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This article is concerned with a special class of the “double-well-like” potentials that occur naturally in the
analysis of finite quantum systems. Special attention is paid, in particular, to the so-called Fokker-Planck
potential, which has a particular property: the perturbation series for the ground-state energy vanishes to all
orders in the coupling parameter, but the actual ground-state energy is positive and dominated by instanton
configurations of the form exp�−a /g�, where a is the instanton action. The instanton effects are most naturally
taken into account within the modified Bohr-Sommerfeld quantization conditions whose expansion leads to the
generalized perturbative expansions �so-called resurgent expansions� for the energy eigenvalues of the Fokker-
Planck potential. Until now, these resurgent expansions have been mainly applied for small values of coupling
parameter g, while much less attention has been paid to the strong-coupling regime. In this contribution, we
compare the energy values, obtained by directly resumming generalized Bohr-Sommerfeld quantization con-
ditions, to the strong-coupling expansion, for which we determine the first few expansion coefficients in
powers of g−2/3. Detailed calculations are performed for a wide range of coupling parameters g and indicate a
considerable overlap between the regions of validity of the weak-coupling resurgent series and of the strong-
coupling expansion. Apart from the analysis of the energy spectrum of the Fokker-Planck Hamiltonian, we also
briefly discuss the computation of its eigenfunctions. These eigenfunctions may be utilized for the numerical
integration of the �single-particle� time-dependent Schrödinger equation and, hence, for studying the dynamical
evolution of the wave packets in the double-well-like potentials.
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I. INTRODUCTION

In this paper, we study the all-order summation of instan-
ton contributions to the energy eigenvalues of anharmonic
quantum mechanical oscillators which involve �almost� de-
generate minima. The Euclidean path integral of quantum
mechanical systems of this kind with one space and one time
dimension is dominated by instanton configurations whose
action remains finite in the limit of large Euclidean �imagi-
nary� times. In order to find the energy eigenvalues, instan-
ton configurations have to be taken into account. Modified
quantization conditions have been conjectured for various
classes of potentials �for a review see Refs. 1 and 2�, and
accurate numerical calculations have been verified against
analytic expansions in the regime of small coupling.3,4 In-
deed, for small coupling, the energy eigenvalues are domi-
nated by one-, two-, and three-instanton effects which corre-
spond to trajectories of the classical particle with a small
number of oscillations between the �almost� degenerate
minima of the potential. Here, we are concerned with the
all-order summation of the instanton contributions, which is
applicable to intermediate and strong coupling. Also, the
transition from small to strong coupling and strong-coupling
expansions will be discussed. Finally, we consider applica-
tions in the quantum dynamical simulation of finite systems.

The purpose of this paper thus is threefold: first, to find
generalized perturbative expansions �so-called “resurgent ex-
pansions”� for excited states of certain classes of notoriously
problematic5 quantum mechanical potentials; second, to de-
rive large-coupling asymptotics for these potentials and to
investigate overlap regions between small- and large-
coupling asymptotics; and third, to outline applications of the

considerations for the quantum dynamical simulation of a
single particle in a double-well-like potential. The first of
these purposes is connected with mathematical physics, the
second is tied to Symanzik scaling in the “poor man’s” vari-
ant and, therefore, to a basic implementation of the renormal-
ization group, and the third one is rather application oriented.

Within the first and second aims of our investigation, we
also investigate the fundamental question whether small-
coupling perturbative expansions can be continued analyti-
cally to the regime of large coupling if one includes instan-
tons into the formalism. Instantons can be considered either
on the level of a resurgent expansion, augmented by an op-
timized �generalized� Borel-Padé resummation, or on the
level of a generalized quantization condition, which entails
an all-order resummation of the instanton expansion.

The third application is mainly tied to the semiconductor
“double-quantum-dot” structures,6–9 which are formed from
two quantum dots coupled by quantum mechanical tunnel-
ing. Nowadays, these structures are generally accepted to
belong to one of the most hopeful candidates for the realiza-
tion of quantum bits �qubits�, because a single-electron state
in a double-well potential obviously can be localized in ei-
ther of the two wells and, in that sense, represents a two-
quantum-state system needed for quantum computing. In-
deed, the theoretical analysis of the structural and the
dynamical properties of such �single-electron� double quan-
tum dots can be traced back to double-well-like potentials. In
this context, quantum dynamical calculations for a tunneling
of a single particle between the two localized states nowa-
days attract special interest10,11 but require detailed knowl-
edge of the eigenvalues and eigenfunctions of the �double-
well� potentials for a wide range of coupling parameters.
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Another question may as well be asked: The effective
instanton-related expansion parameter, which reads �1�g�
=�2/� e−1/6g /g for the first two excited states of the Fokker-
Planck potential �as discussed below�, is nonperturbatively
small for g→0, but numerically not very small for some
very moderate g. Specifically, �1�g� reaches its maximum
�1�1/6�=1.76115. . . already at a rather small coupling pa-
rameter g=1/6. So one may ask how the “instanton expan-
sion” in powers of �1�g� should be resummed, in addition to
the perturbative expansions about each instanton. This latter
step has never been accomplished, and we pursue its comple-
tion via a direct resummation of generalized quantization
conditions.

This paper is organized as follows. In Sec. II, basic defi-
nitions related to the Fokker-Planck and the double-well po-
tential are recalled. Calculations are described in Sec. III.
Specifically, we consider the resummation of the resurgent
expansion in Sec. III A, the resummation of the quantization
condition in Sec. III B, large-coupling asymptotics in Sec.
III C, and quantum dynamic simulations in Sec. III D. Con-
clusions are drawn in Sec. IV.

II. BASIC FRAMEWORK AND NUMERICAL
PROCEDURE

A. Basic formulation

In this paper, we discuss the determination of the eigen-
values of the one-dimensional Fokker-Planck �FP� Hamil-
tonian

HFP = −
1

2
� d

dq
�2

+
1

2
q2�1 − �gq�2 + �gq −

1

2
, �1�

where g is a positive coupling constant. For g=0, Eq. �1�
represents the Hamiltonian of the quantum harmonic oscilla-
tor whose eigenvalues are given by the well-known formula
E�K�=K, where K=0,1 ,2 , . . . is the “principal” quantum
number. For nonvanishing coupling, in contrast, no closed-
form analytic expressions have been derived so far and ap-
proximations have to be used �for a classification of the
Fokker-Planck Hamiltonian in terms of a supersymmetric
�SUSY� algebra; see the Appendix�. The usefulness of the
notation K instead of N will become clear in the following. If
one considers the operator V�g�=�gq−�gq3+gq4 /2 in Eq.
�1� as a perturbation and formally applies a Rayleigh-
Schrödinger perturbative expansion to the Kth-harmonic-
oscillator state, then one finds the following result for the
first terms:

EFP,pert
�K� �g� = K − 3K2g − �17K3 +

5

2
K�g2 + O�g3� . �2�

All coefficients up to order g80 are available for download.12

This perturbation expansion5 fails to reproduce the spectrum
of the Hamiltonian �1� even qualitatively. For instance, while
the true ground-state energy EFP

�K=0� is manifestly nonvanish-
ing and positive, the perturbation series �2�, for K=0, van-
ishes identically to all orders in the coupling g and is thus
formally converging to a zero-energy eigenvalue. A generali-

zation of perturbation theory is required, therefore, in order
to correctly describe the physical properties of the Fokker-
Planck Hamiltonian, including its energy spectrum.

A complete description of the eigenvalues of the Hamil-
tonian �1� has been proposed recently1,2,4 by using a gener-
alized perturbation series involving instanton contributions.
Since the concept of instantons in quantum mechanics has
been presented in a number of places,1,2,4,13 we may here
restrict ourselves to a rather short account of the basic for-
mulas. In the semiclassical framework, the eigenvalues of the
Fokker-Planck Hamiltonian can be found by solving the gen-
eralized Bohr-Sommerfeld quantization condition4,13

1

�„− BFP�E,g�…�„1 − BFP�E,g�…
+ �−

2

g
�2BFP�E,g�e−AFP�E,g�

2�
= 0.

�3�

In this expression, the functions BFP�E ,g� and AFP�E ,g� de-
termine the perturbative expansion and the perturbative ex-
pansion about the instantons, correspondingly.

The evaluation of these functions in terms of series in
variables E and g has been described in detail elsewhere1,2,13

for rather general classes of potentials. In the particular case
of the Fokker-Planck potential, for example, the function
BFP�E ,g� has the following expansion �see Eq. �14a� of
Ref. 4�:

BFP�E,g� = E + 3E2g + �35E3 +
5

2
E�g2 + O�g3� . �4�

The function BFP�E ,g� alone defines the perturbation expan-
sion �2� which can be easily found by inverting the equation
BFP�E ,g�=K. The instanton contributions to the eigenvalues
of the Fokker-Planck Hamiltonian are described by the func-
tion �see Eq. �14b� of Ref. 4�

AFP�E,g� =
1

3g
+ �17E2 +

5

6
�g + �227E3 +

55

2
E�g2 + O�g3� .

�5�

Extensive numerical checks of the generalized quantization
condition �3� and the expansions �4� and �5� have recently
been performed for the ground state of the Fokker-Planck
potential in the weak-coupling regime.4 However, to the best
of our knowledge, a numerical verification of these formulae
�i� for excited states and �ii� for the large values of g is still
missing. The numerical checks will be presented in Sec.
III B.

While, of course, the present work is mainly devoted to
the investigation of the energies and the corresponding wave
functions of the Fokker-Planck potential, we will also briefly
recall the properties of the well-known double-well potential
which is characterized by the Hamiltonian

Hdw = −
1

2
� d

dq
�2

+
1

2
q2�1 − �gq�2. �6�

Moreover, for the analysis of the energy spectra of the
Hamiltonians �1� and �6� it is very convenient to introduce
the interpolating potential
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HI = −
1

2
� d

dq
�2

+
1

2
q2�1 − �gq�2 + ���gq −

1

2
� , �7�

which corresponds to the double-well potential if �=0,
whereas �=1 gives the Fokker-Planck case.

B. Numerical calculation of eigenenergies

In order to numerically calculate energy eigenvalues of
the Fokker-Planck and of the double-well potential, it is suf-
ficient to consider matrix elements of these potentials in the
basis of harmonic oscillator eigenfunctions and to perform
matrix diagonalization in a large basis spanned by harmonic
oscillator eigenfunctions �typically, a number of �5000 basis
functions is sufficient for all calculations reported in the cur-
rent article�. One then observes the apparent convergence of
the eigenenergies as the size of the basis is increased. This
procedure is numerically stable provided one uses quadru-
pole precision �128-bit, 32-decimal figure� arithmetic.

Fokker-Planck energies of the lowest three eigenstates �of
the potential �1�� found by matrix diagonalization are dis-
played in Fig. 1 as a function of the coupling g �we use the
notation M =0,1 ,2 in order to denote these three energy lev-
els�. As seen from this figure, the states M =1,2 are degen-
erate in the limit g→0. A similar energy level splitting is
well known for the symmetric double-well potential1–3 and
may be explained in terms of nonperturbative instanton con-
tributions. In contrast to the double-well case, the Fokker-
Planck potential contains a linear symmetry-breaking term
�cf. Eq. �1�� and this term might be expected to lift any
degeneracy. However, excited states can still develop a de-
generacy for g→0 in view of the �only perturbatively bro-
ken� parity �= ±1 of the quantum eigenstates. The ground
state of the Fokker-Planck potential, however, is located in
one of the wells and does not develop any degeneracy due to
parity �see also Fig. 9 below�.

It is interesting to investigate the adiabatic following of
eigenvalues for the interpolating potential �7� as a function of
the parameter � for fixed g. This calculation �see Fig. 2�
reveals that the identification of the double-well energy
eigenvalues1–3 with quantum numbers �N ,�� for the double
well with the quantum number M for the Fokker-Planck po-
tential should proceed as follows:

�N = 0, + � ⇔ M = 0, �8a�

�N = 0,− � ⇔ M = 1, �8b�

�N = 1, + � ⇔ M = 2, �8c�

�N = 1,− � ⇔ M = 3. �8d�

The general relation is M =2N+ �1−�� /2. However, the
asymptotic behavior of the eigenenergies for g→0 is differ-
ent in the two cases:

Edw
�N,���g� → N +

1

2
, g → 0, �9a�

EFP
�M��g� → ��M + 1�/2	, g → 0, �9b�

where �x	 is the integral part of x—i.e., the largest integer m
satisfying m�x. Equation �9b� implies that the perturbative
contribution to the Fokker-Planck energy level with quantum
number M is given by Eq. �2� with K= ��M +1� /2	.

Apart from the degeneracy introduced by the instanton
contributions, the eigenvalues EFP

�M=1,2��g� also have a quali-
tatively different dependence on g when compared to the
ground-state energy EFP

�M=0��g�. As seen from Fig. 1, while the
energy EFP

�M=0��g� increases monotonically as a function of the
coupling constant g, the energies EFP

�M=1,2��g� have minima at
g0
0.07 and g0
0.025, respectively.

FIG. 1. �Color online� Eigen-
values EFP

�M=0� �left panel� and
EFP

�M=1,2� �right panel� of the Fok-
ker-Planck Hamiltonian as a func-
tion of the coupling parameter g.
Results have been computed by
the diagonalization of the Fokker-
Planck Hamiltonian �1� in the ba-
sis of the harmonic oscillator
wave functions.

FIG. 2. �Color online� Adiabatic following of the lowest four
eigenvalues of the interpolating potential �7� from �=0 �double-
well� to �=1 �Fokker-Planck potential�. The value of the coupling
parameter is held constant at g=0.007.
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III. RESUMMATIONS, ENERGY EIGENVALUES,
AND QUANTUM DYNAMICS

A. Resummation of the resurgent expansion

The generalized Bohr-Sommerfeld quantization condition
�3� together with the expansions �4� and �5� of the AFP and
BFP functions uniquely determines the eigenvalues of the
Fokker-Planck Hamiltonian. For the ground state, the energy
eigenvalue can be found by systematic expansion of Eq. �3�
in powers of the two small parameters exp�−1/3g� and g,
whereas for excited states, the parameters are exp�−1/6g�
and g. Thus, for the Fokker-Planck potential, the particular
form of the expansion differs for the ground versus excited
states.

Explicitly, the ground-state energy �M =0� is given by the
resurgent expansion4

EFP
�0��g� = �

n=1

� � e−1/3g

2�
�n

�
k=0

n−1 �ln�−
2

g
�k

�
l=0

�

fnkl
�0�gl, �10�

where the index n denotes the order of the “instanton contri-
bution:” n=1 is a one-instanton, n=2 is a two-instanton, etc.
�as noted below, the one-instanton configuration involves a
back-tunneling of the particle to the lower well for the
ground state and thus has twice the action of the character-
istic one-instanton effect for excited states�. Another subtle
point which should be recalled here is that the leading one-
instanton term involves a summation over all possible
n-instanton configurations but neglects instanton
interactions.1 As seen from Eq. �10�, the evaluation of the
ground-state energy within such a �first-order� approxima-
tion, also referred as a “dilute instanton gas” approximation,
requires knowledge of the f10l

�0� coefficients. Since these coef-
ficients are available for download,12 we only recall the six
leading ones:4

f100
�0� = 1, f101

�0� = −
5

6
, f102

�0� = −
155

72
,

f103
�0� = −

17315

1296
, f104

�0� = −
3924815

31104
,

f105
�0� = −

294332125

186624
, f106

�0� = −
163968231175

6718464
. �11�

By inserting these coefficients into Eq. �10�, we are able to
perform now a numerical check of the validity of the one-
instanton expansion for the ground state at small coupling. In
Table I, for example, the energy EFP

�0��g� is displayed for cou-
pling parameters in the range 0.005�g�0.03 and is com-
pared to the “true” eigenvalues as obtained from diagonal-
ization of the Fokker-Planck potential in the basis of
harmonic oscillator wave functions. As seen from Table I, the
ground-state energy is dominated by the one-instanton effect
for relatively small values of the coupling parameter, g
�0.01. For stronger coupling, however, large discrepancies
between the “true” energies and the results of resummation
of Eq. �10� at n=1 are found, indicating the importance of
the higher-instanton terms which take into account the in-

stanton interactions. The evaluation of the higher-order cor-
rections �n	2� to the ground-state energy EFP

�0��g� is, how-
ever, a very difficult task since it requires a double resum-
mation of the resurgent expansion in powers of both g and
exp�−1/3g�. In the present work such a double summation
based on sequentially adding higher-order instanton terms
will not be performed. Still, for the sake of completeness, we
here indicate the leading two-instanton4 and three-instanton
coefficients for the Fokker-Planck ground state:

f210
�0� = 2, f200

�0� = 2
 , f211
�0� = −

10

3
, f201

�0� = −
10

3

 − 3,

f310
�0� = 8
, f300

�0� = 6
2 +
�2

6
,

f311
�0� = −

80

3

 − 6, f301

�0� = − 15
2 − 12
 − 17 +
5

12
�2,

�12�

where 
=0.577216. . . is Euler’s constant.
As seen from Eq. �10�, no splitting into levels with posi-

tive and negative parity arises for the ground state of the
Fokker-Planck potential due to the linear symmetry-breaking
term in Eq. �1�. This term modifies the potential in such a
way that the leading, one-instanton �n=1� shift of the
ground-state energy results from a back-tunneling �instanton-
antiinstanton configuration� of the particle to the lower well.4

For excited states, in contrast, the one-instanton configura-
tion is a trajectory which starts in one well and ends in the
other, restoring the broken symmetry. Therefore, any excited
state �M �0� of the Fokker-Planck Hamiltonian can be char-
acterized by its principal quantum number

TABLE I. Ground-state energy of the Fokker-Planck Hamil-
tonian. Results have been computed by the diagonalization of the
Hamiltonian in the basis of the harmonic oscillator wave functions
�“true” energy� and by resummation of Eq. �14� within the one-
instanton approximation �n=1�. The numerical uncertainty of the
entries in the right column is estimated on the basis of the apparent
convergence of results under an appropriate increase of the number
of f10l

�0� parameters, which corresponds to the number of terms in the
perturbative expansion about the leading instanton. Numerical dis-
crepancies between the left and right columns are due to higher-
order instanton contributions, as described in the text. We underline
those decimal figures in the one-instanton results which are equal to
the corresponding ones in the complete numerical solution.

g EFP
�M=0� �diagonalization� n=1 term of Eq. �10�

0.005 1.766 107 332 563�10−20 1.766 107 332 563�10−30

0.010 5.267 473 259 637�10−16 5.267 473 259 637�10−16

0.015 3.508 587 565372�10−11 3.508 587 564 030�10−11

0.020 9.033 155 571 641�10−09 9.033 154 730 920�10−09

0.025 2.519 767 018 258�10−07 2.519 760 770 755�1��10−07

0.030 2.313 302 179 961�10−06 2.313 251 574 075�2��10−06
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K = ��M + 1�/2	 �13�

and parity

� = 2�2K − M −
1

2
� . �14�

In fact, this classification is very similar to the double-well
potential �6� except, of course, the particular case of the
ground state. It follows naturally that the resurgent expansion
for the excited states of the Fokker-Planck potential is very
close to the analogous expansion for the double-well poten-
tial and reads4

EFP
�M�0��g� = EFP

�K,���g� = �
l=0

�

EK,lg
l + �

n=1

�

�− ��K�g��n

��
k=0

n−1 �ln�−
2

g
�k

�
l=0

�

fnkl
�K�gl, �15�

where EK,l are perturbative coefficients and �K�g� is given
by

�K�g� =
2K−1/2

gK��K!�K − 1�!
e−1/6g. �16�

The power of � can again be associated with the order of the
instanton �K=1 means one-instanton, K=2 means two-
instanton, etc.�. One should note that two intricacies are as-
sociated with the precise meaning of the quantities that enter
Eq. �15�.

�i� In analogy to the double-well potential, the imaginary
part which is generated by the resummation of the perturba-
tion series about the leading instanton �the “discontinuity” of
the distributional Borel sum in the terminology of Ref. 14� is
compensated for by an explicit imaginary part that stems
from the two-instanton effect �from the factor ln�−2/g��. Re-
lated questions have been discussed at length in Refs. 1 and
2.

�ii� In contrast to the ground-state energy �10�, the leading
contribution to the energies EFP

��,K�0��g� for small coupling
arises from the perturbation expansion �2� which is mani-
festly nonvanishing to all orders in g. However, since this
perturbation expansion is independent of the parity �, the
energy splitting of the levels with the same principal quan-
tum number K is again dominated by the one-instanton con-
tribution �n=1�.

Similar to the ground state �10�, we may compute such a
contribution and, hence, a splitting of an arbitrary excited
state K by making use of the f10l

�K� coefficients, which for K
�0 read �l=0,1 ,2 ,3�

f100
�K� = 1, f101

�K� = −
17

2
K2 − 6K −

5

12
, �17a�

f102
�K� =

289

8
K4 −

23

2
K3 −

1139

24
K2 −

45

4
K −

695

288
, �17b�

f103
�K� = −

4913

48
K6 +

629

2
K5 +

1637

32
K4 −

1885

3
K3

−
155825

576
K2 −

3835

24
K −

68885

10368
. �17c�

Results for K�28 are available for download.12 In Table II,
for example, the splitting EFP

��=−1,K=1��g�−EFP
��=+1,K=1��g� of the

first two excited states M =1,2 due to the one-instanton ef-
fect �n=1� is displayed as a function of the coupling param-
eter g. Again, a comparison of the results obtained by the
resummation of Eq. �15� and by the diagonalization of the
Fokker-Planck Hamiltonian indicates the importance of the
higher-instanton effects �n�1� and, hence, the necessity of a
double resummation of the resurgent expansion, in powers of
both g and exp�−1/6g�. Instead of performing such a double
summation explicitly, it is more convenient to enter directly
into the quantization condition �3�, with resummed quantities
as defined by the AFP�E ,g� and BFP�E ,g� functions. We dis-
cuss this alternative approach in the next section.

B. Resummation of the quantization condition

The resurgent expansions �10� and �15� for the energies of
the ground and excited states of the Fokker-Planck Hamil-
tonian follow as a direct consequence of the quantization
condition �3�. As seen from our calculations summarized in
Tables I and II, these expansions are very useful for small
coupling, but not of particular usefulness even for rather
moderate values of g, because of the necessity of their
double resummation. Here, we would like to investigate
whether it is possible to resum the divergent series that gives
rise to AFP�E ,g� and BFP�E ,g� directly and look for solutions
of the quantization condition �3� without any intermediate
recourse to the resurgent expansion. In fact, this approach
currently appears to be the only feasible way to evaluate the
multi-instanton expansion �in powers of n�, because the
quantization condition incorporates all instanton orders.

TABLE II. Energy difference between the excited states
EFP

�M=1,2��g� of the Fokker-Planck Hamiltonian. Results have been
computed by diagonalizing the Hamiltonian in the basis of the har-
monic oscillator wave functions �left column� and by resummation
of Eq. �15� within the one-instanton approximation �right column�.
The numerical uncertainty is estimated on the basis of the apparent
convergence of results under an appropriate increase of the number
of f10l

�K� parameters. As in Table I, we underline those decimal figures
in the one-instanton results which are equal to the corresponding
ones in the complete numerical solution.

g EFP
�M=2�−EFP

�M=1� �diag� n=1 term of Eq. �15�

0.005 9.848 553 978 903�10−13 9.848 553 978 903�10−13

0.010 7.801 059 663 554�10−06 7.801 059 659 99�1��10−06

0.015 1.213 924 539 483�10−03 1.213 91 452�2��10−03

0.020 1.289 613 568 640�10−02 1.288 765�1��10−02

0.025 4.633 794 364 814�10−02 4.61 6�1��10−02

0.030 9.699 341 140 782�10−02 9.610 2�6��10−02
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In order to introduce such a “direct summation” approach,
we recall that the solution of the generalized Bohr-
Sommerfeld quantization condition �3� for a particular cou-
pling parameter g must provide the energy spectrum of the
Fokker-Planck Hamiltonian. In other words, if one defines
the left-hand side of the quantization condition �3� as a func-
tion of two variables E and g,

Q�E,g� =
1

�„− BFP�E,g�…�„1 − BFP�E,g�…

+ �−
2

g
�2BFP�E,g�e−AFP�E,g�

2�
, �18�

then the zeros of this function at fixed g determine the energy
spectrum of �1�:

Q�EFP
�M��g�,g� = 0, M = 0,1,2,… . . �19�

A numerical analysis of the function Q�E ,g� can be used,
therefore, in order to examine the validity and applicability
of the generalized quantization condition given by Eqs.
�3�–�5� for the case of strong coupling.

As seen from Eq. �18�, any analysis of the function
Q�E ,g� can be traced back to the evaluation of the functions
AFP�E ,g� and BFP�E ,g� which constitute series in two vari-
ables: namely, E and g �cf. Eqs. �4� and �5��. In order to
compute these series, it is convenient to rewrite the functions
AFP�E ,g���AFP�E ,gx��x=1 and BFP�E ,g���BFP�E ,gx��x=1 as
�formal� power series in terms of a variable x, taken at x
=1 �cf. Sec. 8.5 of Ref. 15�:

BFP�E,g� = �
n=0

Nmax

�bFP
�n��E,g�xn�x=1, �20�

AFP�E,g� −
1

3g
= �

n=1

Nmax

�aFP
�n��E,g�xn�x=1, �21�

where the coefficients aFP
�n��E ,g� and bFP

�n��E ,g� are uniquely
determined by Eqs. �4� and �5�: bFP

�0��E ,g�=E, bFP
�1��E ,g�

=3E2g, etc. In the computations, the power series �20� and
�21� allow one to use a unified computer algebra routine for
the Borel-like summations, which simply takes as input the
variables aFP

�n��E ,g� and bFP
�n��E ,g�, as a function of g, and

returns the value of the resummed series at x=1. Indeed, this
routine can be universally used for different values of g and
is therefore convenient for further numerical computations
which are discussed below.

Making use of Eqs. �20� and �21�, we may now perform a
simultaneous summation of the perturbation series as well as
of the perturbation series about each of the instantons and
find the functions BFP�E ,g� and AFP�E ,g�, correspondingly,
where we use the same notation for a function and its Borel
sum. There is a small subtlety because for positive g, the
power series �20� and �21� are nonalternating and divergent
and, hence, special resummation techniques are required to
calculate the Borel sums. In our present calculations, for ex-
ample, we apply a generalized Borel-Padé method.16,17 The
discussion of this method is beyond the scope of the present
work, and the reader is referred to Refs. 16–18 for a more

detailed discussion. Because of their nonalternating property,
the perturbation series defining the functions AFP�E ,g� and
BFP�E ,g� are Borel summable only in the distributional
sense.14 The evaluation of the Borel-Laplace integral thus
requires an integration along a contour which is tilted with
respect to the real axis �for details see Refs. 17–19 and the
contours C+1 and C−1 in Ref. 16�. The resummation of the
divergent series �20� and �21� may be carried out along each
of these contours, but it is important to characterize the per-
turbative and instanton contributions in the same way—i.e.,
to deform the contours for BFP�E ,g� and AFP�E ,g� either
above or below the real axis, consistently. In the terminology
of Ref. 14, one should exclusively use either “upper sums”
or “lower sums,” but mixed prescriptions are forbidden.
From a historical perspective, it is interesting to remark that
the possibility of deforming the Borel integration contour
had already been anticipated in a remark near the end of
Chap. 8 of the classic Ref. 15.

We are now in the position to analyze the properties of the
function Q�E ,g� and, hence, to extract the energy spectrum
of the Fokker-Planck Hamiltonian. As mentioned above, to
perform such an analysis for any particular g we have to �i�
resum the �divergent� series for the functions AFP�E ,g� and
BFP�E ,g� and �ii� insert the resulting generalized Borel sums
into Eq. �18�. We may then interpret the Q�E ,g� as a function

TABLE III. Ground-state energy of the Fokker-Planck Hamil-
tonian. Results have been computed by the diagonalization of the
Hamiltonian in the basis of the harmonic oscillator wave functions
�left column� and by solving Eq. �19�, as indicated in the right
column.

g EFP
�0� �diagonalization� Zero of Re�Q�E ,g��

0.010 5.267 473 259 637�10−16 5.267 473 259 637�10−16

0.030 2.313 302 179 961�10−06 2.313 302 17�2��10−06

0.070 1.267 755 797 982�10−03 1.267 74�6��10−03

0.100 5.199 138 696 222�10−03 5.199 3�2��10−03

0.170 2.079 244 408 360�10−02 2.078�1��10−02

0.300 5.318 357 438 655�10−02 5.323�9��10−02

FIG. 3. �Color online� Energy dependence of �the real part of�
the function Q�E ,g�. Calculations have been performed for fixed
g=0.03.
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of E �at fixed g� and �iii� numerically determine the zeros of
this function which correspond to the energy values EFP

�M� of
the Fokker-Planck Hamiltonian, according to Eq. �19�. In
Fig. 3, for instance, we display the energy dependence of the
real part of the function Q�E ,g� taken at g=0.03. In the
energy range 0E1, this function has three zeros which
obviously correspond to the ground EFP

�0� and to the excited
EFP

�1,2� states. The ground-state energy EFP
�0� determined in such

a way is presented in Table III and compared to reference
values obtained by the diagonalization of the Hamiltonian
matrix in the basis of harmonic oscillator wave functions.
Moreover, apart from the particular case of g=0.03, we also
display the energy EFP

�0� for other coupling parameters span-
ning the range from g=0.01 to g=0.3 �see also Fig. 4�. This
rather wide range of coupling parameters g considered here
allows us to investigate the behavior of the generalized Bohr-
Sommerfeld quantization condition in the transition from
weak to strong coupling. As seen from Table III, the ground-
state energy is well reproduced at g=0.01 �up to 14 decimal
digits�. Alternatively, a highly accurate value of the ground-
state energy �at g=0.01� can be obtained from the one-

instanton contribution to the resurgent expansion �10� for g
0.01, as indicated in Table I. The accuracy of the one-
instanton approximation is rapidly decreasing for higher g.
For instance, at the moderate value of g=0.03, the one-
instanton term of the resurgent expansion �10� reproduces the
ground-state energy only to four decimal digits �see the last
row of Table I�, while a total of eight digits can be obtained
from solving Eq. �19�, as indicated in the second row of
Table III. For even stronger coupling, one observes a much
larger numerical uncertainty in the determination of the zeros
of the function Q�E ,g�, because the convergence of the gen-
eralized and optimized Borel-Padé methods employed in the
resummation of the AFP�E ,g� and BFP�E ,g� functions is em-
pirically observed to reach fundamental limits for larger val-
ues of the coupling, which cannot be overcome by the use of
multiprecision arithmetic and might indicate a fundamental
limitation for the convergence of the transforms and are not
due to numerical cancellations. It might be interesting to ex-
plore these limits also from a mathematical point of view.
Specifically, we have determined the numerical uncertainty
of the AFP�E ,g� and BFP�E ,g� functions on the basis of the
apparent convergence of the Borel-Padé approximants, inte-

FIG. 4. �Color online� Energy dependence of �the real part of� the function Q�E ,g�. As in Fig. 3, the results of linear regression analysis
of the function Q�E ,g� are depicted by the solid line. Calculations have been performed around the “true” energies of the ground state and
for the different values of the coupling parameter: g=0.03 �left panel�, g=0.1 �middle panel�, and g=0.3 �right panel�. The energy
eigenvalues obtained using the displayed graphs determine the corresponding entries in the right column of Table III.

FIG. 5. �Color online� Energy dependence of �the real part of� the function Q�E ,g�. The results for the zeroes of Q�E ,g� obtained by a
quadratic regression analysis are depicted by solid lines. Calculations have been performed around the “true” energies of the first excited
state with K=1, �+1 �M =1� and for three different values of the coupling parameter: g=0.01 �left panel�, g=0.03 �middle panel�, and g
=0.05 �right panel�. The energy eigenvalues obtained using the displayed graphs determine the corresponding entries in the right column of
Table IV.
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grated in the complex plane and accelerated according to
Ref. 17, using an optimal truncation of the order of the trans-
forms. We found that as the order of the Borel-Padé trans-
formation was increased, the apparent convergence of the
transforms stopped at around order 40 for g=0.03 and
higher. Despite these difficulties, the generalized Bohr-
Sommerfeld quantization formula �19� determines the
ground-state energy of the Fokker-Planck potential with an
accuracy of about 0.01% up to g�0.3 �cf. Table III�.

Until now we have discussed the computation of the
ground-state energy EFP

�0� of the Fokker-Planck Hamiltonian.
Of course, the function Q�E ,g� may also help to determine
the energies of excited states. In contrast to the ground state,
however, the numerical analysis of the function Q�E ,g� for
excited states is more complicated due to bad convergence of
the Borel sums for the AFP�E ,g� and BFP�E ,g� functions in
the energy range relevant for the excited states. As seen from
Fig. 5, the convergence problems lead to relatively large nu-
merical uncertainties for the numerical calculation of the
function Q�E ,g� already for a relatively mild coupling pa-
rameter g=0.07. We recall that this value of g corresponds to
the minimum of the energy EFP

�M=1��g� as a function of g and
thus can be naturally identified as marking the transition
from weak to strong coupling. As a result of the numerical
uncertainties, the energy EFP

�M=1��g=0.07� of the first excited
state may be reproduced only up to two decimal digits �see
Table IV�. For even larger values of parameter g, the maxi-
mal accuracy of calculations, based on Eq. �19�, is only a

single significant digit, even though the double resummation
of the instanton expansion, and of the perturbative expansion
about each instanton, is implicitly contained in the cited
equation.

Supplementing the specific Fokker-Planck energies of the
M =0,1 states presented in Tables III and IV, we indicate in
Fig. 6 the g dependence of the energies EFP

�0� and EFP
�1� as

obtained from the analysis of the function Q�E ,g� and com-
pare to reference values obtained from the diagonalization of
the Hamiltonian matrix. As indicated in Fig. 6, the results
obtained by a direct resummation of the quantization condi-
tion give a good quantitative picture of the ground-state and
the first-excited-state eigenvalues in the ranges 0�g�0.7
and 0�g�0.3, respectively. The behavior of the numerical
uncertainty as a function of g is explicitly shown in Fig. 7,
where we plot the quantity

��g� = �EFP,resum
�M� �g� − EFP,diag

�M� �g�
EFP,diag

�M� �g�
� , �22�

with EFP,resum
�M� �g� and EFP,diag

�M� �g� being the eigenvalues as ob-
tained from the direct resummation of the quantization con-
dition given in Eq. �19� and the diagonalization of the Ham-
iltonian �1�, respectively �the latter values, which are numeri-

TABLE IV. The energy of the first excited state with M =1 of
the Fokker-Planck Hamiltonian. Results have been computed by the
diagonalization of the Hamiltonian in the basis of the harmonic
oscillator wave functions �exact energy� and by solving Eq. �19�.

g EFP
�M=1� �diagonalization� Zero of Re�Q�E ,g��

0.010 9.677 074 461 352�10−01 9.677 074 461 352�10−01

0.020 9.219 489 780 495�10−01 9.219 490�3��10−01

0.030 8.354 795 860 905�10−01 8.354 4�6��10−01

0.070 6.828 548 309 058�10−01 6.833�4��10−01

0.200 8.710 869 037 634�10−01 8.76�5��10−01

0.250 9.508 936 793 119�10−01 9� .4�2��10−01

FIG. 6. �Color online� Eigenvalues EFP
�M=0� �left panel� and EFP

�M=1��EFP
�K=1,�=+1� �right panel� of the Fokker-Planck Hamiltonian as a

functions of the coupling parameter g. Results have been computed by the diagonalization of the Fokker-Planck Hamiltonian in the basis of
the harmonic oscillator wave functions �solid lines� and by solving Eq. �19�, where the latter correspond to the data points with the error bars.

FIG. 7. �Color online� Relative error �22� of calculations of the
eigenvalues as a function of coupling constant g. Results are pre-
sented for the ground �M =0� and the first excited �M =1� states of
the Fokker-Planck potential.
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cally more accurate, are taken as the reference values�. While
the accuracy of resummations for the ground-state energy
remains satisfactory even for �relatively� strong coupling, the
relative error for the first excited is numerically much more
significant.

C. Strong-coupling expansion

As discussed in the previous section, a numerical proce-
dure based on the generalized Bohr-Sommerfeld formulas
may provide relatively accurate estimates of the ground as
well as the �first two� excited-state energies for the coupling
parameters in the range 0�g�0.3. The question arises
whether g
0.3 can be considered as belonging to the strong-
coupling regime. Since the minima of the first two excited-
state energies occur at g=0.07 and g=0.025, respectively,
one might be tempted to answer the question affirmatively.
However, one could devise a different criterion for the tran-
sition to the strong coupling regime. For instance, one might
define the strong-coupling region as a region of an appropri-
ately specified large-coupling asymptotic behavior of the ei-
genvalues EFP

�M��g�.
The large-coupling asymptotics of the Fokker-Planck po-

tential thus represents a natural next aim in the current in-
vestigation. To this end, we apply a so-called Symanzik scal-
ing q→g−1/6q in Eq. �1� and rewrite the Fokker-Planck
potential into another one with the same eigenvalues but a
fundamentally different structure,20,21

HFP = g1/3�HL + �− q3 −
1

2
�g−1/3 +

q2

2
g−2/3� , �23�

where the Hamiltonian HL does not depend on g:

HL = −
1

2
� d

dq
�2

+ q +
q4

2
. �24�

We conclude that the Mth eigenvalue of the Fokker-Planck
Hamiltonian for the g→� is determined in leading order by
the Mth eigenvalue EL

�M� of the Hamiltonian �24�:

EFP
�M��g� 
 g1/3EL

�M�. �25�

Moreover, Eq. �25� also indicates that the classifications of
the levels M =0,1 ,2 , . . . of the Fokker-Planck and HL Hamil-
tonians are obviously identical in the strong-coupling re-
gime.

Based on Eq. �25�, we now wish to compute the leading
asymptotics of the ground-state EFP

�M=0��g� and excited-state
EFP

�M=1,2��g� energies of the Fokker-Planck Hamiltonian. This
computation obviously requires information about the corre-
sponding eigenvalues of the Hamiltonian HL. The energies
EL

�M� have again been determined by a diagonalization of the
Hamiltonian matrix within a basis of up to 1000 harmonic
oscillator wave functions and then utilized in Eq. �25�. As
seen from Fig. 8, the leading asymptotics of the eigenvalues
EFP

�M=0,1,2��g� �dotted line�, calculated in such a way, signifi-
cantly overestimate the energies of the Fokker-Planck Hamil-
tonian for the region 0�g�0.3. Higher-order corrections to
the large-coupling asymptotics are therefore required, in or-
der to reproduce more accurately the asymptotics of the ei-

genvalues EFP
�M=0,1,2��g�. We observe that we may apply stan-

dard Rayleigh-Schrödinger perturbation theory to Eq. �23�
and use the fact that the perturbative with respect to HL,
which is V�g�= �−q3−1/2�g−1/3+q2g−2/3 /2, remains Kato
bounded with respect to the unperturbed Hamiltonian HL for
large g. Within such an approach, a strong-coupling pertur-
bation expansion can be written for each energy EFP

�M��g�:

EFP
�M��g� = g1/3�

k=0

�

Lk
�M�g−2k/3, �26�

where L0
�M��EL

�M� and the higher perturbation coefficients
Lk�0

�M� are calculated in the basis of the wave functions of the
unperturbed Hamiltonian �24�. The first six Lk

�M� coefficients
for the ground M =0 as well as the first excited M =1,2 states
are given in Table V.

In Fig. 8, we implement the first few expansion coeffi-
cients as listed in Table V, in order to calculate strong-
coupling asymptotics for the three lowest levels of the
Fokker-Planck Hamiltonian �dashed lines�. Obviously, the
partial sum of the expansion �26� as defined by only six
coefficients provides much better agreement with numeri-
cally determined energy eigenvalues than the leading asymp-
totics �25�. For instance, the energy of the first excited state
M =1 is very well described by the �first six terms of the�
strong-coupling expansion already at g=0.07 �the agreement

FIG. 8. �Color online� Exact values �solid line� for the ground
state and the two lowest excited energy levels for the Fokker-Planck
potential as a function of g, together with the leading asymptotics
�dotted line� and the partial sum of the strong-coupling expansion
�dashed line� as defined by the first six nonvanishing terms in pow-
ers of g−2k/3 �see Eq. �26��, which are listed in Table III. Note that
the leading strong-coupling asymptotics alone cannot satisfactorily
describe the true energy eigenvalues for moderate and small cou-
pling. By contrast, the partial sum of the first six nonvanishing
terms of the strong-coupling asymptotics yields numerical values
which are indistinguishable from the true eigenvalues on the level
of the line thickness used in the plots, down to rather small values
of the coupling �dashed vs solid lines�.
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is better than 1%�. This point, which also corresponds to the
minimum of the function EFP

�M=1��g�, can thus naturally be
identified as the transition region between the regimes of
weak and strong coupling. By using such a definition for the
transitory regime, we may finally conclude that the resum-
mation of the Bohr-Sommerfeld quantization formulas
�3�–�5�, using the condition �19�, may provide reasonable
estimates for the energy levels EFP

�M��g� even in a limited sub-
region of the strong-coupling regime.

D. Quantum dynamics

In previous sections of the current paper, we have pre-
sented a systematic study of the energy spectrum of the
Fokker-Planck potential. In particular, two methods for com-
puting the eigenvalues EFP

�M��g� have been discussed in detail:
�i� a “brute-force” method which is based on the diagonal-
ization of the Hamiltonian matrix and �ii� a generalized per-
turbative approach which accounts for the instanton effects.
While, of course, the precise computation of the energy lev-
els is a very important task, the complete description of the
properties of the particular Hamiltonian also requires an ac-
cess to its wave functions �FP

�M��q�. Most naturally, these
wave functions may be obtained together with the eigenval-
ues EFP

�M��g� by matrix diagonalization. In our calculations,
the basis of the standard harmonic oscillator wave function
��n�q��n=0

� is used for the construction of a Hamiltonian ma-
trix ��n�HFP��m�. The Fokker-Planck eigenfunctions are thus
given by

�FP
�M��q� = �

n=0

�

cn
�M��n�q� , �27�

where the coefficients cn
�M� are found by the diagonalization

procedure. In Fig. 9 we display, for example, the wave func-
tions �27� of the ground M =0 and the first excited M =1,2
states as calculated for a coupling parameter g=0.05. As is
evident from Fig. 9, the symmetry-breaking term of the
Hamiltonian �1� leads to a ground-state wave function
�FP

�M=0��q� �dashed line� which is neither a symmetric nor
antisymmetric combination of the wave functions of the right
and left wells, but localized in the lower well. For the first
excited states, in contrast, the symmetry is partially restored,
and we may attribute the wave functions �FP

�M=1��q� �dashed

and dotted line� and �FP
�M=2��q� �dotted line� to states with

positive ��= +1� and negative ��=−1� parities �see also Eqs.
�13� and �14��.

Until now, we have only discussed the evaluation of the
eigenstates and eigenenergies of the Fokker-Planck Hamil-
tonian. In theoretical studies of double-quantum-dot nano-
structures10,11,22,23 and of the quantum tunneling phenomena
in atomic physics,24,25 a large number of problems arise, in
which the time propagation of some �specially prepared�
wave packet in double-well-like potentials has to be consid-
ered. Methods for such a time propagation, such as the well-
known Crank-Nicolson method, the split-operator technique,
and approaches based on the Floquet formalism and many
others, are discussed in detail in the literature �see, e.g., Refs.
10, 22, and 26–28�. As a supplement to our previous consid-
erations, we will now consider the time propagation of an
initial wave packet in a double-well-like potential, recalling
the adiabatic approach as one of the most simple and best-
known techniques �see, e.g., Ref. 29, and references therein�
for the integration of the �time-dependent� single-particle
Schrödinger equation. Within such a technique, in which we
can naturally make use of the results previously derived for
the eigenstates and eigenenergies, the propagation of a wave
packet ��q , t� in the �time-independent� Fokker-Planck po-
tential �1� is given by

��q,t� = �
M=0

�

b�M� exp�− iEFP
�M�t��FP

�M��q� . �28�

Here the coefficients b�M�= ��FP
�M�����t=0�� determine the de-

composition of the initial wave packet �at t=0� in the basis of
the eigenfunctions �27�.

Equation �28� provides an exact solution for the wave
function ��q , t� at an arbitrary moment of time only in the
limit of an infinitely large basis of harmonic oscillator
��n�q��n=0

� and Fokker-Planck ��FP
�M��q��M=0

� wave functions.
For computational reasons, however, summations over basis
functions have to be restricted to a finite number. In our

TABLE V. Lk
�M� coefficients of the strong-coupling perturbation

expansion �26� of the eigenvalues EFP
�M=0,1,2� of the Fokker-Planck

Hamiltonian.

j M =0 M =1 M =2

0 0.281 067 805 1.854 587 292 3.686 419 624

1 −0.132 985 313 −0.209 853 650 −0.307 985 031

2 0.021 367 333 0.028 174 214 0.025 765 237

3 −0.000 876 935 0.000 220 875 −0.000 099 791

4 −0.000 060 335 0.000 031 789 −0.000 002 135

5 −0.000 001 557 0.000 000 739 −0.000 000 385

FIG. 9. �Color online� The wave functions �FP
�M��q� of the

ground M =0 and the first excited M =1,2 states of the Fokker-
Planck Hamiltonian calculated at coupling parameter g=0.05. The
base lines for the plots of the wave functions correspond to their
energies EFP

�M��g�.
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calculations, basis sets of 300–1000 wave functions have
been applied depending on the parameters of the initial wave
packet and the coupling parameter g. The actual size of the
basis has been chosen according to the numerical checks of
the Ehrenfest theorem or the normalization of the wave
packet.

Within the adiabatic approximation, which is valid for
slowly varying potentials,29,30 we may divide the time evo-
lution of the potential into small intervals �t and assume that
for every kth interval the Hamiltonian is time independent
and the propagation of the wave packet is governed again by
Eq. �28� where, of course, eigenvalues EFP

�M� and eigenfunc-
tions �FP

�M��q� should be replaced with the eigenvalues Ek
�M�

and eigenfunctions �k
�M��q� of the Hamiltonian Hk�H�tk�.

We have applied this adiabatic time-propagation method,
whose variations are well known from the literature29,31–33

and which is equivalent to an exponentiation of the instanta-
neous Hamiltonian for each time interval �t, to investigate
the evolution of an �initially� Gaussian wave packet in a
time-dependent potential �7� which oscillates sinusoidally
between the Fokker-Planck and the double-well cases. Since
the animated results of this simulation are available for
download,12 we just present a small series of snapshots in
Fig. 10. As seen from these pictures, the wave packet, which
is initially located in the right well, performs oscillations
between the wells. These oscillations are controlled by the
temporal change of the potential �7�. We have checked em-
pirically that the adiabatic approximation employed here
does not represent an obstacle for an accurate time evolution
in even rapidly oscillating potentials, because of the calcula-
tional efficiency of the other steps in our time propagation
algorithm �notably, the diagonalization including the deter-
mination of eigenvectors can be implemented in a computa-
tionally very favorable way on modern computers�. It is thus
possible to perform quantum dynamical simulations in po-
tentials which oscillate between two limiting forms with two
fundamentally different characteristic ground-state configu-
rations, each of which is governed by instantons, though in a

different way. A generalization of our approach to two-
dimensional potentials appears to be feasible and is currently
being studied.

IV. CONCLUSIONS

In this paper, we have investigated the Fokker-Planck �Eq.
�1�� and the double-well �Eq. �6�� potentials from the point of
view of large-order perturbation theory �resurgent expansion
and generalized quantization condition�, in order to map out
the regimes of validity of the instanton-related resurgent ex-
pansion for the lowest energy levels and in order to explore
the possibility of reaching the strong-coupling regime via a
direct resummation of the AFP and BFP functions given in
Eqs. �4� and �5�, which enter the generalized quantization
condition �3�. The latter approach entails a complete double
resummation of the resurgent expansions �10� and �15� both
in powers of the instanton coupling exp�−1/6g� and in pow-
ers of the coupling g �perturbative expansion about each in-
stanton�. The quest has been to explore the applicability of
resummed expansions for medium and large coupling param-
eters, in the transitory regime to large coupling.

It is quite natural to identify the transition region for the
first excited state as defined by the minimum of the energy
level EFP

�M=1��g� as a function of g �see the right panel of Fig.
6�, which occurs near g
0.07. As is evident from Figs. 6
and 8, it is possible to reach convergence for both the re-
summed secular equation �19� as well as convergence of the
strong-coupling expansion �26� in a somewhat restricted
overlap region 0.04�g�0.3. The question whether it is pos-
sible to use the resummed instanton expansion for large cou-
pling cannot universally be answered affirmatively, although
it is reassuring to find at least a restricted region of overlap.
In order to interpret the overlap, one should remember that
for typical Borel summable series as they originate in various
contexts in field theory, it is much easier to perform resum-
mations at moderate and even large coupling parameters than

FIG. 10. �Color online� Time
propagation of the �initially�
Gaussian wave packet in the time-
dependent potential �7� with �
=sin�t /60� which oscillates be-
tween the double-well and Fok-
ker-Planck potentials. The base
line for the plot of the wave func-
tion corresponds to its instanta-
neous energy.
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for the instanton-related case considered here. An example is
the 30-loop resummation of the anomalous dimension 

function of six-dimensional �3 theories and of Yukawa
model theories,34 which lead to excellent convergence for
couplings as large as g=10 and higher.17

For the latter case, it is even possible to obtain, numeri-
cally, the strong-coupling asymptotics on the basis of a re-
summed weak-coupling perturbation theory �see, e.g., Ref.
35 for a remarkable realization of this idea in an extremely
nontrivial context�. The general notion is that any perturba-
tion �a potential in the case of quantum mechanics and an
interaction Lagrangian in the case of field theory� determines
the large-order behavior of perturbation series describing a
specific physical quantity. However, the potential or interac-
tion Lagrangian also determine the large-coupling expansion
for the physical quantity under investigation. This means that
there is a connection between the large-coupling expansion
and the large-order behavior of the perturbation series gen-
erated in each theory, and this correspondence can be ex-
ploited in order to infer strong-coupling asymptotics even in
cases where only a few perturbative terms are known.35 Ac-
cording to our numerical results, the corresponding calcula-
tion of strong-coupling asymptotics on the basis of only a
few perturbative terms would be much more difficult in cases
where instantons are present, even if, like in our case, addi-
tional information is present in the form of the generalized
quantization condition �3�.

We deliberately refrain from speculating about further im-
plications of this observation and continue with a summary
of the application-oriented results gained in the current in-
vestigation. Potentials of the double-well type are important
for a number of application-oriented calculations, including
Josephson junction qubits,36,37 inversion doubling in molecu-
lar physics,38,39 and semiconductor double quantum dots,7–9

as well as, in a wider context, Bose-Einstein condensates in
multiwell traps.40–43 For the third of these cases, a number of
theoretical works have been performed recently in order to
explore the time propagation of �one-particle� wave packets
in driven double-well potentials.10,11,23 In Sec. II B we dis-
cuss a numerical procedure for an accurate description of
energy levels and of the corresponding wave functions,
which can thus be used in order to construct basis sets for an
accurate quantum dynamical time evolution of wave packets
in both static and time-dependent potentials. This well-
known adiabatic technique for the integration of the �single-
particle� time-dependent Schrödinger equation is briefly re-
called in Sec. III D. We illustrate this technique by a
calculation for a potential which oscillates between the
Fokker-Planck and the double-well cases, governed by a
time-dependent interpolating parameter �=cos��t� as given
in Eq. �7�. Similar calculations can be done for cases where
the potential admits resonances as in the case of a cubic
anharmonic oscillator. In this case, the method of complex
scaling leads to a basis of states which can be used in order
to start quantum dynamical simulations. Related work is cur-
rently in progress.
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APPENDIX: SUPERSYMMETRY AND THE
FOKKER-PLANCK POTENTIAL

This Appendix is meant to provide a brief identification of
the Fokker-Planck potential �1� in terms of a SUSY
algebra.44,45 We define the operators

B± =
1
�2

�W�q� �
d

dq
� , �A1�

with W�q�=q�1−�gq� and the SUSY Hamiltonian

HSUSY = �B+B− 0

0 B−B+ � = �H1 0

0 H2
� , �A2�

with

H1 = −
1

2
� d

dq
�2

+
1

2
q2�1 − �gq�2 + �gq −

1

2
, �A3a�

H2 = −
1

2
� d

dq
�2

+
1

2
q2�1 − �gq�2 − �gq +

1

2
. �A3b�

Notice that W�q� finds a natural interpretation as a “superpo-
tential” in the sense of Refs. 44 and 45. The Hamiltonians H1
and H2 are “superpartners.” They are related to each other by
a simple reflection and translation, q→1/�g−q, and have
the same spectra. In that sense, one may say that the Fokker-
Planck potential is its own superpartner. The Fokker-Planck
potential therefore constitutes a case of “broken supersym-
metry” with zero Witten index �see, e.g., Eq. �2.88� of Ref.
45�. The construction of the supersymmetric partner thus
does not help in the analysis of the Fokker-Planck Hamil-
tonian. One is forced into the instanton-inspired analysis pre-
sented in the current study.

As a last remark, we recall that the Fokker-Planck poten-
tial

VFP�q� =
1

2
q2�1 − �gq�2 + �gq −

1

2
=

1

2
�W2�q� − W��q��

�A4�

could be assumed to admit a zero eigenvalue. However, as is
evident from the discussion following Eq. �7.28� of Ref. 2,
the corresponding eigenfunction is not normalizable and thus
cannot be interpreted as a physical state vector. Neither the
Fokker-Planck potential nor its isospectral supersymmetric
partner admits a zero eigenvalue.
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