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We study theoretically the quantum size effects in a one-dimensional semimetal by a Boltzmann transport
equation. We derive analytic expressions for the electrical conductivity, Hall coefficient, magnetoresistance,
and the thermoelectric power in a nanowire. The transport coefficients of semimetal oscillate as the size of the
sample shrinks. Below a certain size the semimetal evolves into a semiconductor. The semimetal-
semiconductor transition is discussed quantitatively. The results should make a theoretical ground for better
understanding of transport phenomena in low-dimensional semimetals. They can also provide useful informa-
tion while studying low-dimensional semiconductors in general.
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I. INTRODUCTION

Quantum size effects �QSEs� arise if the magnitude of at
least one dimension of the sample is comparable to the
de Broglie wavelength of carriers in the material. Experi-
mental study of such effects started by an investigation of
semimetallic bismuth thin films a long time ago,1 followed
by a theoretical model to explain the measured data soon
after.2 Since then the field has preserved its freshness to date,
expanding its domain to include the study of size effects in
conventional metals,3 semiconductors,4 superconductors,5

and, since recently, nanoclusters,6 carbon nanotubes,7 and
fullerenes.8 Recent advances in nanofabrication techniques
have made it possible to extend experimental investigation of
QSEs in various types of semimetallic structures from two-
dimensional �2D� thin films to one-dimensional �1D�
nanowires.9–17 On the other hand, despite the advances on an
experimental front, there is not a theoretical model for quan-
titative understanding of measured data in such structures.
Here, we generalize the theoretical 2D model of
Sandomirski�2 to study the confinement phenomena in a 1D
regime. Emphasis will be on QSEs in semimetals and on the
semimetal-semiconductor �SM-SC� transition. To illustrate
the applicability of the model, size dependence of some of
the transport coefficients in bismuth nanowires will be ad-
dressed.

II. SEMIMETALLIC REGIME

In a semimetal the conduction and valence bands overlap
by a value � �see Fig. 1�. At low temperatures, kBT��, as
the sample size shrinks, this overlap decreases, finally reduc-
ing to the separation of the bands and the formation of an
energy gap Eg. This is an immediate consequence of an al-
teration in the energy density of states. Let us consider a wire
with dimensions w, t, and L �width, thickness, and length,
respectively�. The single-particle wave functions are given
by18

�ij�k� =
2

�wtL
sin� i�x

w
�sin� j�y

t
�exp�ikz� . �1�

The corresponding energies for electrons are

Eij
e �k� = Eij

e + ��2k2/2mz
e� , �2�

where we have used the shorthand notation

Eij
e �
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2mx
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Using the expression for electron density of states

ge�E� =
s

2��

1

wt
�mz

e

2 �
i,j

��E − Eij
e ��E − Eij

e �−1/2, �4�

and the Fermi-Dirac distribution for electrons with chemical
potential 	e, fe�E�= �1+exp�E−	e� /kBT	−1, through the
Sommerfeld expansion, we get for the volume concentration
of electrons at low temperatures

n�E� =
s

2��

1

wt
�2mz

e�
i,j

�	e − Eij
e �1/2. �5�

Above, � is the Heaviside step function and s is the spin
degeneracy. The derivation of an analogous expression for
the concentration of holes p�E� is straightforward. The elec-
tron and hole chemical potentials 	e and 	h, measured from
the bottom of a conduction band and the top of the valence
band with respect to the Fermi level 	, can now be obtained
from the charge neutrality condition n�E�= p�E�. Writing the
Fermi energy as 	e�	x

e+	y
e, we arrive at 	 j

e /� j
e=	 j

h /� j
h.

Here j=x ,y. Moreover, using the relation �=	e+	h, we get
for the partial chemical potentials

	 j
e = � jmj

h�mj
e + mj

h�−1, j = x,y . �6�

Above, the energy overlap was represented as ���x+�y.
�Physically, �x and 	x

e can be interpreted as x components of
the bands overlap energy � and the Fermi level 	e in the
reciprocal lattice space; �x is the overlap energy due to the
confinement of carriers in the x direction.� As the sample
dimensions become smaller, the conduction and valence
bands slide upward and downwards, respectively, and the
band overlap � gradually diminishes. The chemical potential
	, however, remains intact. This is illustrated in Fig. 1. Let
us assume that the band overlap vanishes at a width w0
and at a thickness t0, namely, �x

e�w0�+�x
h�w0�=�x and

�y
e�t0�+�y

h�t0�=�y. Using these relations together with
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Eq. �6�, we get for the width and thickness at which the
semimetal-semiconductor transition happens

w0 = ��/�2Mx�x, t0 = ��/�2My�y . �7�

Here Mj �mj
emj

h / �mj
e+mj

h� and j=x ,y. The energy gap can

now be written as Eg=�x
� w0

w
�2

+�y
� t0

t
�2

−�. Designating rw
�w /w0 and rt� t / t0, with

Uij
e � 1 − �i/rw�2 + �	y

e/	x
e��1 − �j/rt�2	 , �8�

we find for the normalized electron concentration

n
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wt
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Above, �x	 stands for the integer part of x. Figure 1 depicts
the dependence of reduced electron concentration on width
and thickness. Quantum size effects reveal themselves as
steps in carrier concentration. By reducing the sample size
the electron density reduces in steps ultimately becoming
negligible below transition width �thickness�. Within each
step, however, the electron density varies nonmonotonously
reaching its maximum value at a certain point. The positions
of these maxima in each direction depend strongly on the
effective masses, i.e., on the crystal structure of the wire.
This is of vital importance from an experimental point of
view; observation of the effects discussed below presumes a
well-defined crystal orientation and due care must be paid to
the fabrication of wires with comparable microscopic struc-
tures.

In what follows, we will utilize the Boltzmann transport
equation �BTE� to derive various kinetic coefficients of
interest.19 Let us mark the unperturbed and perturbed distri-
bution functions with f0 and f , the carrier charge with q
� �qe ,qh, and the velocity operator with �v�k���kE�k�. In
the presence of an external electric field E, the BTE reads

�t f + v · �rf + �q/��E · �kf = ��t f�scatt. . �10�

Through the linearization of this equation and the introduc-
tion of a relaxation time �, the kinetic coefficients of a 1D
system can now be obtained from

�Ln�� =
sq2

2�
� �− ��f0���k��E�k� − 		nv�vdk , �11�

where L0�� stands for the electrical conductivity and
S�L1 / �qTL0� is the thermoelectric power �Seebeck
coefficient�. To obtain an expression for the relaxation time
we assume that N scatterers, each with a strength V0, are
randomly distributed at positions R j along the wire,
V�r�=� j=1

N V0�r−R j�, and make use of the Fermi’s golden
rule �i→f

−1 = �2� /����i�V�r��f��2g�E f��. Here ��wtL is the
sample volume. Averaging over the configuration of scatter-
ing centers yields

FIG. 1. �Color online� �Left� Overlapping bands in a semimetal. �Right� Dependence of the carrier concentration n, normalized by that
for a wire with w /w0=20 and t / t0=20, on the reduced width and thickness. �x=0.7�. The bismuth wire is aligned along the bisectrix axes.
The values for effective masses �in units of free-electron mass� are mx

e=0.00139, my
e =0.291, and mz

e=0.0071 for electrons, and mx
h=my

h

=0.059 and mz
h=0.634 for the holes.

FIG. 2. �Color online� Contribution of electrons to the electrical
conductivity �triangles� and to the Seebeck coefficient �circles� of a
bismuth wire versus its width at a fixed thickness t / t0=4.1. �This
corresponds to a thickness of about t0�26 nm.� Other parameters
are as given in Fig. 1.
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where �m�n�
mn ��2+mm���2+nn�� and �� N

� is the volume
density of scatterers. Electronic contribution to the electrical
conductivity now reads
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Here the outer summation accounts for the contribution of
different subbands �m ,n�. Similarly, one obtains an analo-
gous expression for the hole conductivity �h. The total elec-
trical conductivity is the algebraic summation of electron and
hole contributions. Figure 2 illustrates the contribution
of electrons to the reduced electrical conductivity �e /�


e

as a function of the wire width w /w0. The Seebeck
coefficient can be evaluated using the Cutler-Mott relation
valid for a degenerate gas at low temperatures,21
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the corresponding quantities gives us
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Dependence of the total electronic thermopower Se

=�m,nSmn
e on the wire width is shown in Fig. 2. The ther-

mopower observable in the measurements, covering the con-
tribution of both the electrons and the holes, is given by S
= �eSe+�hSh

�e+�h .

III. SEMICONDUCTING REGIME

In the semiconducting regime the carrier gas becomes ul-
timately nondegenerate and the distribution function will
obey the Maxwell-Boltzmann �MB� statistics. Denoting the
distance of the Fermi level to the bottom of the conduction
band with 	e and to the top of valence band with 	h,
the distribution function can now be expressed as
f j�E��e−��Ej+	j� with ��1/kBT and j=e ,h. Electron and
hole concentrations for the intrinsic case, n= p �per unit vol-
ume�, are now obtained from

n�T� =
s

2

1

���

1
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�mz

emz
h/4�1/4�−1/2

� e−�Eg/2
 �
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e−��Eij
e +Ekl

h ��1/2
, �15�

with the gap energy given by Eg=	e+	h. The chemical po-
tential 	, through the charge neutrality condition, reads

	�T� =
Eg

2
−

1
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ln�mz

e
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h� −

1
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i,j
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e
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Generally, the MB distribution makes the derivation of ana-
lytic expressions for the kinetic coefficients more difficult
and in most cases one has to resort to numerical methods.22

An alternative way, especially suitable at lower temperatures,
would be to estimate the quantities of interest with their av-
erage values. For the average value of the relaxation time
over energy distribution, ������Eg�E���fdE /�Eg�E���fdE,
assuming �1/ ��mn��=�m�n��1/ ��mn→m�n���, we get
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Substituting for the relaxation time in Eq. �11�, the electrical
conductivity follows:
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The thermopower can be evaluated correspondingly,

Se =
kB

qe�3

2
+ �	e +

�
m,n

�Emn
e e−�Emn

e

�
k,l

e−�Ekl
e � . �19�

At low temperatures, in the absence of intersubband scatter-
ing, one can limit himself to the contribution of the first
subband only, that is, �m�n�

mn =�11
11=9, Eij

e �E11
e and Eij

h �E11
h .

As a consequence, the electrical conductivity has exponential
dependence on the gap energy Eg �and thus on the wire di-
mensions� while the thermopower does not. It would be in
order to compare the expression above to that for a three-
dimensional semiconductor with cubic symmetry given in
Ref. 19, namely, Se=

kB

qe
� 5

2 +c+�	e�. Here, c mirrors the en-
ergy dependence of the relaxation time, �e�E��Ec.

IV. GALVANANOMAGNETIC COEFFICIENTS

Let us assume that the wire is located in an external mag-
netic field B= �Bx ,0 ,0� perpendicular to the wire axes and an
external electric field Ez is applied along the wire. The cy-
clotron frequency is marked with �c. Moreover, let the cy-
clotron radius be much larger than the lateral dimensions of
the sample, rc�w , t. The Hall coefficient R and the trans-

verse magnetoresistance, ��
�0

�
��B�−��0�

��0� with ��1/�, can be

easily evaluated by employing the two-carrier model.19,22 We
obtain for the Hall coefficient
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R =
Re��e�2�1 + ��hRh�2B2	 + Rh��h�2�1 + ��eRe�2B2	

��e + �h�2 + ��e�h�2�Re + Rh�2B2 ,

�20�

and for the magnetoresistance

r �
��

�0
=

�e�h�ue + uh�2B2

��e + �h�2 + ��euh − �hue�2B2 . �21�

Above, Rj ��nqj�−1 with j=e ,h is the single-particle Hall
coefficient and uj stands for the carrier mobility. Figure 3
illustrates the dependence of the Hall coefficient and magne-
toresistance in weak magnetic fields ��c��1� on the wire
width at a fixed thickness. Below, we compare some of the
findings of our study with the recent experimental data and
with the other existing models.

V. DISCUSSION

First, let us compare our model to a recent theoretical
study of the SM-SC transition in cylindrical nanowires in
which the electron and hole energies are expressed in terms
of the Mathieu �or Bessel� functions.13 This has to be com-
pared to the expressions in Eq. �7�. While Ref. 13 predicts
the enhancement of QSEs as a consequence of anisotropy,
our model foresees sensitive variation of the SM-SC transi-
tion width �and thickness� and alteration in the form of car-
rier density and transport coefficients as the values of effec-
tive masses change �Figs. 1–3�. Furthermore, the model in
Ref. 13 misses the issue of transport. As it comes to practical
applications, in most cases, the �lithographically fabricated�
wires are of rectangular cross section as modeled in our
study. To make a quantitative comparison between predic-
tions of our model and the other existing ones, we consider a
bismuth wire aligned along the bisectrix axis with effective
masses given by Ref. 20 and presented in Fig. 1. The
waveguide-analogous model in Ref. 13 predicts a critical di-
ameter of dc�32.5 nm for the SM-SC transition. An earlier
similar model, instead, gives dc�48.5 nm.12 Correspond-
ingly, in our model, substituting for the values of effective
masses in Eq. �7� and with �x=0.7�, we obtain

w0�102 nm and t0�26 nm. Now, the diameter of an
equivalent cylindrical wire, i.e., a wire with an equal cross
section, can be estimated as dc=�4w0t0 /��58 nm.

As is the case with the electrical conductivity and the
Seebeck coefficient, at a fixed thickness, all the oscillations
have the same periodicity given by Eq. �7�. With chosen
parameters given above, this yields w0�102 nm. The corre-
sponding value observed in the experiments with a 2D n-type
bismuth film, given in Ref. 14, is about 100 nm. It is also a
remarkable fact that, as predicted by the theory, the measured
value of film thickness for the semimetal-semiconductor
transition equals the magnitude of periodicity near transition.
However, in contrast to the predictions by our model, in
experiments the period of oscillations becomes smaller as the
transition thickness is approached. Also, the measured ampli-
tudes of oscillations show less regularity than those envis-
aged by the model. While part of the discrepancies can be
attributed to the structural nonidealities in the grown films,
the others can be due to uncertainties in the chosen values for
the effective masses and due to the fact that the nondiagonal
contributions in the effective mass tensor were ignored.
Naturally, it would be more desirable to compare the theo-
retical predictions to the experimental data in a single one-
dimensional wire with a well-defined crystal orientation. To
our knowledge, despite recent experimental efforts with soli-
tary nanowires of bismuth,15,16 the oscillatory dependence of
kinetic coefficients on wire dimensions are yet to be ob-
served. For the verification of predicted effects, we consider
it crucial to have nanowires with comparable morphology,
and to characterize them with the precession four-probe mea-
surements.

Dependence of the SM-SC transition on temperature and
on the dopant concentration was investigated in a recent
study of nanowires made of alloys of bismuth.12 There, a
scheme based partly on the measurement of the Seebeck co-
efficient, was introduced to differentiate semimetallic nano-
wires from semiconducting ones. Correspondingly, in our
model this can be performed by comparison of the form of
the measured thermopower to the forms of Seebeck coeffi-
cients in SM and SC regimes, Eqs. �14� and �19�,
respectively. At low temperatures the latter reduces to
Se�

kB

qe
� 3

2 +�	e+�E11
e � and depends inversely on temperature;

the former instead has a linear T dependence. Also, at higher
temperatures, the thermopower in semiconducting regime
saturates to an asymptotic value, Se� 3

2
kB

qe
, comparable to

�and slightly smaller than� the bulk value Se�
kB

qe
� 5

2 +c�. All
these predictions agree with the experimentally observed be-
havior of the thermopower illustrated in Fig. 3 of Ref. 11.
Our model does not account for the effect of dopant concen-
tration on the transport properties of the alloys. However, in
principle, there is not any restriction to extend it further to
cover the doping effects too.

Finally, let us briefly discuss the relevance of our study to
the similar phenomena in carbon nanotubes �CNTs�. Depend-
ing on its crystal structure, a CNT can be metallic or semi-
conducting. Typically the energy gap of a semiconducting
tube is small, �0.5 eV. Any disturbance �bending of the tube
for example� can alter the crystal structure and introduce a
larger energy gap or reduce it; a metallic tube may turn semi-

FIG. 3. �Color online� Dependence of the Hall coefficient �tri-
angles� and the magnetoresistance �circles� on the width in a weak
magnetic field. Contributions from both the electrons and the holes,
as given by the two-carrier model, are taken into account.
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conducting or vice versa. An analogy to the quantum size
effects discussed above is apparent. Accordingly, we may
anticipate the stepwise change of carbon nanotube conduc-
tance as a function of mechanical disturbance. The imple-
mentation of such an idea could be of interest in nanoelec-
tromechanical applications, in designing an ultrasensitive
transducer, for instance.

VI. CONCLUSIONS

To summarize, a model for the study of confinement ef-
fects and transition to the semiconducting regime in one-

dimensional semimetals is introduced. The model can be ex-
tended to include the nonparabolic contributions to the
dispersion relation and to cover doped semimetals and semi-
conductors at finite temperatures as well. Considering the
nonmonotonic oscillatory dependence of the transport coef-
ficients on the sample size, the analytic results presented here
can be readily utilized to optimize various figures of merit in
different applications. Similar approaches to the one intro-
duced here can be adopted for the study of size effects in
other low-dimensional systems, such as quantum dots or me-
soscopic superconductors, for example.
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