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Cap layer impact on the electronic structures and optical properties of self-assembled InAs/GaAs quantum
dots is theoretically studied within the framework of Burt and Foreman’s eight-band effective-mass Hamil-
tonian. A numerically stable finite difference scheme for this nonsymmetrized Hamiltonian and an efficient
implementation of Jacobi-Davidson eigensolver for the resulting matrix are proposed. Our theoretical results
show that as the cap layer thickness increases, the photoluminescence �PL� peak position exhibits a monoto-
nous blueshift and the PL intensity enhances. These results are accounted for by the strain modified band edges
and the space separation of electron and heavy-hole wave functions in the growth direction. Dot shape and size
effects are also discussed. Our calculations are in good agreement with recent experimental findings.
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I. INTRODUCTION

Self-assembled InAs/GaAs QDs have received great at-
tention during the past decade.1 They not only provide ideal
entities for studying 3D quantum confinement effects on car-
riers but also find their usage in optoelectronic semiconduc-
tor devices. When they are considered as candidates for laser
diodes, one of the key issues is to achieve 1.3 �m or longer
optical emission wavelengths. Several groups2–9 have re-
ported that a wide range of wavelength can be obtained if the
environment around the InAs QDs is modified, such as the
material compositions of the underlaying and cap layers, and
the thickness of the cap layer.

Theoretically the InAs/GaAs pyramidal QDs have al-
ready been studied by several groups using the k ·p,10–16

psuedopotential,17–19 and tight-binding20,21 methods. How-
ever, most of these works focus on the properties of the fully
capped QDs and only a few concern the free-standing InAs
QDs.19,20 To our knowledge, detailed theoretical study on the
GaAs cap layer influences is still lacking even though they
are very important in determining the QDs’ optical proper-
ties.

In this work, we theoretically investigate these influences
on the electronic states and the photoluminescence �PL�
properties of the self-assembled InAs/GaAs QDs. An eight-
band k ·p nonsymmetrized Hamiltonian22 is used to solve the
electronic states. The details of our theoretical model and
numerical method are also presented. By varying the cap
layer thickness in a wide range, we find that PL spectrum
shows a large blueshift in energy and an increase in intensity.

II. THEORETICAL MODEL AND NUMERICAL
METHOD

We consider a truncated pyramidal InAs/GaAs QD cov-
ered with a uniformly thick GaAs cap layer as shown in the
inset of Fig. 1. Shape change and In/Ga interdiffusion during
the deposition process are neglected. Furthermore we focus
on the states confined in the QD and neglect the influences of

the wetting layer and the surface states. The small piezoelec-
tric effect10 is also discarded here.

A. Hamiltonian

The kinetic part of the Hamiltonian is based on Burt’s
exact envelope function theory23 and the specific form for
the four-band effective-mass Hamiltonian without spin-orbit
interaction is22,24

H4 = �Hcc Hcv

Hvc Hvv
� , �1�

with bases

�S�, �X�, �Y�, �Z� . �2�

FIG. 1. Ground-state energies and oscillator strengths for the
�100�/�010� polarized light as a function of cap layer thickness. The
QD’s width and height are 25.4 and 5.1 nm, respectively. Note that
electron and hole energies are not on the same scale.

PHYSICAL REVIEW B 74, 205329 �2006�

1098-0121/2006/74�20�/205329�6� ©2006 The American Physical Society205329-1

http://dx.doi.org/10.1103/PhysRevB.74.205329


In Eq. �1�,

Hcc = Ec + kAck , �3�

Ac = �2/2mc − 2P2/3Eg − P2/3�Eg + �� , �4�

Hcv = �iPkx iPky iPkz� ,

Hvc = �− ikxP − ikyP − ikzP�T, �5�

and

Hvv =
�2

2m0	
kxAkx + kyBky + kzBkz kxC1ky − kyC2kx kxC1kz − kzC2kx

kyC1kx − kxC2ky kyAky + kxBkx + kzBkz kyC1kz − kzC2ky

kzC1kx − kxC2kz kzC1ky − kyC2kz kzAkz + kxBkx + kyBky

 , �6�

where

A = − �1 − 4�2, B = − �1 + 2�2,

C1 = �1 − 2�2 − 6�3, C2 = �1 − 2�2 + 1. �7�

The modified Luttinger parameters �i are determined from the usual Luttinger parameters �i
L by

�1 = �1
L − Ep/3Eg,

�2 = �2
L − Ep/6Eg,

�3 = �3
L − Ep/6Eg. �8�

To eliminate the physically spurious solutions of the Hamiltonian �1�, we take Foreman’s approach22 by setting Ac=0 and
adjusting P to fit conduction band effective mass mc. As will be shown in Sec. II C, this approach can also greatly reduce the
computational efforts.

The strain Hamiltonian in bases �2� is described by Bahder’s model25

Hstr = 	
ac�exx + eyy + ezz� − iP0�

j

exjkj − iP0�
j

eyjkj − iP0�
j

ezjkj

i�
j

kjexjP0 lexx + m�eyy + ezz� nexy nexz

i�
j

kjeyjP0 nexy leyy + m�exx + ezz� neyz

i�
j

kjezjP0 nexz neyz lezz + m�exx + eyy�

 , �9�

where

m = av − b ,

l = av + 2b ,

n = �3d , �10�

and ac, av, b, d are the usual Pikus-Bir deformation potential
constants. The order of kj relative to the position dependent
P0 and eij is chosen to be in consistent with Eq. �5�. The

strain tensor eij is calculated with the valence force field
�VFF� model.26

The inclusion of spin-orbit Hamiltonian is straightfor-
ward. For the reason of numerical stability as will be shown
below, we prefer working with bases

�S↑�, �X↑�, �Y↑�, �Z↑�, �S↓�, �X↓�, �Y↓�, �Z↓� . �11�

Therefore the spin-orbit Hamiltonian is left undiagonalized
and takes the form
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HSO =
�

3 	
0 0 0 0 0 0 0 0

0 0 − i 0 0 0 0 1

0 i 0 0 0 0 0 − i

0 0 0 0 0 − 1 i 0

0 0 0 0 0 0 0 0

0 0 0 − 1 0 0 i 0

0 0 0 − i 0 − i 0 0

0 1 i 0 0 0 0 0


 , �12�

with � the spin split-off energy. The whole eight-band
Hamiltonian reads

H8 = �H4 0

0 H4
� + �Hstr 0

0 Hstr
� + HSO + Vconf, �13�

where Vconf accounts for the bandedge discontinuities. The
eigenvalue equation to be solved is

H8F = EF , �14�

where the envelope function F has eight components

�FS↑,FX↑,FY↑,FZ↑,FS↓,FX↓,FY↓,FZ↓�T. �15�

B. Finite difference scheme

Finite difference �FD� method is widely used to calculate
the electronic states of a quantum heterostructure. Since the
Hamiltonian is discretized on a real space grid, the inclusion
of strain becomes straightforward. However, when one is
solving Kane’s two-or eight-band model on a collocated grid,
i.e., all components of the envelope function are defined on
the same grid points, special attention should be payed to the
conduction and valence bands coupling terms iPki. The com-
monly used centered difference for the first order spacial
derivative is known as unconditionally unstable for the linear
hyperbolic equations. We find the similar instability when
applying it to Kane’s model: spuriously oscillatory solutions
arise because even and odd grids are totally decoupled.
These spurious solutions were illustrated in Ref. 27 for an
InP/ InGaAs superlattice. To avoid this numerical instability
one can either check the material parameters in the same way
as Ref. 27 before using them or choose other FD schemes. In
Ref. 13 centered difference is combined with second-order
upwind difference to alleviate this problem. The first-order
upwind/downwind difference scheme adopted in Ref. 28 for
the symmetrized Hamiltonian is another choice and it does
not suffer from such instability, however, it is not applicable
to the nonsymmetrized Hamiltonian �13� considered here be-
cause the geometric symmetry will be broken by this
scheme. So in our scheme we perform the discretization on a
staggered grid, which is possible by the use of the bases �11�.
First we discretize FS �for both spin components� on a cubic
grid with an interval �a �taken to be the lattice constant of
GaAs in this work�, then we displace this grid in X, Y, Z
direction by �a /2 on which FX, FY, FZ are defined, respec-
tively. In this way the centered difference approximation for
the first order derivatives is numerically stable so that the
spuriously oscillatory solutions will be eliminated. Further-

more it preserves the geometric symmetry of the nonsymme-
trized Hamiltonian and is also second order accurate. Note
that the different behavior of centered difference on the stag-
gered grid and the collocated grid can be readily verified by
a simple Kane’s two-band model applied to an GaAs/ InAs
quantum well, the spuriously oscillatory solutions will ap-
pear for the collocated grid, while the staggered grid remains
free of such solutions. Also note that the origin of these
spurious solutions is purely numerical, different from those
discussed in Ref. 22, which are caused by the physical model
and are already eliminated in all our calculations as stated in
Sec. II A.

C. Eigensolver

After discretization, the Hamiltonian is approximated by a
large sparse matrix and what we are interested in are the
interior eigenvalues near the conduction and valence band
edges. Since the matrix dimension is on the order of 106, this
interior eigenvalue problem is not a trivial one. Usually a
spectral transform technique such as folded spectrum29 or
shift-and-invert method is adopted to change it to a extreme
eigenvalue problem, which then is solved by the means of
the Lanczos method. In this work we diagonalize the Hamil-
tonian by the Jacobi-Davidson method,30 in which the spec-
tral transform can be avoided by the use of Harmonic Ritz
values. This greatly reduces the overheads and facilitates this
large-scale computation on a single PC. See Ref. 30 for the
implementation details. We note that in this method, most
efforts are devoted to solving a highly indefinite correction
equation with a coefficients matrix H−�I projected by some
orthogonormal bases, where H is the Hamiltonian matrix,
and � is a target value near the desired eigenvalues. It can be
easily shown that if we take Foreman’s approach,22 i.e., set
Ac=0 to eliminate the physically spurious solutions, then the
CB envelopes FS can be expressed as the linear combinations
of FX, FY, FZ and then be eliminated from the correction
equation. Therefore the dimension of the problem is reduced
to 3

4 of the original one. Moreover if we keep the target value
� below the strain modified conduction band edge, then the
reduced correction equation becomes a positive definite one,
which greatly reduces the computational efforts compared to
the original indefinite equation.

III. RESULTS AND DISCUSSION

Before we present the results for the partially capped QD,
a brief comparison with Ref. 11 for the fully capped QD is
meaningful since we will use the same material parameters
as theirs. In addition to the Hamiltonian �symmetrized vs
nonsymmetried�, the other differences are that we neglect the
wetting layer and the piezoelectric effects. The electron and
hole ground state energies for a pyramidal QD with the base
width equal to 13.6 nm are 1304.8 meV and 168.1 meV, re-
spectively, while these energies are 1274.5 and 176.2 meV in
Ref. 11. The discrepancy is reasonable and can be mainly
ascribed to the different Hamiltonians used.

In this work we first consider a square-based, truncated
pyramidal QD with �110� facets and �001� growth direction.
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The base width and height:width ratio are taken as 25.4 nm
and 1:5, respectively. This is the typical size for the QDs
experimentally investigated in Ref. 9. In our calculations the
GaAs cap layer thickness is assumed to be uniform as shown
in the inset of Fig. 1 and the shape change during deposition
process is neglected. In this work all the material parameters
for GaAs and InAs are taken from Ref. 11 except the defor-
mation potentials, which are taken from Ref. 31.

Figure 1 shows the electron and hole ground state ener-
gies and the corresponding dipole transition oscillator
strength as a function of the GaAs cap layer thickness. The
oscillator strength shown here is for �100� / �010� polarized
light. As the cap layer thickness increases, the electron en-
ergy increases monotonously from 0.905 �uncapped� to
1.197 eV �capped�. This large shift results from large hydro-
static deformation potential ac �ac=−5.08 eV for InAs� for
the conduction band since the shift amount �E=ace where e
is the hydrostatic strain. Because the InAs lattice constant is
7% larger than that of GaAs, the QDs will undergo a com-
pressive force at the InAs/GaAs interface. For an uncapped
QD, only its bottom interface is under such restriction, while
the other 5 InAs/vacuum interfaces �4 �110� facets plus top
face� are left with dangling bonds. However, when a GaAs
cap layer is deposited, all five interfaces become
InAs/GaAs-like and the QD will also experience compres-
sive forces on them. And as the cap layer grows thicker,
these forces will become larger. As a result, the edge for the
conduction band will be pushed to a higher energy �ac�0
and e�0 in most of the QD region�, which is clearly shown
in the upper part of Fig. 2. Here the position along �001� is
taken through the QD center. Note that a triangle potential
well exists near the QD top face in uncapped and thin cap
layer cases. The case of the heavy-hole ground state is more
complicated. The energy and band edge do not show a mo-
notonous behavior as the cap layer thickness increases. The
small energy shift can only be partly accounted for by the
small hydrostatic deformation potential av �av=1.0 eV for
InAs� for the valence band. However, we have to diagonalize

a 6�6 matrix containing local strain tensor to obtain the
exact local valence band edge. The results for the heavy hole
are shown in the lower part of Fig. 2. For uncapped and thin
cap layer ��8 monolayers �ML�� cases, the band edge for the
heavy hole grows towards higher energy and the base region
turns out to be a triangle potential well. When the cap layer
becomes thicker �i.e., �8 ML�, however, the band edge in
the QD region drops in energy and gradually flattens out. As
a result, the energy of the heavy hole ground state will first
increase from 0.26 �uncapped� to 0.274 eV �8 ML� then de-
crease to 0.219 eV �capped�. Despite this fact the PL peak
position will still shows an overall monotonous blueshift be-
cause blueshift of electron energy dominates here. Our cal-
culated PL peak positions are 0.645 and 0.978 eV for the
uncapped and capped QDs, respectively, which amounts to a
0.333 eV blueshift. We note that the calculated values of PL
peak positions are lower in energies than the measured ones
reported in Ref. 9. A possible main factor causing such dis-
crepancy between theory and experiment is the strong Ga/In
atom interdiffusion during the growth of InAs dots,32 since
the bandgap in the QD region will increase when Ga atoms
diffuse into it. However the calculated blueshift agrees very
well with the experiment value 306 meV in Ref. 9, so we
find that the strain relaxation can fully account for the ob-
served large blueshift in PL. Also note that based on an elas-
tic continuum model, Ref. 9 provides an theoretical estimate
of the bandgap change of 194.6 meV, which is smaller than
our result. And they attribute the blueshift to the joint influ-
ences of the strain relaxation and the confined and surface
states couplings, the latter effect is neglected here.

FIG. 2. Strain modified band edges for conduction and valence
bands along the principal axis of symmetry of the QD. The left and
right vertical dotted lines indicate the position of the QD base and
top planes.

FIG. 3. Contour plots of electron and heavy hole probability
density on a �100� cross section through the QD center. �a�, �d� are
for uncapped and capped cases and �b�, �c� for 8 ML and 16 ML
thick cap layer. Contour levels are placed at 0.1, 0.3, 0.5, 0.7, 0.9 of
its peak value.
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This cap layer induced large blueshift in PL was also re-
ported for InP/ InGaP QDs in Ref. 33, where a blueshift of
0.216 eV was observed for a wide thickness range of
0–85 nm. The authors also ascribed the blueshift to the
strain modified local bandgap, which was calculated with an
elastic model as used in Ref. 9. However, the energy levels
for the confined states were not provided, instead, the PL
peak was compared with the local bandgap in the center of
the QD.

It is well known that the PL intensity is directly propor-
tional to the dipole oscillator strength between the ground
states of the electron and heavy hole. In Fig. 1 we can also
see that this oscillator strength exhibits a sharp increase as
the cap layer grows from 0 to 16 ML and then it saturates till
the QD is fully capped. This initial sharp increase was also
observed in Ref. 9 where the PL intensity exhibits this be-
havior from 0 to 7 ML. Our recent experimental results also
show that the PL intensity of the capped InGaAs alloy QDs
is much stronger than that of the uncapped QDs.34 As we will
show in the following, this phenomenon is a direct conse-
quence of the space separation of the electron and heavy-
hole wave functions in the growth direction. In Fig. 3, the
contour plots on a �100� cross section through the QD center
are given for these squared wavefunctions. As we already
noted previously, for the uncapped and thin cap layer cases
the top and base regions of the QD are triangle potential
wells for electron and heavy hole, respectively. So the peak
value for electron/hole wave function will appear near the
top/base layer of the QD as shown in Figs. 3�a� and 3�b�.
Correspondingly, a space separation exists in the growth di-
rection for the electron and heavy hole. However, the sepa-
ration will gradually diminish as the cap layer grows thicker
because the band edges for both conduction and valence
bands will flatten out as shown in Fig. 2. Accompanying with
the spatial separation diminishing of the electron and heavy-
hole wave functions, the oscillator strength and thus PL in-
tensity gradually saturates at 16 ML as shown in Fig. 1,

which can be accounted for by Figs. 3�c� and 3�d�. The elec-
tron and heavy hole wave functions shown in Fig. 3�c� are
already very close to those shown in Fig. 3�d�. Another pos-
sible cause for this PL intensity increase is the suppression of
the nonradiative recombination at the surface, as is already
pointed out in Ref. 9. However, this effect is beyond our
present model.

It should be noted that the above numerical results are
strongly dependent on the material parameters used, espe-
cially on the deformation potentials since the QDs are highly
strained. Unfortunately, large discrepancies exist in the lit-
erature for the value of deformation potentials of InAs and
GaAs �Refs. 11, 31, and 35–38� and even the sign of av
remains controversial. Other choices may give quantitatively
modification but our qualitative conclusion remains valid.

As can be expected, larger space separation in the growth
direction for the electron and heavy hole can be achieved if
height:width ratio takes a larger value since more room is
available for the electron to move into. To investigate these
shape effects, we fix the base width at 25.4 nm and adjust the
QD height from 5.1 to 12.7 nm �the corresponding height-
:width ratio changes from 1:5 to 1:2�. For each height value,
only two extreme cases are considered: uncapped and fully
capped QDs. The results are shown in Fig. 4. The energies
do not show a large variation throughout the whole height
variation range. The only noticeable energy shift is for the
electron of the uncapped QD, where 60 meV redshift occurs
when the height changes from 5.1 to 8.5 nm. However, for
the oscillator strength, a sharp drop appears in the
5.1 to 8.5 nm range for both capped and uncapped QDs. Fur-
ther height increase has little influence on the oscillator
strength.

Finally we investigate the lateral size influence on the PL
properties. The base width is adjusted while the height:width
ratio is fixed at 1:5. The result is shown in Fig. 5. As the
width increases a redshift of 280 meV occurs for the un-

FIG. 4. Ground state energies and oscillator strengths for the
�100� / �010� polarized light as a function of QD height. The base
width is fixed at 25.4 nm.

FIG. 5. Ground state energies and oscillator strengths for the
�100� / �010� polarized light as a function QD base width. The
height:width is fixed at 1:5.
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capped QDs and 186 meV for the cappped QDs due to the
quantum confinement effect. As for the oscillator strength,
the cap layer thickness has less influence on the smaller QDs.
The oscillator strength ratio between the capped and un-
capped QDs increases from 1.1 to 1.4 as the base width
increases from 14.1 to 31 nm.

IV. CONCLUSIONS

In summary we have performed detailed calculations on
the electronic structures of the self-assembled InAs/GaAs

QDs. Cap layer thickness turns out to have great influence on
the PL peak position and intensity. Strain plays a key role in
determining the carriers’ ground state energies and spatial
distribution, which in turn account for the PL blueshift and
intensity increase.
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