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In a recent experiment, the local current distribution of a two-dimensional electron gas in the quantum Hall
regime was probed by measuring the variation of the conductance due to local gating. The main experimental
finding was the existence of “hot spots,” i.e., regions with a high degree of sensitivity to local gating, whose
density increases as one approaches the quantum Hall transition. However, the direct connection between these
hot spots and regions of high current flow is not clear. Here, based on a recent model for the quantum Hall
transition consisting of a mixture of perfect and quantum links, the relation between the hot spots and the
current distribution in the sample has been investigated. The model reproduces the observed dependence of the
number and sizes of hot spots on the filling factor. It is further demonstrated that these hot spots are not located
in regions where most of the current flows, but rather, in places where the currents flow both when injected
from the left or from the right. A quantitative measure, the harmonic mean of these currents is introduced and
correlates very well with the hot spots positions.

DOI: 10.1103/PhysRevB.74.205314 PACS number�s�: 73.43.�f, 73.50.�h

I. INTRODUCTION

The quantum Hall �QH� effect remains a major focus of
interest,1 despite the long time that has passed since its dis-
covery. Apparently, this is due to the ongoing technological
progress employing experimental probes and yielding and
sometimes surprising results. A particular issue, that has been
under debate for quite some time, is related to the exact
trajectories at which the current flows. Some theories suggest
that the current flows mainly via edge states along the
sample edges,2 whereas others, based on the idea of a
localization-delocalization transition at the centers of Landau
levels, predict a distribution of currents extending throughout
the bulk.3 However, due to the robustness of the conductance
quantization, the local properties are inaccessible via stan-
dard transport measurements. although some information on
the current flow can be derived from static probes,4 numer-
ous attempts have been made to address these questions us-
ing various scanning imaging techniques,5 commonly based
on local probe of charge and electric potential. Yet, although
proving successful in describing localized electronic states,
these methods detect current only indirectly and cannot un-
ambiguously determine how the current is partitioned be-
tween the edge and bulk channels.

Recently, an experimental approach has been applied to
probe the local current distribution in a ballistic quantum
point contact �QPC�.6 An atomic force microscope �AFM� tip
was placed on top of the two-dimensional electron gas
�2DEG� in which a point contact was defined, causing a local
depletion of electron density beneath it. The underlying as-
sumption in this experiment is that this depletion strongly
affects the conductance through the QPC only if the current
density under the tip is high. On the other hand, the conduc-
tance should not be modified if there is low current density
under the tip. Thus, plotting the conductance change as a
function of tip position results in an imaging of the electron
current density. Indeed, the imaging clearly showed the dif-

ferent modes of the electronic wave function being succes-
sively occupied as the conductance through the QPC in-
creases in quantized steps.7 Following this experiment, a
theoretical model was devised8 that mimics this experiment
and yields similar results for the distribution of current.

A similar experimental method has been used more re-
cently to study the local current distribution in a 2DEG in the
QH regime.9 An AFM tip was placed on top of the Hall bar
and locally gated the sample, thus changing the local poten-
tial beneath it. The resistance was then measured as a func-
tion of tip position and magnetic field. The main finding was
that there are “hot spots” in the sample, i.e., isolated regions
at which the conductance is extremely sensitive to the gating
potential. These domains were interpreted as places where
the current passes. They are mainly observed in the transition
between plateaus and disappear almost completely in the
quantum Hall regime.

The fact that these measurement may not directly reflect
the total current distribution in the sample can be understood
through a simple example. Let us assume that there is a high
barrier separating the left and right sides of the sample. Then
a current injected from either side �left or right� will be lo-
calized on that side of the barrier. Nevertheless, the only
place where a change in the potential may induce a change in
the conductance of the system is at the barrier itself, where
no current actually flows. To put it in different terms: How
can the measurement of the conductance, a quantity that
obeys specific Onsager relations with respect to reversing
directions of the current and the magnetic field, yield infor-
mation on the current distribution, which, to the best of our
knowledge, do not obey such symmetry relations?

Motivated by these experimentally relevant questions, in
this work we employ a recently proposed model for the QH
transition10 that enables a theoretical modeling of the experi-
ment and allows for a detailed analysis of both the hot spots
and the spatial distribution of currents in the sample. Our
main finding, beyond a good qualitative agreement with the
experimental results, is that the hot spots are located at points
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where current passes both when it is injected from the left or
the right and not necessarily at points where the current den-
sity is high. The number of such symmetry points is en-
hanced near the QH transition, but small on either side of it,
in agreement with the experimental results. We propose an
empirical relation between the current distribution and the
position of the hot spots, based on a harmonic average of the
current distributions when the current is injected from the
left and the right.

II. MODEL

For the sake of completeness, let us briefly explain our
model. In strong magnetic fields, electrons with Fermi en-
ergy �F perform small oscillations around equipotential lines.
When �F is small, their trajectories are trapped inside poten-
tial valleys, with weak tunneling occurring between adjacent
valleys. We associate each such potential valley with a site in
a lattice. Nearest-neighbor valleys �localized orbits� are con-
nected by links representing quantum tunneling between
them. As �F increases and crosses the saddle-point energy
separating two neighboring valleys, the two isolated trajec-
tories coalesce. The electron can freely move from one val-
ley to its neighbor, and the link connecting them becomes
perfect. The QH transition occurs when an electron can
traverse the sample along an equipotential trajectory �an
edge state�, which in the model corresponds to percolation of
perfect links.

Consequently, the QH problem maps onto a mixture of
perfect and quantum links on a lattice. Each link carries a
left- and right-going channel. In accordance with the physics
at strong magnetic fields there is no scattering in the junc-
tions �valleys� and the edge state continues propagating un-
interrupted according to its chirality �see Fig. 1�a��, while the
scattering occurs on the link �saddle point� itself. Each scat-
terer is characterized by its scattering matrix Si, namely, a
transmission probability Ti and phases. The phases are taken
as random numbers from 0 to 2�, and the transmission am-
plitude of each link is determined by the height of the saddle-
point barrier between the neighboring valleys, taken form a
uniform distribution U�−V ,V�. The transmission is then de-
termined locally by the local barrier height � and the Fermi
energy �F by

T��F� = exp�− ��� − �F�� , �1�

for �F��, where � is some constant, and T��F�=1 for �F

��. The whole system is connected to one-dimensional
leads, and the transmission through the system, T, is then
calculated using the scattering matrix approach. The conduc-
tance of the system is determined from the Landauer for-
mula, G= 2e2

h T.
Within the scattering model, the current carried by the ith

link is given by Ji� ��i
L�2− ��o

L�2, where �i�0�
L�R� is the incoming

�outgoing� wave function from the left �right� of the link �see
Fig. 2�. Note that due to the unitarity of the S matrix, the
current is a locally left-right symmetric quantity and, thus, a
property of the entire link.

As the Fermi energy increases, the conductance rises from
zero to unity at the percolation threshold �Figs. 1�b� and 3�.
In Ref. 10 it was demonstrated that the phase transition de-
scribed by the above model exhibits a critical exponent 	
�2.4, in agreement with numerical simulations for other
models describing the QH11 transition. In this paper, we
simulate the experiment of Ref. 9 using the above model.

III. RESULTS

A. Current distribution

In Fig. 3, the conductance �in units of 2e2 /h� of a 20

20 size system12 is plotted as a function of probability of a
link to be perfect, which corresponds to Fermi energy, p

= 1
2
� �F

V +1�. The constant � of Eq. �1� is taken to be �=2. As

FIG. 1. Mapping of the problem onto a quantum percolation on
a lattice: each link carries two counterpropagating edge modes �a�.
A nonzero transmission �thin lines� allows electrons to tunnel be-
tween adjacent sites �potential valleys�. When the transmission is
unity �bold lines in �a��, these two valleys merge and an edge state
can freely propagate from one to another. A percolation of these
perfect transmission links �b� corresponds to an edge state propa-
gating through the system and a quantized conductance.

FIG. 2. Within the scattering model, each link is characterized
by a scattering matrix Si, connecting between the incoming and
outgoing wave functions from left to right �see text�.

FIG. 3. Conductance as a function of probability p. The arrows
point on the concentrations at which the current distribution �Fig. 4�
and the hot spots �Fig. 10� are plotted.
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can be seen, our model reproduces the conductance fluctua-
tions close to the percolation transition,13 which occurs �for
this realization� at p=0.505, close to the bulk classical per-
colation critical point.

The current distributions obtained for a specific realiza-
tion of disorder for different values of p are depicted in Fig.
4 for two cases, when the current is injected from the left
�left column� and from the right �right column�, bright colors
correspond to a high current. Each row corresponds a con-
centration p as denoted by arrows in Fig. 3. As can be seen,
for low concentrations �i.e., on the insulating side of the
transition, Fig. 3�a� and 3�b�� the currents flow in the system
along some closed trajectory, returning back to the lead they
came from due to the low transmission. In this realization,
the potential barrier separating left and right is located closer
to the left side of the sample; thus, an electron injected from
the left is reflected almost immediately, whereas an electron
injected from the right meanders through a larger part of the
sample before being reflected.

Close to the transition the amount of current that passes
through the system from one side to the other is roughly
equal to the amount of back scattered current, since the trans-
mission of the system is close to T�0.5 �Fig. 3�c� and 3�d��.
Here, we find that the correlation between left- and right-
originating current distributions is higher and that the spatial
distributions are broad, in accordance with percolation
theory. Finally, for large concentrations �Fig. 3�e�� the trans-
mission of the system is perfect, and thus, the current passes
between the leads following some trajectory, which corre-
sponds to a percolating path of perfect links. As in the case
of low concentration, the chirality causes strong separation
between the distribution of left- and right-coming currents. A
similar study, based on a tight-binding description,14 have

FIG. 4. �Color online� Spatial current distribution when current
is injected from the left �left column� or from the right �right col-
umn�, for the concentrations depicted by arrows in Fig. 3. In the
numeric calculation, the current is injected from the upper-leftmost
or lower-rightmost link, corresponding to left- or right-injected cur-
rent. As seen, although far from the transition, left- and right-
coming currents are spatially separated. Close to the transition the
percolative nature of the system causes a wide spatial current
distribution.

FIG. 5. �Color online� Spatial mapping of the hot spots in the
conductance, for probabilities corresponding to the arrows Fig.
3�b�–3�e�. Far below the QH transition �a� there are very few hot
spots. Their number and intensity increases as one approaches the
transition �b�, is maximized at the transition region �c�, and again
diminishes above the transition �d�.
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resulted with similar spatial current distributions, and has
emphasized the role of the current chirality in the quantiza-
tion of the Hall conductance and the vanishing of the longi-
tudinal resistance far from the transition. The left-right asym-
metry in the presence of magnetic fields was also pointed out
in Ref. 8.

B. Hot spots

In order to simulate the hot spots experiment,9 we mimic
the local gating at a certain site by adding additional energy
to the potential barriers surrounding that site, up to a distance
of several lattice spacings. The conductance of the original
lattice is then compared to that of the perturbed lattice for
different values of the Fermi energy �corresponding to the
experimental change in the magnetic field or filling factor�.

In Fig. 5, the spatial distribution of the change in the
conductance is plotted for different values of p, correspond-
ing to the points denoted b ,c ,d ,e in Fig. 3. Brighter points
correspond to the hot spots of the current, for which there is
a sizable change in the conductance as that point in the lat-
tice is gated by the AFM tip. The numerical data are normal-
ized to the largest conductance change.

As deduced from Fig. 5, both the amount and intensity
�i.e., how considerable the influence of depleting sites from
electrons on the conductance is� of the hot spots increase as
one approaches the QH transition, in agreement with the ex-
perimental result. This may be seen more clearly by calcu-
lating the absolute value of the conductance change ��, av-
eraged over all the lattice sites and over disorder. �� is
plotted in Fig. 6 for 100 disorder realizations. It is found that
the maximal change in the conductance corresponds to the
percolation threshold, determined by the point at which the
conductance is length-independent, denoted by an arrow in
the inset of Fig. 6.

C. Effect of tip parameters

Let us turn our attention to the role of the AFM tip. Ex-
perimentally, the exact effect of the AFM tip on the sample is

unknown. However, it is reasonable to assume that the tip
induces an increase in the potential energy in the area under-
neath it, which affects electrons up to a length leff away from
it.

In order to address this point theoretically, we note that
the tip has two main tunable parameters, namely, the poten-
tial difference �voltage� between the tip and the sample, Etip,
and the distance between the tip and the sample. Changes in
these experimental parameters affect two different aspects of
the model: �i� a change in the offset of the energy in the links
underneath the tip, namely the local potential energy change
induced by the tip, and �ii� a change in the effective length,
leff, over which electrons feel the tip. Although experimen-
tally these two parameters are both affected, to some degree,
by the tip height and voltage, theoretically one can study the
change in each parameter separately. To simulate these ef-
fects, we repeat the above calculation, with a tip-induced
exponential-enveloped change in the local potential barrier
on the links, 
E=Etipe

−d/leff, where d is the distance between
the link and the position of the tip. In what follows we ex-
plore how changing either Etip or leff affects the conductance
change.

Changing Etip does not have a significant effect on the
spatial distribution of the hot spots, but only on their
strength, namely, the conductance change induced by the tip.
In Fig. 7, we plot the average change in conductance ��
�averaged over the entire sample� as a function of Etip, varied
from Etip=0 to Etip=V, that is of the order of the bandwidth.
The calculation is performed for concentration p=0.42125,
where the number of hot spots is quite large, and leff=1 �in
units of lattice spacing�. As seen, �� increases monotonically
with Etip. In the inset of Fig. 7, we plot the conductance
change �� when the tip is over the strongest hot spot in the
sample, and again, a monotonic increase in �� is observed.

Next, we examine the effect of changing leff. One may
naively guess that increasing leff should result in an increase
in ��. However, due to quantum interference this may not
always be the case, especially far from the percolation tran-
sition, where the conductance change is rather small. In Fig.
8, we plot the spatial map of hot spots for Etip=V and p
=0.30875 �which is close to the percolation transition for this
sample, the sample having a transmission T=0.648 for this
concentration�, for leff=1 ,2 , . . . ,8 �in units of lattice con-

FIG. 6. Conductance �stars� and absolute value of the change in
the conductance �triangles� as a function of concentration p, aver-
aged over all lattice sites and over 100 realizations. The arrow in-
dicates the point of percolation, defined as the point at which the
disorder-average conductance is independent of system length. The
inset shows the conductance for system lengths L=10,15,20.

FIG. 7. Average change in conductance, ��, as a function of
STM tip voltage Etip, averaged over the entire sample. Inset: the
same for the strongest hot spot in the sample.
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stant�. We find that although the number of hot spots �indi-
cated by bright colors� increases, their locations are changed,
due to interference effects.

To make this more qualitative, in Fig. 9, we plot the av-
erage change in the conductance ��, averaged over the
sample and over 100 realizations of disorder, for concentra-
tion p=0.5 �i.e., with Fermi energy at the center of the band�,
as a function of leff. We find that indeed, on average the
conductance change exhibits a monotonic increase. How-
ever, for a given realization and a given tip position, chang-
ing leff �which corresponds to a change in the distance be-
tween tip and sample� may result in fluctuations in ��, as
plotted in the inset of Fig. 9.

D. Relation between hot spots and current distribution

Next, we ask the question: Are the hot spots observed in
experiment located at the extended, current carrying elec-
tronic states in the bulk? As stated above, although one is
inclined to give a positive answer, the different symmetry of
the hot spots and the current distribution points that they
cannot be identical. It is clear, however, that they are corre-
lated, in a way we discuss below.

Let us examine the correlation between the hot spots and
current distribution.15 Since the strength and location of the
hot links is independent of the direction of the current injec-

tion, it is clear that the hot links are not located at the points
where most of the current passes, as these depend sensitively
on direction. Rather, it is found that the hot links are located
at points that hold appreciable currents for both directions of
current injection. To demonstrate this we plot on the right
column of Fig. 10 the spatial image of a harmonic average of
the local currents from the two directions of current injec-
tion. Bright spots thus correspond to links in which local
current is significant in both directions of current injection.
On the left column, we plot the spatial image of the hot links,
that is, the conductance change due to setting the transmis-
sion on each link to zero. Both columns are shown for the
concentrations corresponding to the arrows of Fig. 3. One
clearly sees the correlation between the two images.

In order to make this correlation more quantitative, the
correlation function C�p� is defined to be the square of dif-
ference between the current and the conductance change,
normalized and averaged over the entire sample. That is, let
ji be the normalized current in the ith link �either when the
current is injected from the left, from the right, or an average
of the two�, and ��i be the normalized change in the con-
ductance when the tip is placed over the ith link �note that
both ji and ��i depend on the concentration p�, then C�p�
= 1

N�i�ji−��i�2. The smaller C�p� is, the higher is the corre-
lation between these distributions. In Fig. 11, C�p� is plotted
for different concentrations p, when correlating between the
hot links and the harmonic averaged current distribution �tri-
angles�, the hotlinks and the left-coming �stars� and right-
coming �squares� current distribution and between the hot
links and a random distribution �diamonds�, that serves as a
reference scale. As seen, the hot links are well correlated
with the harmonic-averaged current distribution, indicated by
the low values of C�p�. The correlation between the hot links
and currents flowing from the left or from the right is much
worse, and actually resembles the correlation with a com-
pletely random distribution for large concentrations.

IV. SUMMARY

In this work, a recent model for the QH transition10 has
been used to shed light on an experiment in which a local
AFM-tip-induced local gating has been employed to study
the change in the resistance as a function of the tip location.

FIG. 8. �Color online� Spatial
map of hot spots for different val-
ues of the STM tip effective
length, leff=1 ,2 , . . . ,8.

FIG. 9. Average conductance change, ��, averaged over the
sample and over 100 realizations of disorder as a function of leff,
showing a monotonic increase. Inset: the local change �� at a given
position and realization of disorder as a function of leff. One sees
that �� may fluctuate due to quantum interference.
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The present theoretical study demonstrates the existence of
hot spots, regions with higher sensitivity to local gating. Our
model, consisting of a coherent mixture of perfect and quan-
tum links, qualitatively reproduces the experimental result. It
was demonstrated that these hot spots do not lie in the
current-carrying paths, but rather on areas in the sample
where current flows both when it is injected from the left or
from the right, that is, on the left-right symmetric parts of the
current carrying paths. Note that since the geometry em-
ployed in this study corresponds to a two-terminal geometry,
the longitudinal conductance is trivially related to the Hall
conductance, and thus one expect a similar behavior of the
hot spots in the Hall conductance.

We conclude by noting that in order to verify our finding
experimentally, one should imply a nondestructive local
probing of the QH sample �that is, probing that does not
affect the conductance�, e.g., local current-induced magnetic
field sensing, in addition to the above-mentioned local AFM-
tip gating, on the same sample. Such an experimental system
may turn out to be useful for measuring local currents in
other systems, such as disordered superconducting thin films,
or Hall samples in the fractional QH regime.
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FIG. 10. �Color online� Left column: a spatial image of the hot
links, for the concentrations depicted by arrows in Fig. 3, bright
links correspond to links with strong effect on the conductance.
Right column: spatial image of the harmonic mean of local currents
obtained from two different directions of voltage drop, for the same
concentrations. Bright links correspond to links in which current is
considerable for both directions of voltage drop. A clear correlation
between the left and right columns is visible.

FIG. 11. �Color online� Correlation function C�p� �see text�, as a
function of concentration. The correlation is between the hot links
and the harmonic-averaged current distribution �triangles�, the hot
links and the left-coming �stars� and right-coming �squares� current
distribution and between the hot links and a random current distri-
bution �diamonds�. The lower the value of C�p�, the higher the
correlation. The low value of the correlation function between the
hot spots and the harmonic average, relative to the other correla-
tions, demonstrate that the hot spots do not directly reflect the total
spatial current distribution, but only the transport current, estimated
by the harmonic average.
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