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Measurements of the transmission phase in transport through a quantum dot embedded in an Aharonov-
Bohm interferometer show systematic sequences of phase lapses separated by Coulomb peaks. Using a two-
level quantum dot as an example we show that this phenomenon can be accounted for by the combined effect
of asymmetric dot-lead coupling and interaction-induced “population switching” of the levels, rendering this
behavior generic. In addition, we use the notion of spectral shift function to analyze the relationship between
transmission phase lapses and the Friedel sum rule.
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In a series of experiments by the Weizmann group, the
transmission phase, �tr, characterizing transport through a
quantum dot �QD� has been systematically studied,1–3 em-
bedding the QD in an Aharonov-Bohm interferometer.4,5 Ar-
guably the most intriguing finding of these experiments has
been the correlated behavior of �tr as function of the leads’
chemical potential � �or the gate voltage�: it appears to un-
dergo a lapse �phase lapse, PL�, seemingly of −�, between
any two consecutive Coulomb peaks. It is clear that this ef-
fect cannot be explained within a single-particle framework.6

Moreover, in spite of a substantial body of theoretical work
�see, e.g., Refs. 7–9�, some of which gained important in-
sight on the underlying physics, no clear cut theory–
experiment connection has been established as yet.

In the present paper we revisit this problem. We do this by
studying a �spinless� two-level QD, attached to two leads.
We account for the difference in the couplings of level 1 and
level 2 to the leads �“1–2 asymmetry”� and, for the first time,
probe the effect of the �generically expected� asymmetric
coupling to the left and the right leads �“L-R asymmetry”�.
We find unexpectedly that these two asymmetries give rise to
a qualitatively new behavior of �tr���, and render the ap-
pearance of PL between consecutive Coulomb peaks generic.
This conclusion is in line with recent renormalization group
results for a QD with degenerate levels.10

Throughout the discussion of transmission PLs in the lit-
erature, much attention was paid to the Friedel sum rule,
which, in one dimension, relates the transmission phase to
the change of carrier population in the system �see, e.g.,
Refs. 11 and 12�. Since the latter varies monotonously with
the chemical potential �or gate voltage�, one may perceive a
contradiction between this sum rule and the occurrence of
PLs. We revisit this issue in Appendix A and show, in par-
ticular, that the correct formulation of Friedel sum rule in one
dimension allows for transmission phase lapses.

The minimal model for studying the phase lapse mecha-
nism includes a two-level QD,

HQD = �E1
�0� − ��d̂1

†d̂1 + �E2
�0� − ��d̂2

†d̂2 + Ud̂1
†d̂2

†d̂2d̂1. �1�

Here, the operators d̂i with i=1,2 annihilate electrons on the
two dot sites �with bare energies Ei

�0�, E2
�0��E1

�0��. The QD is
coupled to the two leads by the tunnelling term

VT = − 1
2 d̂1

†�aLĉ−1/2 + aRĉ1/2� − 1
2 d̂2

†�bLĉ−1/2 + bRĉ1/2� + H.c.

�2�

The operators ĉj �with half-integer j� are defined on the tight-
binding sites of the left and right lead �cf. Fig. 1�.

We begin with summarizing the results of Ref. 13 �see
also Refs. 12 and 14–16� in the case when no charging in-
teraction is present, U=0, and the value of �tr is readily
calculated �even for a larger number of dot levels�. The two
transmission peaks then take place near �=Ei

�0�; each corre-
sponds to a smooth increase of �tr��� by � within a chemi-
cal potential range proportional to aL

2 +aR
2 for the first dot

level, bR
2 +bL

2 for the second one. If the relative coupling sign,
��sign�aLaRbLbR�, equals +1 �same-sign case�, a discon-
tinuous PL of ��tr=−� �transmission zero� arises in the en-
ergy interval between the two transmission peaks, E1

�0���
�E2

�0�. While this would be in qualitative agreement with the
measurements, experimentally there is no way to control the
coupling signs. Indeed, for the relevant case of a random
�chaotic� QD, one expects close to 50% of the adjacent pairs
of dot levels to have �=−1 �opposite-sign case�, when no
phase lapse occurs between the two corresponding level
crossings. These observations13 �and hence the difficulty in
accounting for the experimentally observed correlations in
�tr� persist even when interaction is accounted for �but when
�aL � = �aR � = �bL � = �bR� was assumed�.

Following the original idea of Ref. 17, the effects of
“population switching” due to a charging interaction U in
discrete spectrum QDs �Eq. �1�� were addressed both
theoretically18–22 and experimentally.23 If one of the dot lev-
els is characterized by a stronger coupling to the leads and U

is sufficiently large, the two level occupancies, ni= �d̂i
†d̂i�

show nonmonotonic dependence on �. A rapid “population
switching”20,21 �which may be accompanied by the switching
of positions of the two mean-field energy levels, E1,2�, takes
place. The available results, however, remain incomplete in
that �i� the behavior of ni near switching �abrupt vs continu-
ous for different values of parameters� was not investigated,
�ii� only the case of �aL � = �aR� and �bL � = �bR� was considered,
omitting the important effects of coupling asymmetry �see,
however, Ref. 10�, and �iii� the relationship between popula-
tion switching and PLs was not addressed fully and correctly.
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The present paper is aimed, in part, at clarifying these issues.
We find that at sufficiently large U, including the dot-lead

coupling asymmetry largely alleviates the “sign problem” as
outlined above, giving rise to a phase lapse of ��tr=−�
between the two Coulomb peaks for the overwhelming part
of the phase diagram at both �=1 and �=−1. This is a result
of an effective renormalization of the coupling sign, �=−1 to
�=1, due to the interaction. As some asymmetry of indi-
vidual level coupling is generally expected in experimental
realizations of QDs, this phase-lapse mechanism appears rel-
evant for understanding the experimental data. Furthermore,
we consider the implications of interaction-induced “popula-
tion switching”17,18 for the transmission phase. We show that,
under certain conditions �“abrupt” switching�, this leads to a
modification of phase-lapse value ����tr � ���. Once fluc-
tuations �omitted in the present mean-field treatment� are
taken into account, this result may translate into a more com-
plex behavior in the vicinity of the phase lapse.

The analysis of the full four-dimensional space of all val-
ues of aL,R and bL,R proves too cumbersome and perhaps
redundant. Rather, we find it expedient to investigate a suit-
able three-dimensional subspace, which is defined by a con-
straint, bR

2 −bL
2 =aL

2 −aR
2 . Then there exists a unitary transfor-

mation of the two dot operators, d̂1,2→ d̃1,2, changing the

coefficients in Eq. �2� in such a way that ãL= ãR�a, b̃L

= �̃b̃R�b with �̃=−1 �the �̃=1 case corresponds to the
same-sign symmetric original coupling, aL=aR, bL=bR�. The
transformation also affects the form of the first two terms on
the right-hand side of Eq. �1�, which now read

�Ẽ1
�0� − ��d̃1

†d̃1 + �Ẽ2
�0� − ��d̃2

†d̃2 −
w0

2
�d̃1

†d̃2 + d̃2
†d̃1� . �3�

The coefficients Ẽ1,2
�0� and w0 can be formally thought of as

the bare “site energies” and “intradot hopping” of a QD de-
picted in Fig. 1, and are related to the level energies �cf. Eq.

�1�� by 2E1,2
�0� = �Ẽ1

�0�+ Ẽ2
�0��� ��Ẽ1

�0�− Ẽ2
�0��2+w0

2�1/2. Our
analysis will be carried out in terms of this new QD with
�̃= ±1. For the �̃=−1 case, w0 is actually a measure of �left-
right� asymmetry in the coupling of the original QD levels,
E1,2

�0�, to the two leads.
Our calculation consists of the following steps: �i� mean

field decoupling of the interaction term in �1�; �ii� obtaining
an effective single particle Hamiltonian in terms of the aver-

ages �d̃i
†d̃j�; �iii� expressing �tr in terms of the parameters of

that Hamiltonian; �iv� expressing �d̃i
†d̃j� in terms of �tr em-

ploying the Lifshits-Krein trace formalism; �v� solving self-

consistently the resultant equations for �d̃i
†d̃j�; �vi� obtaining

explicit results for �tr.
�i� Mean field decoupling reads

d̃1
†d̃2

†d̃2d̃1 → d̃1
†d̃1�d̃2

†d̃2� + d̃2
†d̃2�d̃1

†d̃1� − �d̃1
†d̃1��d̃2

†d̃2�

− d̃1
†d̃2�d̃2

†d̃1� − d̃2
†d̃1�d̃1

†d̃2� + ��d̃1
†d̃2��2. �4�

We verified that the results of our mean-field scheme are
independent on the basis �of the two dot states� in which the
decoupling is carried out. In the case of asymmetric cou-
pling, it is important24 to keep the off-diagonal �“excitonic”�
average values in the above expression, e.g., �d̃2

†d̃1�. Owing
to a cancellation between virtual hopping paths between the
two QD sites, these averages vanish in the �̃=−1 symmetric
case of w0=0 �corresponding to aL=aR, bL=−bR�.20,21 How-
ever, this does not occur generally, nor indeed in the same-
sign symmetric case, leading to difficulties noted in Ref. 21.

�ii� Substituting Eqs. �3� and �4� into �1� is tantamount to
mapping of the original model onto an effective noninteract-
ing model with the Hamiltonian given by Eq. �2� and the
mean-field dot term,

Hd
MF = �Ẽ1 − ��d̃1

†d̃1 + �Ẽ2 − ��d̃2
†d̃2 −

w

2
�d̃1

†d̃2 + d̃2
†d̃1� .

�5�

The self-consistency conditions take the form of three
coupled mean-field equations,

Ẽ1 = Ẽ1
�0� + U�d̃2

†d̃2�, Ẽ2 = Ẽ2
�0� + U�d̃1

†d̃1� , �6�

w = w0 + 2U�d̃1
†d̃2� . �7�

�iii� For the effective single-particle model �5� one can
readily compute the transmission phase, �tr�	�. In the
�̃=−1 case, it is given by

	t2 − 	2 tan �tr = 	 +
b2�Ẽ1 − 	� + a2�Ẽ2 − 	� + 2	a2b2/t2

�Ẽ1 − 	��Ẽ2 − 	� − 1
4w2 − a2b2/t2

�8�

�where 2t is the width of conduction band in the leads� and
suffers a lapse of −� at that value of 	 for which the trans-
mission vanishes, i.e., 	=Z,

Z =
Ẽ2a2 − Ẽ1b2

a2 − b2 . �9�

�iv� The quantum mechanical average values in Eqs. �6�
and �7� are given by derivatives

�d̃1,2
† d̃1,2� = �
MF /�Ẽ1,2, �d̃1

†d̃2� = − �
MF /�w �10�

FIG. 1. The model system, composed of a wire �chain� and a
two-level dot, Eqs. �2� and �3�.
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of the thermodynamic potential of the effective system. The
latter is evaluated exactly with the help of the Lifshits-Krein
trace formula,25


MF = 
0 + 

−t

�

��	�d	 . �11�

Here, 
0 is the combined potential of a disconnected system
comprising a dot �Eq. �5�� and a wire,

Hw = −
t

2�
j

�ĉj
†ĉj+1 + ĉj+1

† ĉj� − ��
j

ĉ j
†ĉj . �12�

The spectral shift function � is defined by its relationship,

d�/d	 = − ��	� , �13�

to the change of the total density of states of this system due
to a local perturbation,

V = VT +
t

2
�ĉ1/2

† ĉ−1/2 + ĉ−1/2
† ĉ1/2� . �14�

In Eq. �14�, the second term on the right-hand side �rhs�
corresponds to cutting the link between sites j=−1/2 and j
=1/2 of the wire. The two resulting leads are coupled to the
QD by VT �Eq. �2��. Since for a wire of a finite length 2L, �
is related to the shifts of �discrete� energy levels under the
effect of V, it is easy11 to express � in terms of �tr, viz.

� = − �tr/� + m�	� �15�

�see Appendix A�. The integer-valued function m should be
chosen to satisfy the requirement25 for ��	� to vanish con-
tinuously with decreasing strength of the perturbation �e.g.,
�V with �→0�. We find that the value of m changes by +1 at
	=E1,2 �eigenvalues of Hd

MF, Eq. �5��, and by −1 at the trans-
mission zero. For �̃=−1 we obtain �in the units where t=1�

�d̃1
†d̃1� = 


−1

�

	1 − 	2 X�	�d	

� �a2b4�1 − 	2� + a2�Ẽ2 − 	 + b2	�2 +
b2w2

4
 ,

�16�

�d̃2
†d̃2� = 


−1

�

	1 − 	2 X�	�d	

� �a4b2�1 − 	2� + b2�Ẽ1 − 	 + a2	�2 +
a2w2

4
 ,

�17�

�d̃1
†d̃2� =

w

2



−1

�

	1 − 	2 X�	�d	

� �a2�Ẽ2 − 	� + b2�Ẽ1 − 	� + 2a2b2	� , �18�

1

�X�	�
= �1 − 	2��a2�Ẽ2 − 	� + b2�Ẽ1 − 	� + 2a2b2	�2

+ ��Ẽ1 − 	 + a2	��Ẽ2 − 	 + b2	�

− �1 − 	2�a2b2 −
1

4
w22

.

Similar expressions are obtained also for the �̃=1 case �see
Appendix B�.

We now solve equations �6� and �7� numerically �v�, and

substitute the resulting values of Ẽ1,2 and w into the expres-
sion for �tr to get the transmission phase �vi�.

The results are summarized in the phase diagram, Fig. 2.
The left-hand part corresponds to �̃=1, whereas the �̃=−1
case �when the results do not depend on the sign of w0� is
shown on the right-hand side. The bold line marks the
boundary between continuous �phases 1-2� and discontinu-
ous �see below� regimes of dependence of the effective QD
parameters on �. Within each regime, different phases are
identified according to the magnitude and location of PL�s�
with respect to the transmission peaks �Fig. 2, table�. It
should be noted that in the �̃=−1 case the latter are given by

�1,2= �Ẽ1+ Ẽ2� /2�
1
2 ��Ẽ1− Ẽ2�2+w2+4a2b2 / t2�1/2, and are

slightly shifted with respect to mean field dot levels, E1,2. In
the table, we denote transmission peaks by E1,2 irrespective
of the sign of �̃ in order to keep the notation uniform. Typi-
cal dependence of �tr on � for each phase is shown in Fig. 3.

In the continuous-evolution part, phase 1 �phase 2�, which
occupies a large �small� area of the phase space, corresponds
to the case when the phase lapse of −�, associated with the
transmission zero, lies within �outside� the interval of values
of � between the two transmission peaks. It should be noted
that the right-hand, �̃=−1, side is expected to be representa-
tive of both opposite- and same-sign cases ��= ±1�, pro-
vided that the left-right asymmetry is sufficiently strong
�large w0�. This is illustrated by the thin solid line, above
�below� which coupling signs for the two bare dot levels E1,2

�0�

become the same, �=1 �opposite, �=−1�. Once the interac-
tion effects are taken into account, one sees that phase 1
extends also far below this line, which is indicative of the
effective change of the coupling sign �due in turn to the

interaction-induced enhancement of w; at w� Ẽ2− Ẽ1, the

coupling of the two mean-field dot levels, �d̃1± d̃2� /	2, to the
leads is same-sign�.

The discontinuous behavior is associated with the pres-
ence of multiple solutions of the mean field equations �6� and
�7� within a range of values of �, which is illustrated by a
“fold” �bold solid and dashed lines� on the schematic
E1���−� plots in Fig. 3. We find that if a system formally is
allowed to follow such a multiple-valued solution from left
to right, the value of �tr increases, and also suffers a PL of
−� at some point �marked by a circle�. In reality, thermody-
namics dictates that the full thermodynamic potential 


=
MF−U�d̃1
†d̃1��d̃2

†d̃2�+U�d̃1
†d̃2�2 �cf. Eq. �11�� should be

minimized to identify the stable solution, resulting in a
“jump” �vertical line�, which in turn is associated with a
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positive increase of �tr by a fraction of �, giving rise to a
second “PL” �phases 4,6�, and with the population
switching17,18 of the dot levels. If the transmission zero lies
in the thermodynamically unstable part of the solution �bold

dashed line; phases 3,5,7�, the PL of −� should be added to
this positive increase of �tr, giving rise to a single “renor-
malized” PL. Finally, one of the transmission peaks may be
located within the unstable region �phases 5,6� with a result
that the plot of �tr��� does not have a corresponding inflec-
tion point, which is replaced by a PL.

It follows that at least within the mean-field framework
discontinuous population switching is always associated with
the presence of multiple solutions and hence with “renormal-
ized” PLs �or alternatively with additional “PLs” character-
ized by an increase of phase by a fraction of ��. This con-
clusion is clearly at variance with the suggestion of Ref. 17
that the discontinuous switching between multiple solutions
gives rise to the PLs of � as observed experimentally. We
note that while the behavior of transmission phase in this
regime should be investigated beyond the mean field, the
main point of our paper is that there is another mechanism
which gives rise to a PL of � without a discontinuous popu-
lation switching �phase 1�. Since this latter scenario does not
involve instabilities of any kind, it can be expected to remain
robust with respect to fluctuations �not included in the
present treatment�.

In summary, we have presented here a generic mechanism
for the appearance of phase lapses between Coulomb block-
ade peaks. These PLs may be renormalized by a discontinu-
ous “population switching.” Experimentally it would be in-
teresting to correlate the latter with the former by
simultaneously measuring dot occupancy �employing a
quantum point contact�, and transmission phase. Theoreti-
cally, going beyond a mean field analysis is needed to deter-

FIG. 2. �Color� The “phase diagram” of a two-level QD with ãL= ãR=a, b̃L= �̃b̃R=b. The parameters are U=0.1t, Ẽ1
�0�=0, Ẽ2

�0�=0.004t,
and 	a2+b2=0.125t. The axes represent the 1-2 level asymmetry, �= ��a�− �b�� /	a2+b2, and the dimensionless intradot hopping, �

=w0 / ��Ẽ1
�0�− Ẽ2

�0��2+w0
2�1/2. Properties of different phases are summarized in the table. At U�0.04t, the border of discontinuous-evolution

region �bold line� does not meet the boundary between phases 1 and 2.

FIG. 3. �Color� Typical behavior of �tr��� in different phases
�top left; plots shifted for convenience�. Relative positions of trans-
mission peaks �boxes; also in the main panel� and the −�-PLs
�circles� in phases 3-7 are clarified by the schematic plots of
E1−� around the multiple-solution region �absent for phases 1-2�.
Solid �dashed� lines correspond to stable �unstable� solutions. The
abrupt “switching” of solutions �vertical solid line� may either
renormalize the PL �when the −� lapse lies in the unstable region�
or result in a positive jump of �tr.
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mine the importance of quantum fluctuations.
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APPENDIX A: SPECTRAL SHIFT FUNCTION,
TRANSMISSION PHASE, AND FRIEDEL SUM RULE

For the case at hand, the use of the standard formula25 for
the spectral shift function �,

��	� = −
1

�
Arg Det�1̂ −

1

	 − i0 − Hw − Hd
MFV̂ , �A1�

proves rather cumbersome. Instead, we will use the underly-
ing notion of spectral shifts25 in order to derive the generic
relation �15� between � and the transmission phase. This
derivation also allows for an important insight concerning
the Friedel sum rule.

We consider a system similar to that shown in Fig. 1, with
the QD between the sites −1/2 and 1/2 replaced by an arbi-
trary point scatterer. The latter is characterized by an
S-matrix whose elements have a smooth dependence on the
particle energy.26 While the boundary conditions cannot af-
fect the value of � in the limit when the length of the wire,
2L, is large, the treatment is simpler when periodic boundary
conditions are assumed. The spectrum of the wire in the
absence of the scatterer, which we refer to as unperturbed, is
then given by

	�kj� = − cos kj, kj =
�j

L
, j = 0,1,2, . . . ,L �A2�

�cf. Eq. �12� where we assumed t=1�. The wave functions
are proportional to exp�±ikj x� and, for j�0,L, the corre-
sponding energy levels are doubly degenerate. Since we are
ultimately interested in the L→� limit, it is assumed that the
interlevel spacing in the wire constitutes the smallest energy
scale in the problem. The levels are shifted, and the degen-
eracy is lifted, in the presence of the scatterer, when the wave
function is generally given by

��x� = �A1eikx + B1e−ikx, x � 0,

A2eikx + B2e−ikx, x � 0.
� �A3�

The linear relationship between coefficients on the right and
on the left of the scatterer reads �assuming time-reversal
symmetry�27

A2 = �A1 + �B1, B2 = �*A1 + �*B1 �A4�

with ���2− ���2=1. Relation of the quantities � and � to the
S-matrix is given by, e.g., setting A1=0 �incoming particle
from the right�, hence �right-right� reflection amplitude, rrr

=� /�* and transmission amplitude, ttr=1 /�*.
Now the periodic boundary conditions dictate that the al-

lowed momentum values shift,

kj → kj
�1,2� = kj +

� j
�1,2��

L
. �A5�

Substituting Eqs. �A3�–�A5� into the condition ��−2L+0�
=��+0�, we find, for l=1,2

A1e−2�i��l�
= A2 = �A1 + �B1,

B1e2�i��l�
= B2 = �*A1 + �*B1.

This yields the equation for � j
�1,2� �cf. Ref. 11�:

�e4�i��l�
− 2e2�i��l�

+ �* = 0, �A6�

or equivalently

�e2�i��l�
− e2�i�j

�1�
��e2�i��l�

− e2�i�j
�2�

� = e4�i��l�
−

2

�
e2�i��l�

+
�*

�
,

yielding

e2�i��j
�1�+�j

�2�� =
�*

�
. �A7�

In the limit L→�, the quantities � j
�1,2� become functions of

energy and, writing also �=exp�i�tr� / �ttr� with �tr the trans-
mission phase, we find

��	�kj�� � � j
�1� + � j

�2� = −
1

�
�tr�	�kj�� + m�	�kj�� .

�A8�

Let us now discuss the quantities appearing in Eq. �A8�.
�i� �tr is the transmission phase. In the presence of localized
states within the scatterer �dot levels Ei

d�, �tr increases by �
as the energy of interest �	�kj� in our notation, or more physi-
cally, the chemical potential� spans a resonance. �ii� m�	� is
an integer which we will now choose in such a way that �
coincides with the Lifshits-Krein spectral shift function, ��	�
�see Eq. �13��. m�	� then changes by +1 with increasing en-
ergy at every Ei

d; in addition, it changes by −1 at the points
where transmission vanishes �transmission PLs�. We thus ar-
rive at Eq. �15�. �iii� � j

�1�� /L and � j
�2�� /L are the shifts in

the allowed values of momentum �cf. Eq. �A5��.
There is no bound state corresponding to a PL, implying

that ��	� should be continuous at that point �transmission
zero�. The choice of m�	� discussed above �along with Eq.
�A8��, ensures that � indeed may be synonymous with � �see
below�.

In order to use the calculated value of spectral shift func-
tion for the total energy evaluation via the trace formula, Eq.
�11�, one needs to know the overall additive constant in ��	�.
In the regime of interest to us, no bound state is formed
below the band bottom �at 	�−1�. From the viewpoint of
the lowest-energy electron states �	→−1+0�, the scatterer
then acts as an impenetrable potential barrier �and not as a
potential well�, and the constant is fixed by a readily deriv-
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able condition, ��	→−1+0�=1/2, valid for any barrier with
no bound state formed below its bottom.

The quantity ��	� remains a smooth function of energy 	
away from band edges 	= ±1 and the dot levels Ei

d. As men-
tioned in the text, the spectral shift function is related to the
perturbation-induced change in the density of states. For the
unperturbed system, the latter can be defined in the L→�
limit only as

0�	�kj�� = lim
L→�

2

	�kj+1� − 	�kj�
� L , �A9�

where the factor of 2 reflects the double degeneracy of en-
ergy levels. In the presence of the scatterer we obtain, with
the help of Eq. �A5�,

 �	�kj��

= lim
L→�

2

�	�kj+1� − 	�kj���1 + 1
2� �	�kj+1�� − 1

2� �	�kj���
= 0�	�kj�� + � �	�kj�� ,

where

��	� = − d��	�/d	 . �A10�

Here, we used the obvious fact that the center of gravity of
the two perturbed levels formed out of a doubly degenerate
unperturbed level 	�kj� is given by 	�kj�+ 1

2 �	�kj+1�
−	�kj����	�kj�� �substituting � with � for our choice of m�.
We note that, as expected on physical grounds, the quantity
� is not extensive, i.e., it is not proportional to the length of
the wire �in contrast to 0�. For the specified choice of m�	�
in Eq. �A8�, Eq. �A10� yields also a delta-functional contri-
bution to � of the form −�i� �	−Ei

d�. This corresponds to
merging of the discrete dot levels into continuum and shows
that � is the difference in the density of states between the
wire with the scatterer and a disconnected system comprised
of an unperturbed wire alongside an isolated scatterer.

Integrating Eq. �A10�, we get the expression for the total
particle number,

N��� = Nwire
�0� ��� + �

i

��� − Ei
d� − ���� , �A11�

where the first term on the rhs is the band filling of an un-
perturbed wire. By rewriting this in terms of transmission
phase �tr�	� �cf. Eq. �A8��, we get the Friedel sum rule in
the form

N��� = Nwire
�0� ��� + �tr���/� + m̃��� . �A12�

With increasing �, the integer m̃ changes by +1 at transmis-
sion zeroes, �=Zi. We note that the sum of the two last terms
on the rhs of Eq. �A12� remains continuous at �=Zi, empha-
sizing that the Friedel sum rule does not account for the
transmission phase lapses. This is because the underlying
spectral characteristic, ��	� �cf. Eq. �A11�� remains smooth at
�=Zi and in general does not depend on �ttr�.

APPENDIX B: MEAN-FIELD EQUATIONS
IN THE �̃=1 CASE

In the case of same-sign symmetric coupling of the QD to
the leads, �̃=1, Eqs. �8�, �9�, and �16�–�18� are replaced with

	t2 − 	2 tan �tr = 	 +
b2�Ẽ1 − 	� + a2�Ẽ2 − 	� + abw

�Ẽ1 − 	��Ẽ2 − 	� −
1

4
w2

,

Z =
Ẽ2a2 + Ẽ1b2 + abw

a2 + b2 ,

and

�d̃1
†d̃1� = 


−1

�

	1 − 	2�a�Ẽ2 − 	� +
1

2
bw2

Y�	�d	 ,

�d̃1
†d̃1� = 


−1

�

	1 − 	2�b�Ẽ1 − 	� +
1

2
aw2

Y�	�d	 ,

�d̃1
†d̃2� = 


−1

�

	1 − 	2 Y�	�d	�a�Ẽ2 − 	� +
1

2
bw

��b�Ẽ1 − 	� +
1

2
aw ,

respectively. Here,

1

�Y�	�
= �1 − 	2���Ẽ1 − 	��Ẽ2 − 	� −

1

4
w22

+ �a2�Ẽ2 − 	� + b2�Ẽ1 − 	� + abw

+ 	��Ẽ1 − 	��Ẽ2 − 	� −
1

4
w2�2

.
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