotropic confinement.
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I. INTRODUCTION

Theoretical investigations of harmonically trapped ideal
Fermi gases have seen a renewed interest in recent years
owing to the remarkable experimental advances made in the
area of trapped, ultracold atoms.1 Indeed, theorists now have
an experimental realization of what is close to being an ideal,
inhomogeneous, quantum many-body Fermi system. Sophis-
ticated magneto-optical traps now allow for the possibility of
“tuning” the dimensionality of these gases from three dimen-
sions �3D� to quasi-2D or quasi-1D. Thus, studying the prop-
erties of essentially ideal, lower-dimensional many-body
Fermi systems is now firmly in the realm of experimental
fact, and not simply a matter of academic interest. Further-
more, analytical results for these systems can be of great use
in the density-functional theory �DFT� of inhomogeneous
Fermi systems, whereby one can bypass the numerically ex-
pensive one-particle Schrödinger equations.2

The ideal charged Bose gas �CBG� is the Bose analog of
a charged Fermi system. This model consists of a gas of
spinless, charged bosons, coupled to an external, homoge-
neous magnetic field, and was investigated in 3D by
Osborne,3 Kosevitch,4 and later by Schafroth.5 The uniform
2D CBG has also been analytically studied quite extensively
in the literature in light of its possible connection to the
theory of high-Tc in the cuprates.6–11 To date, no detailed
analytical analysis has been performed for the inhomoge-
neous case. Since the confined 2D CBG is no longer forbid-
den from undergoing a Bose-Einstein condensation �BEC�
transition at low temperatures �i.e., the Bogoliubov 1/k2

theorem is no longer applicable�,12 an exact analytical inves-
tigation of the thermodynamic and magnetic properties �e.g.,
the Meissner-Ochsenfield �MO� effect� of the inhomoge-
neous system would be of great interest.

The fundamental quantity from which the thermodynamic
and magnetic properties of the ideal quantum gases are de-
rived is the first-order density matrix �FDM�, ��r ,r��. How-
ever, it is highly nontrivial to obtain an exact expression for
the FDM �even at zero temperature� for all but the simplest
of cases, viz., the homogeneous ideal charged quantum gas.
The introduction of a magnetic field further complicates the
problem, and it is only relatively recently that an exact ana-

lytical expression for the zero temperature FDM of a uniform
Fermi system coupled to a homogeneous magnetic field has
become available.13 Extensions of these results �i.e., to in-
clude the case of the CBG and finite temperatures�, have
only been given in the last few years.10 For the inhomoge-
neous ideal charged quantum gas, even the field-free case at
zero temperature is difficult. Indeed, exact results for nonuni-
form systems at zero14–17 and finite temperature18–20 are lim-
ited to the case of harmonic confinement. Not surprisingly,
closed form, exact results for ��r ,r�� for an ideal charged
Fermi or Bose gas under general confinement, finite tempera-
tures, and arbitrary magnetic field strength, are exceedingly
difficult to obtain.

The purpose of the present work is to help fill in this gap
by providing an analytical expression for ��r ,r��, general-
ized to treat exactly the presence of a uniform external mag-
netic field and confining potential. Our focus will be on pro-
viding results for the 2D harmonically confined quantum gas,
although the general approach of our analysis does allow for
an extension to other dimensions, and anisotropic traps,
should the need arise.21 The exact results of this paper should
prove useful in the areas of current-density-functional
theory22,23 �CDFT� which is a rigorous extension of DFT to
inhomogeneous systems immersed in an external magnetic
field, and for the analytical investigation of the magnetic and
thermodynamic properties of the CBG in the case of nonuni-
form systems.

The rest of our paper is organized as follows. In the next
section, we introduce the central theoretical tool used in our
analysis, viz., the Bloch density matrix �BDM�. In Sec. III
we provide a derivation of the inverse Laplace transform of
the BDM, which leads directly to the exact FDM for a Fermi
or Bose gas at any finite temperature and magnetic field
strength. Section IV summarizes our main results and offers
a discussion of how they may be applied in the context of
CDFT and the inhomogeneous 2D CBG.

II. THE BLOCH DENSITY MATRIX

The central theoretical tool used in our analysis is the zero
temperature BDM, C0�r ,r� ;��, which is related to the FDM
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through an inverse Laplace transform.24 One of the key rea-
sons for working with the BDM is that one does not require
explicit knowledge of the one-particle wave functions of the
associated trapping potential. In addition, the zero tempera-
ture BDM is independent of the quantum statistics of the
system, thereby allowing for an extremely robust approach
for treating either the Fermi or Bose gas. Since a detailed
discussion of the BDM has already been given in our previ-
ous work, we will only present here the essential formalism
required for a self-contained statement of the problem, and
refer the reader to Refs. 10, 14, 18, and 19 for additional
details.

The zero temperature BDM is defined by

C0�r,r�;�� = �
alli

�i
��r���i�r�exp�− ��i� , �1�

where the �i’s and the one-particle energies �i are solutions
of the Schrödinger equation. The constant � above is to be
interpreted as a mathematical variable which in general is
taken to be complex, and not the inverse temperature 1/kBT.
The BDM satisfies the so-called Bloch equation

HrC0�r,r�;�� = −
�C0�r,r�;��

��
, �2�

subject to the initial condition

C0�r,r�;0� = ��r − r�� . �3�

In this paper,

Hr =
�p − eA/c�2

2m
+

1

2
k�x2 + y2� , �4�

is the specific Hamiltonian we work with, where the mag-
netic field B=��A, is applied along the z axis, and

A = �−
1

2
By,

1

2
Bx,0� . �5�

Note that while C0�r ,r� ;�� is gauge dependent, any physical
observable is necessarily gauge invariant. By choosing a
general functional form for C0�r ,r� ;��, the solution to Eqs.
�2� and �3�, with the Hamiltonian �4�, can be obtained with-
out having to specify the single-particle wave functions or
energies. Such a solution has already been obtained by
March and Tosi,25 which we now present in a more explicit
form:

C0�r,r�;�� =
m�eff

2�	

1

sinh�	�eff��
e−�im�eff/	��sinh�	�c��/sinh�	�eff����xy�−yx��

� e−��x − x��2+�y − y��2��m�eff/4	��coth�	�eff��+�cosh�	�c��/sinh�	�eff���	

� e−��x + x��2+�y + y��2��m�eff/4	��coth�	�eff��−�cosh�	�c��/sinh�	�eff���	, �6�

where

�c =
eB

2mc
, �0 =
 k

m
, �eff = 
�0

2 + �c
2. �7�

Introducing the center-of-mass and relative coordinates q and s, respectively,

q =
r + r�

2
, s = r − r�, �8�

allows us to write the BDM as

C0�q,s;�� =
m�eff

2�	

1

sinh�	�eff��
e−i�m�eff/	��qysx−qxsy��sinh�	�c��/sinh�	�eff���e−�m�eff/	�„q2�coth�	�eff��−�cosh�	�c��/sinh�	�eff���	…

� e−m�eff/	„s
2/4�coth�	�eff��+�cosh�	�c��/sinh�	�eff���	…. �9�

For later convenience, we now introduce the following definitions:

A = q2 +
s2

4
, B =

1

2
� s2

4
− q2� −

i

2
�qysx − qxsy�, � =

�c

�eff
, �10�

and scale all lengths and energies by �eff=
	 /m�eff and 	�eff, respectively. The zero temperature BDM can then be written in
the more compact form
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C0�q,s;�� =
1

2� sinh���
exp�− A coth��� − B

e−��

sinh���

− B� e��

sinh���� , �11�

where B* denotes complex conjugation. Equation �11� serves
as the starting point for the rest of our study, but it is worth-
while pointing out that a useful factorization of the BDM can
be performed.

First, let us rewrite the BDM as

C0�q,s;�� =
1

2� sinh���
exp�− �q2 +

s2

4
�coth���

+ �q2 −
s2

4
� coth����

sinh���
+ i�qysx

− qxsy�
sinh����
sinh��� � . �12�

Making use of the trigonometric identities

cosh��� − cosh����
sinh���

= tanh��/2� − 2
sinh2���/2�

sinh���
,

cosh��� + cosh����
sinh���

= coth��/2� + 2
sinh2���/2�

sinh���
�13�

in Eq. �12� gives

C0�q,s;�� =
1

2� sinh���
e�−q2 tanh��/2�−�s2/4�coth��/2�	eUc�q,s;��,

�14�

where

Uc�q,s;��  2�q2 −
s2

4
� sinh2���/2�

sinh���
+ i�qxsx

− qxsy�
sinh����
sinh���

. �15�

The “effective potential” Uc�q ,s ;�� explicitly includes all of
the magnetic field dependence, and there is a clean separa-
tion of the BDM into field free and field dependent parts. In
particular, setting �c=0 in Eq. �15� immediately gives Uc
=0 and the BDM �14� reduces to that of a 2D harmonically
trapped system.14,18,19 This factorization is reminiscent of the
introduction of an effective potential in Ref. 26, which was
motivated by the desire to improve the Thomas-Fermi ap-
proximation to potentials which are varying too rapidly in
some regions of space.27 Viewing the magnetic field as an
additional 1D confining potential suggests a similar interpre-
tation in the present context; that is, going beyond �c=0 may
be achieved through the introduction of some effective po-
tential Uc which encodes the magnetic field dependence. Ir-
respective of this suggestive connection, however, Eq. �14�
here should be viewed as a more direct route to generalizing
our results below to other dimensions, and allowing for a
more transparent analytical investigation of the effects of the

magnetic field in the weak/high field limits, along with an-
isotropic confinement, should this be desired.

We are now in a position to see why the BDM provides
such a universal scheme to investigate either the Fermi or
Bose gases. While the zero temperature BDM is independent
of the quantum statistics, at finite temperature, the BDM for
the Fermi system is obtained via �kB=1�24

CT�q,s;�� = C0�q,s;��
��T

sin���T�
�fermions� , �16�

whereas for bosons, it is given by

CT�q,s;�� = C0�q,s;��
− ��T

tan���T�
�bosons� . �17�

Therefore, aside from the different temperature dependent
factors in Eqs. �16� and �17�, it is clear that only the T=0
BDM is required to study either quantum gas.

III. THE FIRST-ORDER DENSITY MATRIX

A. Fermi gas

The �spin-averaged� FDM at finite temperature is ob-
tained by a two-sided inverse Laplace transform of the finite
temperature BDM. The inverse Laplace transform must be
two-sided to allow for the dual variable to go negative. Spe-
cifically, we have28

��q,s;T� = L

−1� 2

�
CT�q,s;��� , �18�

where 
 is the chemical potential, which at fixed �c, is de-
termined by particle number conservation. As we have dis-
cussed before,14,18,19 it is very difficult to perform the inverse
Laplace transform by simply substituting the finite tempera-
ture BDM, as given by Eqs. �11� and �16�, into Eq. �18�. In
order to proceed any further analytically, one requires the
following identities

exp�− A coth���� = �
k=0

�

Lk�2A�e−A�e−2k� − e−2�k+1��	 ,

�19�

exp�−
Be−��

sinh���� = �
m=0

�

�
i=0

m
�− 2Be−��−1���i

i!
� m

m − i
�

��e−2m� − e−2�m+1��	 , �20�

exp�−
B�e��

sinh���� = �
n=0

�

�
j=0

n
�− 2B�e��+1��� j

j!
� n

n − j
�

��e−2n� − e−2�n+1��	 , �21�

where Ll�x� is a Laguerre polynomial. Utilizing these identi-
ties in Eq. �11� gives
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C0�q,s;�� =
1

2�

1

sinh����l=0

�

�
m=0

�

�
n=0

�

�
i=0

m

�
j=0

n

Ll�2A�e−A �− 2B�i

i!

�− 2B�� j

j!
� m

m − i
�� n

n − j
� � �e�−2l−2m−2n+i+j��+�j−i���

− 3e�−2l−2m−2n+i+j−2��+�j−i��� + 3e�−2l−2m−2n+i+j−4��+�j−i��� − e�−2l−2m−2n+i+j−6��+�j−i���	 . �22�

Notice that all of the � dependence is now contained in the exponential factors and the �two-sided� inverse Laplace transform
is now tractable. The mathematical details of this transform closely follows our earlier work,10,18,19 so here we will simply give
the final result, namely,

��q,s;T� =
2

�
�
l=0

�

�
m=0

�

�
n=0

�

�
i=0

m

�
j=0

n

�
k

Ll�2A�e−A �− 2B�i

i!

�− 2B�� j

j!
� m

m − i
�� n

n − j
� � Fk�l,m,n,i, j� , �23�

where all of the temperature dependence is encoded in the Fermi-like function

Fk�l,m,n,i, j� 
n�k�

exp� k + 2�l + m + n� − i − j − �j − i�� − 


T
� + 1

�fermions� , �24�

and the k summation is over k=1,3 ,5 with n�1�=n�5�=1
and n�3�=−2. Equation �23� is the central result of this paper
and gives the exact FDM for an ideal, harmonically trapped
2D Fermi gas at arbitrary temperature and magnetic field
strength. Putting s=0 immediately yields the spatial density
of the system. It is certainly worthwhile reemphasizing that
Eq. �23� is completely general, and readily recovers previous
results pertaining to this system by taking various limits. For
example, in the uniform case at zero temperature, Eq. �23�
can be shown to reduce to �with dimensional constants
recovered�10,13

��q +
s

2
,q −

s

2
� =

2m�c

�	
e−i�m�c/	��x�y−y�x�e−�m�c/2	�s2

LnF−1
�1�

��m�c

	
s2� . �25�

As an illustrative numerical example, we present in Fig. 1,
the spatial density for N=110 particles at zero-temperature
and various magnetic field strengths. It is important to note
that while the summations at finite temperature in Eq. �23�
look somewhat formidable, any practical numerical imple-

mentation requires only a relatively small number of terms.
Figure 1, for example, required only a few minutes to plot
using a nominally equipped PC running a generic flavor of
Unix. Consequently, finite temperature effects are readily
studied, should the need arise.29 Note also that the relative
ease for which we were able to write down ��q ,s ;T� should
not be used to conclude that the calculation is trivial. In
particular, it is notoriously difficult to treat finite temperature
effects exactly in the Fermi gas owing to the fact that one
cannot express the Fermi distribution function as a conver-
gent power series, except at very high temperatures.20

Rather, one should view our almost immediate statement of
the FDM as a testament to the utility of the inverse Laplace
transform technique.

B. Bose gas

The power of the inverse Laplace transform technique is
also apparent if one wishes to extend our results to the case
of a harmonically confined 2D CBG. Indeed, one can imme-
diately write down the final expression for the FDM, with the
only changes being a change in the sign in front of unity in
the denominator of Eq. �24�, viz.,

Fk�l,m,n,i, j� 
n�k�

exp� k + 2�l + m + n� − i − j − �j − i�� − 


T
� − 1

�bosons� , �26�

and the elimination of the factor of two in Eq. �18�
�i.e., the bosons are spinless�. Thus, with no additional
work, we also have an exact, closed form expression for the
FDM of thetrapped 2D CBG at arbitrary temperature

and magnetic field strength. Of course, setting �0=0
reproduces the recently obtained finite temperature
results corresponding to the uniform 2D CBG found in
Ref. 10.
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IV. SUMMARY AND FUTURE WORK

We have derived an analytical expression for the FDM of
an ideal, harmonically trapped charged 2D Fermi or Bose gas
at finite temperature and arbitrary magnetic field strength.
This work therefore provides one more addition to the short
list of inhomogeneous quantum systems for which an exact
expression for the FDM can be obtained. Apart from their
inherent technical merit, we believe that our results now
open up several other fruitful avenues of investigation, which
are outside the intended scope of this paper.

First it would be interesting to investigate the properties
of the 2D Thomas-Fermi kinetic energy functional for the
case of finite magnetic field. The motivating factor behind
this suggestion lies in the remarkable fact that for zerofield,
the 2D Thomas-Fermi kinetic energy functional leads to the
exact quantum mechanical kinetic energy �i.e., without gra-
dient corrections� when integrated over all space. This non-
trivial result was only recently discovered by Brack and one

of us.14 From Eq. �25�, it can be shown that the local-density
approximation �LDA�2 of the magnetic 2D kinetic energy
functional is identical in form to the zero-field case, but now
the magnetic field is encoded implicitly by the density.10,13

Thus, determining whether the 2D magnetic-Thomas-Fermi
kinetic energy functional is also exact �i.e., similar to its
zero-field counterpart without gradient corrections� would be
very interesting. It would also be illustrative to study the 2D
exchange energy �i.e., suitable for the study of parabolically
confined quantum dots in a magnetic field� via the exact
FDM and compare the integrated, and spatial properties
against the commonly used LDA of CDFT. This type of com-
parison has already been undertaken for the zero magnetic
field case,19 and would be an equally worthwhile endeavor
for the finite-field case. Furthermore, having an exact expres-
sion for ��r ,r� ;T� also allows for the perturbative study of
the effects of particle-particle interactions, similar to what
has already been performed for the �c=0 case in Ref. 18.

As for the CBG, the most obvious application of our re-
sults will be in investigating the thermodynamic and mag-
netic properties of the inhomogeneous system. In contrast to
the uniform 2D CBG, the trapping potential stabilizes the
system to density and phase fluctuations and allows for the
possibility of a transition to a BEC.12 We recall here that the
uniform 2D CBG does exhibit an essentially perfect MO
effect, in spite of the absence of a BEC state.10 Thus, ana-
lytically studying the connection between the onset of the
MO effect and the BEC phase in the trapped system is, in our
opinion, an important problem.
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