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We investigate the effect of mass anisotropy on the magnetic structure of the Wigner crystal of low-density
electron systems in two dimensions at T=0. The multiparticle exchange frequencies are calculated with effec-
tive mass anisotropy, with and without concomitant lattice distortions. Numerical diagonalization of small
lattice sizes with two-, three-, and four-spin exchange terms shows a transition from a ferromagnetic to an
antiferromagnetic ground state with increasing mass anisotropy. We map out this transition at various electron
densities.

DOI: 10.1103/PhysRevB.74.205325 PACS number�s�: 73.20.Qt, 71.45.Gm, 71.70.Gm

I. INTRODUCTION

A system of interacting electrons at low densities, when
the Coulomb interaction dominates the kinetic energy, is pre-
dicted to form a Wigner crystalline phase.1 In two dimen-
sions, quantum Monte Carlo simulations have predicted the
critical density of crystallization to be given by rs=37±5,2

where the dimensionless parameter rs is related to the elec-
tron density ns by rs

−1=aB��ns�1/2, with aB being the Bohr
radius. In the Wigner-crystal phase, multiparticle exchange
processes are believed to control the spin degrees of free-
dom, and determine the magnetic phase of the electron sys-
tem at low temperatures. The effective Hamiltonian in spin
space for multiparticle exchange processes has the form pro-
posed by Thouless;3

H = − �
P

sgn�P�JPP̂ , �1�

where the sum is over all possible permutations P involving

any number of electrons, Jp is the exchange frequency, and P̂
is the permutation operator, which acts on the spin-wave
function. For instance, two-spin exchange4 can be written as

P̂ij = 1
2 �1 + �i · � j� , �2�

where �i and � j are the Pauli matrices for the two electrons
�labeled i and j� being exchanged. Conventionally, JP is posi-
tive while the sign of each term is the sign of its permutation
operator. For ring exchanges, sgn�P�=−1 for exchanges in-
volving an even number of spins, and +1 for those involving
an odd number of spins. The three-spin exchange operator

P̂ijk can also be reduced to a sum of such Heisenberg-type
two-spin couplings. However, the exchange operators of
more than three spins contain the term ��i ·� j���k ·�l�, which
cannot be omitted in some physical systems.

The Thouless Hamiltonian Eq. �1� has been used by many
authors to study strongly interacting systems, such as 3He in
solid phase5–7 and on graphite surface,8 high-Tc
superconductors,9–11 two-dimensional �2D� electron Wigner

crystal,12 and spin ladders.13–15 In all cases, it is believed that
ring-exchange operators involving a few particles are impor-
tant. Even with this assumption, this Hamiltonian contains
enough complexity leading to several distinct phases. For
example, a solid 3He film on graphite exhibits a transition
from a ferromagnetic phase to a nonmagnetic gapped spin-
liquid phase, found by exact diagonalization of small
clusters;8 and spin excitations in La2CuO4 are described
by self-consistent spin-wave theory with four-spin ring
exchanges.10

In the case of the isotropic 2D electron Wigner crystal on
a triangular lattice, not only two- and three-spin exchanges,
but also four-, five-, and six-spin exchanges are competing
with each other, giving rise to a complex phase diagram,
which has ferromagnetic, spin liquid, and frustrated antifer-
romagnetic phases16,17 among various possibilities. The ex-
change frequencies of multiparticle ring exchanges were first
evaluated by Roger,5 with a multidimensional WKB approxi-
mation. Recently, Voelker and Chakravarty12 did a calcula-
tion for a 2D electron Wigner solid with instanton approxi-
mation, and these exchange frequencies have also been
calculated with quantum Monte Carlo simulations by Bernu
et al.16 Compared with the numerically exact results, the
WKB approximation is not quite accurate at small rs; but it is
increasingly accurate for large rs, which is relevant for our
study of electron Wigner crystals in low densities. In this
large rs �low density� limit, previous calculations show that
the three-spin exchange frequency is the largest, and thus the
three-spin exchange is the dominant term in the Hamiltonian
giving rise to a ferromagnetic ground state.

The above conclusion is based on the assumption that the
electron system is isotropic. In this paper, we consider the
Wigner crystal of an anisotropic 2D electron system. Effec-
tive mass anisotropy is present in several semiconductor sys-
tems, such as Si or AlAs�110� surface and 2D electron sys-
tems in organic semiconductor crystals with low symmetry.
Wan and Bhatt18 suggested that in such anisotropic 2D elec-
tron systems, the mass anisotropy leads to an oblique Wigner
lattice due to the competition between electrostatic energy
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and zero-point vibrational energy of the lattice. For a 2D
electron Wigner crystal on Si�110� surface, the shape of the
oblique unit cell is specified by two lattice vectors OA and
OB in Fig. 1�a�, where the longer second-neighbor distance
OB is shown aligned in the x direction. The stable configu-
ration was found to satisfy �OA � � �OB � = �AB�, and the posi-
tion of point A is a function of the electron density.18 Thus in
general, we have two types of anisotropy, mass anisotropy,
and lattice anisotropy; both of them affect the exchange fre-
quencies.

Here, we address the question of what effect anisotropy
has on the exchange frequencies and the magnetic ground
state. The types of ring-exchange processes that we have
studied are illustrated in Fig. 1�b�. With mass and lattice
anisotropy, there are three different two-particle exchange
processes in three different directions. Both four- and five-
particle exchanges split into two processes with different ex-

change frequencies. They do not split into three different
processes because the stable oblique lattice are made of isos-
celes triangles. However, the exchange frequencies of three-
particle and six-particle exchanges are independent of their
orientations due to their symmetry.

In Sec. II, we present the calculation of exchange frequen-
cies, and in Sec. III we present the calculation of the ground
state of a 16-site cluster with anisotropic exchange frequen-
cies. Our results show that with increasing mass anisotropy,
the most important exchange process changes from three-
particle exchange to the nearest-neighbor two-particle ex-
change. As a consequence, there is a phase transition from a
ferromagnetic to an antiferromagnetic ground state as a func-
tion of mass anisotropy.19

II. EXCHANGE FREQUENCIES FOR
MULTIPARTICLE EXCHANGES

A. Theoretical background

We have followed the formalism described in detail in
Ref. 12 to compute the exchange frequencies, which is based
on the WKB approach and uses the instanton approximation.
In the instanton approximation, exchange processes are con-
sidered to be fast processes localized on the imaginary time
axis. Their time scale �� is of the order of the inverse phonon
frequency. They are also considered to be rare events, i.e.,
the average time interval between two successive exchange
processes �T is much larger than ��. Under this assumption,
one considers the propagator on a time scale T that satisfies
���T��T. Denoting the positions of all electrons sitting
on the equilibrium state by the collective coordinate R
= �r1 , . . . ,rn�, and the displacement form the equilibrium
sites by u= �u1 , . . . ,un�, we define G�R+u1 ,R+u2 ,T� as the
Green’s function for the propagation of the lattice from the
configuration R+u1 at time t=0 to the configuration R+u2
at time t=T. These Green’s functions only represent the
propagation of distinguishable spin-0 particles. The complete
many-body electron propagators are constructed by append-
ing spin indices to G followed by antisymmetrization. The
exchange frequency Jp for a permutation P is derived in Ref.
12, which reads

JP =
G�R + u1,PR + Pu2,T�
TG�R + u1,R + u2,T�

, �3�

i.e., the ratio of the Green’s function for the evolution to a
nearby permuted configuration to that for the same configu-
ration without the permutation �exchange�.

In the instanton approximation, this ratio can be evaluated
to be

JP =� SP

2� � m�� det�− m���
2 + V�	�0��

det��− m���
2 + V�	����

	1/2

e−SP/�, �4�

where Sp is the action corresponding to the classical ex-
change path of least action, and the determinants in the pref-
actor come from performing the Gaussian integral account-
ing for the quadratic quantum fluctuations around the
classical path. The path with exchange has a zero-mode fluc-

FIG. 1. �a� Parametrization of the oblique unit cell of the Wigner
crystal following Ref. 18. The second-nearest neighbor is along the
x axis and the oblique lattice is uniquely specified by a point in the
shaded region. �b� Various ring-exchange processes considered in
this paper. Different orientations of the two-, four-, and five-particle
exchanges �which are identical for the triangular Wigner crystal�
have different exchange frequencies in the presence of anisotropy.
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tuation corresponding to the shift of the exchange event in
the imaginary time, which is a Goldstone mode in this for-
malism. The prime in the determinant indicates that this zero
mode is excluded. A detailed derivation12 shows that this

zero mode is taken care of by the prefactor � SP

2��m� .
With anisotropy in the system, Eq. �4� is still valid after

replacing m� with mx
� and my

� appropriately, e.g., the kinetic
energy is expressed as

Ek =
1

2�
n

mx
��dx�n�

d�
	2

+ my
��dy�n�

d�
	2

. �5�

For convenience we define an average effective mass m�

=�mx
�my

�, which enters the expression for rs and energy unit
Ry. In our calculations, we use mx

�=0.190 and my
�=0.585,

which are the values for the Si�110� surface,20 so that the
ratio between the two effective masses is approximately 1:3.
Wan and Bhatt18 showed that such an anisotropy is large
enough to tilt the Wigner crystal after considering the zero-
point energy of lattice vibration. We use the lattice structure
calculated by Wan and Bhatt18 with rs=100 as an example of
lattice distortion in our calculations. In this case, if we adopt
the parametrization illustrated in Fig. 1�a�, and measure dis-
tances in units of the second-nearest neighbor, the nearest
neighbor is at �0.405,0.806�. For comparison, the triangular
lattice corresponds to a point at �0.5,0.866�. We use a dielec-
tric constant of silicon 
=11.7 in our calculations.

Following Ref. 12, we find the classical path by dividing
the path into 16 segments and searching for the least action
by the quasi-Newton algorithm. The long-range Coulomb
potential is handled by an Ewald summation; its first- and
second-order derivatives are calculated by taking the deriva-
tives of the Ewald summation term by term. During the cal-
culation, we have allowed 37–144 electrons in a Wigner
crystal to move around. The remaining electrons are fixed on
their equilibrium lattice sites so that they only contribute to
the potential energy of the movable electrons. We have ar-
ranged the movable electrons in triangular-, hexagonal-, or
parallelogram-shaped clusters to look for the effects of
boundary conditions. For each cyclic exchange process, a
number of electrons near the center exchange their positions
cyclically. Movable electrons are added layer by layer sur-
rounding the permuting electrons in order to extrapolate to
the thermodynamic limit. Our results for the exchange fre-
quencies from clusters of different shapes are in good agree-
ment with each other, therefore the shape of the cluster does
not bring a noticeable error. The prefactor is calculated by
approximating V�	��� in Eq. �4� with a piecewise constant
potential, and keeping only the quadratic order. The zero
mode becomes a finite eigenvalue due to this approximation.
An iterative search for the shifted zero mode is necessary.
Each search requires calculating the matrix elements of a
very large matrix and diagonalizing it, so it takes much more
CPU time than finding the classical trajectory. We have
found that the shifted zero mode is always positive and usu-
ally one order of magnitude smaller than the next eigenvalue.

B. Isotropic case

The calculation for the isotropic Wigner crystal was per-
formed to compare our results with those of Ref. 12. For
numerical calculations, Eq. �4� is simplified to12

JP

Ry
= APrs

−5/4� SP

2�
exp
− �rsSP� , �6�

where SP is the effective action, AP is a prefactor from the
ratio of determinants in Eq. �4�, and Ry is the effective
Rydberg constant. Our results for SP and AP are shown in
Figs. 2 and 3, respectively. The effective action SP slightly
decreases with increasing cluster size N �the number of elec-
trons allowed to move�, which had not been reported previ-
ously. The extrapolated values are slightly below the values

FIG. 2. �Color online� Effective actions SP of five different ring-
exchange processes for the isotropic lattice corresponding to 2, 3, 4,

5, and 6 spins. The curves are fits of the form �0+
�1

N +
�2

N2 ; the
extrapolated value of thermodynamic limits ��0� are marked in the
figure.

FIG. 3. �Color online� Numerical prefactors AP for the five dif-
ferent ring-exchange processes. The curves are fits of the form �0

+
�1

N +
�2

N2 ; the extrapolated value of thermodynamic limits are
marked in the figure.
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in Ref. 12; however, the differences are less than 1%. In the
case of the prefactor AP, the extrapolated values are about
10–15 % lower than those in Ref. 12; nevertheless, the trends
of the extrapolations are the same. The differences may be
attributed to minor differences in the method of calculation.
It is easy to see that the ratio between these prefactors are of
order unity. Since JP depends on SP and rs exponentially,
minor differences in AP will not alter the qualitative behavior
in the low densities �rs�100�.

C. Anisotropic system

For each type of exchange process, since the data points
calculated with different numbers of movable electrons al-
most fall on the same curve in the isotropic case, for the
anisotropic Wigner crystal, we consider four sizes of clusters
from 37 electrons to 123 electrons arranged in a hexagonal
shape. These calculations are sufficient to demonstrate the
difference from the isotropic case. The effective actions of
exchange processes with anisotropic effective masses are
generally smaller than the isotropic case because the average
effective mass is smaller.

We introduce the anisotropy in two steps, to see first the
effect of pure mass anisotropy on exchange frequencies with
no lattice distortion, and secondly, the effect of both effective
mass anisotropy and lattice distortion, with the lattice distor-
tion calculated in Ref. 18 as our input. Figure 4 shows the
effective actions of Wigner crystal with mass anisotropy but
not lattice anisotropy, i.e., the exchange processes start from
and end on a triangular lattice, while mass anisotropy is in-
cluded in the kinetic energy. Due to the anisotropy, two-
particle exchange splits into two different processes depend-
ing on the relative orientation of those two electrons
exchanging their positions �x direction is parallel to the di-
rection of the nearest neighbor of the triangular lattice�, as
well as four- and five-particle exchanges. We see that the
smallest SP belongs to the two-particle exchange A, which is

along the x direction �see Fig. 1; 2B and 2C are equivalent if
the lattice is triangular�. A large gap between the smallest SP
and the second least SP, which is given by the three-particle
exchange process, is also seen in Fig. 4.

Figure 5 shows the corresponding numerical prefactor for
each exchange process in Fig. 4. The curves obtained by
fitting do not appear regularly monotonic as in the isotropic
case. For two-spin exchange type A, three-spin exchange,
and five-spin exchange type B, the last data points at N
=123 obviously deviate from the fitting curve consistent with
the other three data points of smaller cluster sizes, therefore
N=123 is excluded from the curve fitting in these three
cases. These large deviations could indicate a numerical in-
stability for large cluster sizes in the algorithm for calculat-
ing AP. The overall error of the calculated AP is estimated to
be about 10% as will be discussed in the context of Fig. 7.
We can only reliably conclude that these prefactors are of
order unity. Fortunately, in the low-density regime that we
are interested in, differences of order unity between APs will
be dominated by the exponential dependence on rs.

Figures 6 and 7 show our results with both mass aniso-
tropy and lattice distortion for the oblique lattice determined
for rs=100.18 The effective actions shown in Fig. 6 appear in
a narrower range than the previous results calculated without
lattice anisotropy. The extrapolated actions of nearest-
neighbor and second-nearest-neighbor exchanges seem to
coincide with each other, both being the smallest effective
action. Above them is the three-spin exchange. The two-
particle exchange of type C appears to be at the top of this
figure. With lattice anisotropy, the effective actions also
show a stronger size dependence than those in Figs. 2 and 4.

Figure 7 shows the numerical prefactor AP corresponding
to exchange processes in Fig. 6. Similar to Fig. 5, AP calcu-
lated for several exchange processes with N=123 are not
consistent with those from three smaller clusters. As in Fig.
5, these data points at N=123 are excluded from the curve

FIG. 4. �Color online� Effective actions SP of different exchange
processes for the Wigner crystal with mass anisotropy but without
lattice distortion. Orientation A is along the x axis. The curves are

fits of the form �0+
�1

N +
�2

N2 ; the extrapolated value of thermody-
namic limits are marked in the figure.

FIG. 5. �Color online� Numerical prefactors AP of different ex-
change processes for the Wigner crystal with mass anisotropy with-
out lattice distortion. Orientation A is along the x axis. The curves

are fits of the form �0+
�1

N +
�2

N2 . The solid curves are fitted with four
data points, while the dashed curves are fitted without the last data
point N=123.
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fitting. The corresponding curves are plotted with dashed
lines in Fig. 7. In the case of five-spin exchange type B
plotted with a dashed curve in Fig. 7, although four data
points fall on a single fitting curve, this curve extrapolates to
a negative value at N=�. All of these anomalies indicate that
the algorithm for AP, which involves a large determinant in
each iteration, is not accurate enough for large anisotropic
systems. We can estimate the error of this calculation from
the difference between two three-particle exchange processes

with different orientations, which are related by a spatial
inversion. These two processes should be equivalent as con-
firmed by the calculation of their SP. They should also have
the same AP. However, our numerical results for their APs
are not exactly equal. For example, in the case of N=91,
�1/N0.011� in Fig. 7, the plotted value for a three-particle
exchange is the average of 0.818 and 0.719, obtained from
the two orientations of the exchange process. From this we
deduce the relative error of AP is about 10%. This broken
inversion symmetry in AP is probably due to the finite cluster
size.

Comparing the above three cases, we see that the main
difference between isotropic and anisotropic Wigner crystal
is the dominant exchange process: the three-particle ex-
change dominates in the isotropic case, while the nearest-
neighbor two-particle exchange dominates the anisotropic
cases. These two processes have different signs in the Thou-
less Hamiltonian Eq. �1�. We expect this will give rise to
different magnetic ground states of the Wigner crystal and
affect its properties at very low temperatures. This is ex-
plored in the next section.

III. 16-SITE CLUSTER CALCULATION

A. Ground-state phase diagram

The two-spin exchanges contribute to antiferromagnetic
couplings in the Thouless Hamiltonian Eq. �1�, while the
three-spin exchanges contribute to ferromagnetic couplings.
To find the ground state of the Thouless Hamiltonian for
different values of the exchange frequencies, we diagonalize
a small cluster containing 16 �4 by 4� spins with coupling
J2A, J2B, J3, and J4A,B �see Fig. 1�. We ignore J2C because as
can be seen from Fig. 6, its effective action is too large to be
of consequence at large rs. A similar calculation was previ-
ously done for the exchange Hamiltonian of 3He by Cross
and Bhatt.7 We exploit different symmetries in our system—
discrete translational symmetry, inversion symmetry, and
spin-rotation symmetry. However, there is no lattice rotation
symmetry as compared to the bcc 3He case.7 We first gener-
ate a complete set of orthogonal basis states that simulta-
neously diagonalize all the commuting symmetry operators.
Thus, the Hamiltonian is block diagonalized in each sub-
space labeled by total spin S, total spin in z direction Sz, and
two Bloch wave vectors kx and ky. The Hamiltonian matrix in
each subspace can be generated and diagonalized with little
effort, since the dimensions of the subspaces are much
smaller than 2.16 In our case, the largest size was 238.

Figure 8 shows the result of the diagonalization for a
Hamiltonian having J2A, J2B, and J3, but not J4. Here J2B and
J3 are measured in units of J2A. We found that the ground
state jumps from maximal spin S=8 to a minimal spin S=0
state, suggesting a clear, first-order phase transition from fer-
romagnetic ground state to antiferromagnetic ground state
along a curve in the J2B−J3 plane. The strong first-order
transition suggests that the cluster calculation should be re-
liable. The general trend in this figure indicates that the fer-
romagnetic coupling J3 has to increase beyond a critical
value between J2B and J2A to make the ground state ferro-
magnetic. The phase diagram given by the ground-state con-

FIG. 6. �Color online� Effective actions SP of different exchange
processes for the Wigner crystal with mass anisotropy and lattice
anisotropy. Orientation A is along the x axis. Two-spin A is the
exchange between the second-nearest neighbor, two-spin B is the
exchange between the nearest neighbor, and C is the exchange be-
tween the third-nearest neighbor �see Fig. 1�. The curves are fits of

the form �0+
�1

N +
�2

N2 ; the extrapolated value of the thermodynamic
limits are marked in the figure.

FIG. 7. �Color online� Numerical prefactors AP of different ex-
change processes for the Wigner crystal with mass anisotropy and
lattice anisotropy; orientation A is along the x axis. Two-spin A is
the exchange between second-nearest-neighbor, two-spin B is the
exchange between the nearest neighbor, and C is the exchange,
between the third-nearest neighbor. The curves are fits of the form

�0+
�1

N +
�2

N2 . See the text for the difference between the solid and the
dashed lines.
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figuration is shown in Fig. 9. We have studied the effect of a
four-spin exchange by diagonalizing the Hamiltonian with a
small J4A and J4B. Including J4A and J4B slightly decreases
the ground-state energy of the antiferromagnetic phase, while
slightly increasing the ground-state energy of the ferromag-
netic phase. Consequently, we see a small shift of the phase
boundary towards higher J3, as indicated by the dashed line
in Fig. 9. For small clusters, these effects are too small to
qualitatively change the phase diagram.

In Fig. 9 we also mark the positions �J2B ,J3� for the
ground state of the anisotropic Wigner crystal at various den-

sities. The exchange frequencies are evaluated with the ef-
fective actions and prefactors obtained in Sec. II C. They
appear to be in the antiferromagnetic phase in the low-
density limit. The isotropic Wigner crystal corresponds to
J2B=1, J31 in Fig. 9, which is in the ferromagnetic phase.

B. Spin-spin correlation function

We evaluate the spin-spin correlation function of the
ground state

C�r1 − r2� = ��0�S1 · S2��0� , �7�

with the ground-state wave function ��0� obtained by diago-
nalizing the Hamiltonian. Here r1,2=na1+ma2 are lattice
vectors, where a1,2 are two basis vectors of the Bravias lat-
tice. The Fourier transform of C�r�;

S�k1,k2� = �
r

eik·rC�r� �8�

is calculated to illustrate the antiferromagnetic order of the
ground state. A peak in S�k1 ,k2� appears at �� ,�� if the
ground state has a 2D antiferromagnetic order. In the limit
that both J2B and J3 are negligible, the system behaves as
decoupled one-dimensional antiferromagnetic spin-1/2
chains. Let J2A be along the direction of a1 and J2B along a2.
Then in this limit, C�r�=Cn�m,0, while S�k1 ,k2� turns out to
be constant along k2.

Table I lists the calculated S�k1 ,k2� for selected values of
exchange frequencies. The ground state wavefunctions were
obtained from the Hamiltonian containing two-spin and
three-spin exchange terms. For J2B=J3=0.6, �S�� ,���2 is one
order of magnitude larger than the other terms, indicating a
strong 2D antiferromagnetic order. For J2B=0.05, J3=0,
S�k1 ,k2� appears to be large at k1=�, and has slight variation
along k2. We have verified numerically that for J2B=J3=0,
S�k1 ,k2� is independent of k2. For J2B=0, J3=0.6, �S�k1 ,k2��2
behaves similarly to the previous case. However, �S�� ,���2
is equal to �S�� ,0��2, instead of becoming the maximum

FIG. 8. Ground-state energy calculated by the direct diagonal-
ization of 16 spin �4�4� clusters. J2A=1. The planner region on the
right results from the ferromagnetic ground state, whose energy is
given by 16+16J2B−48J3. This serves as a check of the accuracy of
the numerical method. The curved region of the surface on the left
corresponds to the energy of the antiferromagnetic ground state.
Finer grids are used near the transition line to determine the phase
boundary accurately.

FIG. 9. �Color online� Phase diagram of the cluster. JP is calcu-
lated using Eq. �4�, with 40�rs�1000, and their trajectories are
plotted in the antiferromagnetic phase of this figure. rs=1000 is at
the lower ends of these two short lines. The phase transition line is
a polynomial curve fitting of the square data points, where the
diagonalization shows to be near the edge of the transition.

FIG. 10. �S�� ,���2 plotted as a function of J2B and J3 in the
antiferromagnetic phase of exchange Hamiltonian with two-spin
and three-spin exchange terms.
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value among the sixteen k points. This indicates that J3 re-
duces the one-dimensional antiferromagnetic order along k1,
while it does not induce an antiferromagnetic correlation be-
tween neighboring chains, which J2B obviously does.

Figure 10 shows �S�� ,���2 calculated from the ground
state for �J2B ,J3� pairs in the antiferromagnetic phase. One
can see that the peak at J2B=J3=0, corresponding to decou-
pled spin chains, is quickly reduced by a small J3 or J2B,
while as J2B increases, �S�� ,���2 gradually increases. At suf-
ficiently large J2B, J3 also slightly contributes to this antifer-
romagnetic order parameter. This is because, in addition to
the ferromagnetic coupling between nearest neighbors, three-
spin exchange introduces ferromagnetic coupling between
next-nearest neighbors on a square lattice, which is consis-
tent with the antiferromagnetic order. So at the presence of a
strong nearest-neighbor antiferromagnetic coupling due to
two-spin exchanges, the effect of J3 becomes a subtle bal-

ance between two competing tendencies. At the boundary of
the antiferromagnetic phase, S�� ,�� does not vanish, which
indicates a first-order phase transition in the ground state.

IV. CONCLUSION

We have presented a calculation of the exchange frequen-
cies of multiparticle exchanges in two-dimensional Wigner
crystals with anisotropy using the WKB method with an in-
stanton approximation. The mass anisotropy that we have
used, mx /my 3, is that of a Si�110� surface. The largest
exchange frequency is found to be given by the two-particle
exchange, rather than the three-spin exchange, which was
found to dominate in the isotropic system at low densities.
Furthermore, we have diagonalized the Thouless Hamil-
tonian on a 16-spin cluster, and found a transition from fer-
romagnetic ground state to antiferromagnetic ground state
depending on the ratio of exchange frequencies. Combining
these two results, we find that the ground state of the oblique
Wigner crystal in an anisotropic system should have zero
total spin, instead of being ferromagnetic. This change will
alter the magnetic property of the Wigner crystal at low tem-
peratures and corresponding physical pictures. In the ex-
treme limit, when J2B is very small, the Wigner crystal is a
realization of antiferromagnetic spin-1/2 chains with weak
ferromagnetic interchain coupling. Whether the ground state
in the thermodynamic limit is antiferromagnetic, character-
ized by long-range antiferromagnetic order or a spin-liquid
phase8 or any other possibilities, is an open question. We
expect to see a rich phase diagram depending on the electron
density and effective mass anisotropy. Our approximations
should be valid for anisotropic systems since the Wigner
crystal exists at much lower densities in the anisotropic case
than in the isotropic case. Nevertheless, it would be worth-
while to look at this problem using quantum Monte Carlo
techniques,2 especially in the vicinity of the melting density.
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