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Tunneling between two-dimensional electron layers with mutually correlated disorder potentials is studied
theoretically. Due to this correlation, the diffusive eigenstates in different layers are almost orthogonal to each
other. As a result, a peak in the tunnel I-V characteristics shifts towards small bias, V. If the correlation in
disorder potentials is complete, the peak position and width are governed by the spin-orbit coupling in the
layers; this coupling lifts the orthogonality of the eigenstates. The possibility to use interlayer tunneling for
experimental determination of weak intrinsic spin-orbit splitting of the Fermi surface is discussed.
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I. INTRODUCTION

Knowledge of spin-orbit �SO� splitting, �, of energy spec-
trum in two-dimensional �2D� electronic systems is impor-
tant for design of spintronic devices in two respects. First, a
number of proposed schemes directly utilize the SO coupling
for manipulating electron spin polarization by means of cre-
ating spatially inhomogeneous structures.1 Second, in pro-
posed schemes that are not based on SO splitting, the latter
limits the device performance via a SO-induced decoherence
time.2,3 Experimentally, large values of SO splitting can be
extracted from conventional measurements, such as the beats
of the Shubnikov-de Haas oscillations.4,5 This, however, re-
quires that ���1, where � is the electron scattering time.
Experimental determination of � in the opposite limit, ��
�1, poses a considerable challenge. One has to look for
physical effects which are anomalously sensitive to the SO-
coupling. An example of such effect is the weak localization/
antilocalization crossover in magnetoresistance.6,7 Tunneling
measurements offer another possibility. Even when ���1, a
structure related to � manifests itself in the I-V characteris-
tics, provided that the disorder is long-range, so that ��tr
�1, where �tr is the transport scattering time.8

In 1993, Zheng and MacDonald9 made an observation
that, in the absence of the SO coupling, calculations of tun-
neling conductance between two parallel electron layers with
short-range but correlated disorder potentials is analogous to
the calculation of conductance of a single layer with long-
range disorder. Formally, both calculations require solution
of the equation for the vertex functions, obtained by a sum-
mation of ladder diagrams. For a single layer, the vertex
function has a pole at frequency �= i /�tr, where

1

�tr
= 8�2�� dqS�q��1 − cos �p,p+q�	�p2 − �p + q�2� , �1�

where �=m /2� is the 2D density of states �per spin� and
S�q� is the Fourier component of the correlator of the intra-
layer disorder potential, V�r�: S�q�=�dre−iqr�V�r�V�0�	. For
interlayer tunneling, the pole of the vertex function is at �
= i /�0, where �0 is defined as9

1

�0
= 8�2�� dq�S�q� − SLR�q��	�p2 − �p + q�2� , �2�

where similar to the above, SLR�q� is the Fourier component
of the cross-correlator �VL�r�VR�0�	 of the disorder potentials
in the two layers. The physics captured by Eq. �2� is that
despite strong scattering in each layer, the true eigenstates in
both layers are almost identical when VL and VR are strongly
correlated. Then the pole at −i�=1/�0
1/� reflects the fact
that eigenstates in two layers with energy difference �1/�0
are almost orthogonal.

Basing on the above analogy, pointed out by Zheng and
MacDonald, one would anticipate anomalous sensitivity of
the tunneling current between two layers with short-range
correlated disorder to the SO splitting in the layers. In the
present paper, we will illustrate this anomalous sensitivity for
a particular example of tunneling between two identical
quantum wells, to which electrons are supplied by a 	-layer
of donors, located in the middle plane.

II. TUNNELING CURRENT BETWEEN TWO 2D
ELECTRON GASES WITH SPIN-ORBIT INTERACTION

The system under study is shown in Fig. 1. Once the
donors get ionized by yielding their electrons to the left and
right electron gases, electric fields which they create in both
layers are equal in magnitude and opposite in directions. As
a result, the coupling constants in the SO Hamiltonians10 of
the two layers are opposite: Hso

�L�=�so�p��z, Hso
�R�=−�so�p

��z. The important consequence of the geometry depicted
in Fig. 1 is that it allows one to arrange correlation between
spatial wave functions in different layers11 corresponding to
different energies separated by 2�. As a result, � manifests
itself in the tunneling I-V characteristics.

The tunneling Hamiltonian has the form

H = t

�
� d2r��̂�

�L�†�r��̂�
�R��r� + �̂�

�R�†�r��̂�
�L��r�� , �3�

where �̂�
�L��r� and �̂�

�R��r� are the electron operators in the
two layers, and � is the spin index. The overlap integral t for
the size-quantization wave functions in the two layers is as-
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sumed to be real, for simplicity. The tunneling described by
Eq. �3� preserves both electron spin and momentum.

Calculation of the interlayer tunneling current �see Fig. 1�
reduces to finding the vertex function for the case when the
electron Green’s functions in the layers are matrices.
Namely, the retarded Green’s functions are

ĜR
�L���,p� = �� − � − �so�p  ��z + i/2��−1,

ĜR
�R���,p� = �� − � + �so�p  ��z + i/2��−1, �4�

where � is the electron energy, measured from the Fermi
level. Advanced Green’s functions are obtained from Eqs. �4�
by reversing the sign of i /2�-terms. Solving the matrix equa-
tion illustrated in Fig. 1 yields the following generalized ex-
pression for the vertex:

T��� = t
�� + i/��2 − 4�2

�� + i/���� + i/�0� − 4�2 , �5�

where �=�pF, and pF is the Fermi momentum. In the ab-
sence of the SO coupling Eq. �5� reduces to the result T���
= t�1− i��� / �1− i��0� of Ref. 9. Incorporating the vertex
function Eq. �5� into the standard expression12 for the tun-
neling current

I�V� = e2AtV Im���eV�Tr� dpĜR
�L��0,p�ĜA

�R��− eV,p�� ,

�6�

we arrive to the final result,

FIG. 2. The tunnel I-V characteristics are plotted from Eq. �5�
for different values of dimensionless scattering rate �� in the layers.
For ���0.5 the current is maximal at bias eV=2�.

FIG. 3. The tunnel I-V characteristics are plotted from Eq. �5�
for fully correlated disorder potentials in the layers at different val-
ues of ��
1. The current is maximal at eV=4�2�.

FIG. 1. �A� Schematic illustration of a 	-layer of donors located symmetrically between two identical quantum wells. SO coupling
constants in the wells have equal magnitude and opposite signs. �B� Diagram describing tunneling current between two wells with correlated
disorder. �C� Diagrammatic equation for the vertex function.
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I�V� =
2e2t2A�V�4�2�−1 + �e2V2 + �−2��0

−1�
�e2V2 − 4�2 − �−1�0

−1�2 + e2V2��−1 + �0
−1�2 . �7�

Here A is the lateral area.
Anomalous sensitivity of the I-V characteristics �7� to the

SO splitting is illustrated in Figs. 2–4. For large splitting,
���1 �see Fig. 2�, correlation between the disorder poten-
tials is not important. The peaks of the I-V curves are located
at eV= ±2�, while the peak widths are 1/�. Such a form of
the I-V curves reflects the fact that, with opposite signs of the
SO coupling constants in the layers, the intralayer spinor
eigenfunctions are maximally correlated, when their energies
differ by 2�.

As is seen from Fig. 2, the position of the current maxi-
mum rapidly shifts from eV=2� towards smaller biases for
���0.5. The I-V characteristics for this case are shown in
Fig. 3. A remarkable feature of the curves in Fig. 3 is their
strong sensitivity to � when the disorder is strong, ���1, so
that the characteristics of individual layers are insensitive to
the SO coupling. For fully correlated disorder potentials in
the layers, �0→�, the I-V characteristics for different values
of ���0.2 fall on top of each other when plotted as a func-
tion of the ratio eV /4�2�. Thus the position of maximum of
the tunneling current allows one to extract the
Dyakonov-Perel13 spin decoherence time �s= �2�2��−1. The
underlying reason is that, due to opposite signs of the intra-
layer SO coupling constants, the eigenfunctions in the layers
are not orthogonal even if disorders are fully correlated.
Then �s

−1 is a quantitative measure of the energy interval in
which the orthogonality is lifted. The fact that position of the
maximum in Fig. 3 is at eV=2/�s reflects that electrons in
both layers undergo spin relaxation.

Incomplete correlation of disorder potentials, VL�r� and
VR�r�, in the layers is another source of lifting of orthogo-
nality of eigenstates. This mechanism is quantified by the
energy scale 1 /�0, defined by Eq. �2�. It might be expected
that in the presence of both mechanisms the maximum is
located at eV=2/�s+1/�0, which has a meaning of a com-

bined dephasing time. This is indeed the case, as illustrated
in Fig. 4.

III. EFFECT OF ELECTRON-ELECTRON INTERACTIONS

Let us address the question whether the above SO-
induced peaks survive the presence of electron-electron in-
teractions. Interactions cause a dynamic lifting of orthogo-
nality of the eigenstates, and might result in the broadening
of the peaks. We now demonstrate that at zero temperature
the peaks are robust, but eventually get smeared away as the
temperature increases.

On the quantitative level, in order to incorporate both the
interactions and the correlated disorder into the theory, it is
convenient to express the tunneling current in terms of the
exact eigenfunctions, which are the same in the two layers.
Let us denote with �m�r� the mth eigenstate for a given re-
alization of disorder potential. The energy of this state is
equal to �m as electron-electron interactions are neglected. In
the presence of electron-electron interactions the retarded
electron Green function can be written as

GR��,r1,r2� = 

m

�m�r1��m
† �r2�

� − �m − �m���
, �8�

where �m��� denotes the electron self-energy of the mth
eigenstate.

The knowledge of the eigenfunctions suffices to evaluate
the tunneling current �in the lowest order in t� in a general
form,

I�V� = 2et2� d�

2�
�n��� − n�� + eV�� � dr1dr2

A�L���,r1,r2�A�R��� + eV,r2,r1� , �9�

and express it via the Fermi-Dirac distribution n��� and the
nonaveraged spectral functions in the left and right layers,
A�L��� ,r1 ,r2� and A�R��� ,r1 ,r2�, respectively. The spectral
function is determined by the difference of the retarded and
advanced functions in each layer,

A��,r1,r2� =
i

2
�GR��,r1,r2� − GA��,r1,r2�� . �10�

At this point, we emphasize that, for fully correlated disorder
�neglecting spin-orbit interaction�, we can perform coordi-
nate integration in Eq. �9� prior to performing the configura-
tion averaging, and cast it in the form

I�V� = 2et2

m
�

−eV

0 d�

2�
Im� 1

� − �m − �m����
 Im� 1

� + eV − �m − �m�� + eV�� . �11�

The reason why explicit integrations over r1 and r2 can be
performed in Eq. �9�, leading to Eq. �11�, is the mutual or-
thogonality of the eigenstates in the two layers resulting from
the fully correlated disorder. In Eq. �11� we have also set T
=0 in the difference of the Fermi functions. This is justified

FIG. 4. I-V curves for different values of spin-orbit coupling and
different degrees of correlation of disorder in the layers. The
maxima are at biases determined by the combined decoherence rate.
The latter is dominated by the 1/�0 term for ��=0.05 and by the
spin relaxation term, 4�2�, for ��=0.4.
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as long as T is much smaller than EF. The reason is that,
similarly to the in-plane conduction, the temperature depen-
dence of the tunnel current comes exclusively from the
T-dependence of the self-energy, i.e., from inelastic pro-
cesses.

The question whether �m��� and �m��+eV� in Eq. �11�
can be replaced by the disorder averaged values is highly
nontrivial in the limit T→0. However, we can rigorously
address the issue of smearing of the SO-related peak in the
I-V curve for a disordered layer by treating interactions at the
perturbative level, which corresponds to the expansion of
Eq. �11� to the first order in �m. This expansion yields,

	I�V� =
2t2�A

eV2 �
−eV

0

d������ + eV� + ��+eV���� , �12�

where �����=�−1
m�	��−�m�Im �m���	 is now the disorder-
averaged inverse inelastic lifetime.

�i� For ��
1 the peak position, eV=4�2�, is below the
elastic scattering rate, i.e., at the energy corresponding to the
peak position the motion of electrons is diffusive. The corre-
sponding lifetime was studied in the seminal paper Ref. 14,
and was shown to be �������� /EF�. We can now compare
Eq. �12� with the “noninteracting” value of current, given by
Eq. �7�, at the bias corresponding to the peak position, eV
=4�2�. We find that the ratio 	I / I�1/EF� is small regard-
less of the actual value of the decoherence rate.

�ii� Similarly, for large values of spin-orbit splitting, ��
�1, we should utilize ballistic inverse lifetime, ����
= ��2 /4�EF�ln�EF /��, established in Refs. 15 and 16. Com-
parison of Eq. �12� with the value given by Eq. �7� at the
peak position, eV=2�, we conclude that the corresponding
ratio is again small, 	I / I��1/EF��ln�EF /��.

This suggests that, at zero temperature, interactions do not
destroy the SO-induced peak in the I-V curve. However, this
destruction eventually happens upon increasing T. A crude
estimate for the temperature at which the peak is washed out
by interactions can be obtained by equating the peak position
eV=4�2� to ���=T�. With logarithmic accuracy, this yields
the restriction T� ����2EF, so that even with ���1 the peak
survives at reasonably high temperatures.

To trace quantitatively the smearing of the peak with T,
we first note that “single-electron” I-V characteristics �7� can
be obtained from Eq. �11� upon inserting spin decoherence
rate into the self-energy, �m→2i�2�, and replacing the sum
over �m→� by the integral, 
m→�A�d�. As the next step,
we take into account the finite-T decoherence by writing �
=2i�2�+ i�T, where �T= �T /2EF��ln�T1 /T� �Refs. 14 and 17�
and T1=rs

2EF
4�3; here rs is the interaction parameter of 2D

electron gas. To utilize the energy-independent ��T� in the
self-energy, the temperature must be large compared to the
peak position, eV=2�2�. This requirement does not contra-
dict the restriction on the smearing obtained from the above
crude estimate. Indeed, both conditions can be conveniently
rewritten as T /EF�
�2�
T, so that it is the large value of
EF� which makes them consistent. Upon the suggested re-
placements, the temperature-dependent I-V characteristics
follow from Eq. �7� with the spin relaxation rate modified as
2�2�→2�2�+�T, with �0=�

I�V� = 4e2t2A�
V�2�2� + �T�

e2V2 + 4�2�2� + �T�2 . �13�

Equation �13� indicates that the position of maximum of the
I-V curve shifts almost linearly with temperature, see Fig. 5.
This suggests that the SO relaxation rate can be inferred from
experiment even when measurements are performed at T
� ����2EF. One has to plot the peak position as a function of
T and extrapolate the data to T→0. Besides, the actual re-
striction on T is “softer” than the one obtained from the
crude estimate, by virtue of numerical coefficients in �T and
spin relaxation time 1/�s. Indeed, the requirement �T�s /2
�1 imposes �neglecting logarithmic factor� the following
restriction, T�4����2EF.

IV. SUMMARY AND CONCLUSIONS

Our main finding is that, with correlated disorder in the
layers, the SO coupling causes a zero in dI /dV even for
��
1, when the spin subbands in the layers are not re-
solved. For clean layers with ���1, sensitivity of tunneling
current to the SO coupling was pointed out in Ref. 18.

The condition that position of zero in dI /dV is due to the
SO coupling is that the contribution, 4�2�, to the combined
decoherence rate exceeds 1/�0, caused by incomplete
correlation of disorders in the layers. To estimate the feasi-
bility to meet this condition, we assume that the origin of
incomplete correlation is a finite width, a, of the 	-layer, see
Fig. 1. Assuming that the in-plane positions of donors with
concentration, Nd, are completely random, the Fourier com-
ponents of the correlators, entering the expression Eq. �2�
for �0

−1, can be presented as SLR�q�=Nd�U�q��2e−qd; S�q�
=Nd�U�q��2 sinh�qa�e−qd /qa, where d is the barrier thickness,
and U�q� is the Fourier transform of the potential created by
a donor in the layer. Then Eq. �2� takes the form

1

�0
= 2��Nd� dq�U�q��2� sinh qa

qa
− 1�e−qd. �14�

Assuming that the screening radius in the layers is smaller
than d, we can set U�1/d�U�0�. Then Eq. �14� yields
�0 /�= �a /d�2, so that the condition 4�2���0

−1 reduces to

FIG. 5. �Color online� Temperature dependence of the tunneling
characteristics for different values of spin-orbit coupling constant
and fully correlated disorder, from Eq. �13�. Increasing T results in
the broadening of the peak and its net shift towards higher biases.

ZYUZIN, MISHCHENKO, AND RAIKH PHYSICAL REVIEW B 74, 205322 �2006�

205322-4



���a /2d, i.e., the value ��=0.05, used in the numerics
above, is quite feasible for the atomically sharp 	-layer.

As a final remark, the assumption, crucial for our calcu-
lations, was that the barrier is spatially homogeneous, so that
the tunneling occurs with the conservation of the in-plane
momentum. We had also assumed that the positions of do-
nors in the 	-layer are random. This randomness might, in
principle, lift the momentum conservation. The condition
that the effect of randomness is negligible is that the
tunneling-induced splitting, t, of the states in the layers is the
smallest scale in the problem. In fact, we had used this con-
dition by restricting the calculations to the lowest order in t.
Under this condition, the under-barrier scattering of the tun-

neling electron by donors in the classically forbidden region
is exponentially suppressed as compared to the situation
when donors are located in the vicinity of the layers.
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