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Hyperfine interaction induced decoherence of electron spins in quantum dots
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We investigate in detail, using both analytical and numerical tools, the decoherence of electron spins in
quantum dots (QDs) coupled to a bath of nuclear spins in magnetic fields or with various initial bath polar-
izations, focusing on the longitudinal relaxation in low and moderate field and polarization regimes. An
increase of the initial polarization of nuclear-spin bath has the same effect on the decoherence process as an
increase of the external magnetic field, namely, the decoherence dynamics changes from smooth decay to
damped oscillations. This change can be observed experimentally for a single QD and for a double-QD setup.
Our results indicate that substantial increase of the decoherence time requires very large bath polarizations, and
the use of other methods (dynamical decoupling or control of the nuclear spins distribution) may be more

practical for suppressing decoherence of QD-based qubits.
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I. INTRODUCTION

Quantum dots (QDs) are very promising candidates for
future implementation of quantum computations: an electron
spin in a QD is a natural two-state quantum system, which
can be efficiently manipulated by the external magnetic
fields and gate voltages.l’2 Also, the QD-based architectures
are potentially scalable, and rely on well-developed semicon-
ductor technology.> However, due to interaction with the en-
vironment, the electron spin loses coherence very quickly, on
a time scale of order of nanoseconds for typical GaAs QDs.!
It is vitally important for realization of QD-based quantum
computing to understand the decoherence dynamics in detail,
in order to find practical ways of decoherence suppression.
Moreover, decoherence of open systems is of fundamental
interest for understanding of the quantum phenomena taking
place in mesoscopic systems,* and therefore attracts much
attention from scientists working in the areas of nanoscience,
spintronics, and quantum control.

Among different sources of decoherence relevant for an
electron spin in a QD, the decoherence by the bath of nuclear
spins (spin bath) is dominant for magnetic fields less than a
few T, and experimentally relevant temperatures of tens or
hundreds of mK. Much research has been focused on the
case of a large external magnetic field or large bath polariza-
tions, where the perturbation theory allows an extensive
analysis.””'* But the interesting and experimentally relevant
regime of moderate magnetic fields and/or moderate bath
polarization has received much less attention.

Below, we study in detail the influence of moderate mag-
netic fields and bath polarization on the longitudinal deco-
herence of a single spin in a quantum dot, and two spins
located in neighboring QDs, where the perturbation theory is
not applicable. In this regime, as the magnetic field or the
bath polarization increase, the dynamics of the electron spins
undergoes a transition from simple overdamped decay to un-
derdamped oscillations, and these oscillations can be
detected using existing experimental schemes. In this
transition, the increase of bath polarization affects the
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decoherence dynamics in exactly the same manner as the
increase of the magnetic field. Our results also show that
suppression of decoherence requires very large bath
polarizations, suggesting that the use of such methods as
dynamical decoupling,’'"'? or control of the nuclear spins
distribution,'® may be more practical.

Theoretical description of the spin-bath decoherence is a
very complex problem,'* where strong correlation and essen-
tially non-Markovian bath dynamics play an important
role.”!>1¢ In contrast with the well studied boson-bath
decoherence,*¢ decoherence by a spin bath has not yet been
understood in detail, especially in moderate external mag-
netic fields.

II. SINGLE ELECTRON SPIN IN A QD

An electron spin in a QD interacting with a bath of
nuclear spins is described by the Hamiltonian which includes
the Zeeman energy of the electron spin in the external mag-
netic field B, and the contact hyperfine coupling:!”-!3
H=H,S Z+§),(N=1A,{S -1, where S is the operator of the electron
spin, I, is the operator of the kth bath spin (k=1,2,...,N),
and A,=(87/3)g, upg,mu(x;) is the contact hyperfine cou-
pling which is determined by the electron density u(x;) at the
site x; of the kth nuclear spin and by the Landé factors of the
electron gZ and of the nuclei g,. The terms omitted in the
above Hamiltonian, such as the Zeeman energy of the
nuclear spins, the anisotropic part of the hyperfine coupling,
etc., are small, and can be safely neglected at the nanosecond
time scale, which is considered here.

In spite of the apparent simplicity of the Hamiltonian, it is
very difficult to determine the dynamics of the central spin
S(z). Previously, the quasistatic approximation (QSA) for the
nuclear-spin bath, which treats X;A,I; as a constant, has of-
ten been invoked.'®? Analytical calculations beyond the
QSA have been carried out only for large magnetic field
and/or large bath polarizations,”~'? where the perturbative ap-
proach is valid. Although many qualitative arguments sup-
port QSA, its validity has not yet been checked in detail.
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Below, along with explicit analytical solutions, we provide
direct verification of our analytics by employing the exact
numerical simulations for medium-size (N=20) baths, and
approximate simulations for large (N=2000) baths. The
agreement between all three methods ensures us that our
findings do not depend on the approximations involved.

The analytical calculations within the QSA can be per-
formed in different ways which all give the same results. The
conceptually simplest way is to assume a uniform electron
density in the QD, so that all A, are the same, A=A, and the
Hamiltonian can be written as H=H)S,+AS-I, where
I=2,1, is the total nuclear spin of the bath. This Hamiltonian
can be analyzed exactly, since I? and I,+S, are the integrals
of motion.

First, we consider an unpolarized bath, with the density
matrix p,(0)=(1/2M)1,®---®1y, where 1, is the unity
matrix for kth bath spin. This density matrix can be
rewritten in the eigenbasis of 2, I, as p,(0)
=SSt PUILM)|I,M)XI,M| where M=I.. Assuming that
the initial state of the electron is |T), the quantum-mechanical
average of the z component of the electron spin at time ¢ is

B+ C? cos Ot

Ry .M

o.(t) = 2(S.(1) = 2, P(I,M)
IM

where C=A\(-M)(I+M+1), B=Hy+A(M+1/2), and
0?=B%+C?. Due to the symmetry of the problem and the
initial condition, o,(f)=0,()=0, so we omit these compo-
nents. The distribution function P(I,M) can be calculated??
and for large N and [ it is approximated by a Gaussian dis-
tribution P(I, M)~ (I/ D\27D)e™"?? where D=N/4. Re-
placing the summation by integration in Eq. (1), we find

o.(t)=1-2W(\,D;1), (2)

and the function W(\,D ;1) has the form

D D 7 D¥?
—2——26_Dt2/2 COS N+ ;e
A A 2 2\

Dt— i\ Dt + i\ N
o2 af22) oo 2]
2D \N2D \N2D

where ®(x) is the error function. In this equation, we took
A=1, and introduced the notation A=H,/A; this corresponds
to normalized energy and time scales, so that the time ¢ is
measured in the units of 1/A. The dynamics of o(r) for
several values of \ are shown in Figs. 1 and 2.

Before discussing the above results, we consider next a
polarized bath, assuming that its initial state is described by a
density matrix p,(0)=(1/Zg)exp(-BM), where B is the in-
verse spin temperature, and Zg=[2cosh(B/2)]V is the
statistical sum, and the initial bath polarization is p
=(M)/(N/2)=-tanh(B/2). For large spin temperatures, the
polarization is small, p=~-8/2, and we approximate
P(I, M)~ (I/ D\2mD)e B 2e~1"2PgBM 5o that

W= -\22D
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FIG. 1. (Color online) Electron-spin decoherence in various
magnetic fields [(a)-(c)] and with polarized initial nuclear spin
baths [(d)—(f)] for N=20. The red dashed curves denote the exact
numerical simulations results for N=20, and the blue solid curves
correspond to the analytical results. The numerical results agree
well with the analytical predictions, and the underdamped oscilla-
tions appear once \ or k is larger than VN.

o,(t)=1-2W(k,D;1), 4)

where k=D, and the function W(k,D;¢) is defined by Eq.
(3). The dynamics of o(r) for several values of B is shown
in Fig. 1.

The functional form of Egs. (2) and (4) is identical, up to
replacing « by A, so the small nonzero bath polarization
p affects the central spin in exactly the same way as the
external field of the magnitude Hy=—pAN/2, equal to the
average Overhauser field exerted on the central spin by the
nuclear bath. Indeed, the noticeable average magnetization
(M)=pN/2 of the polarized bath leads to a noticeable aver-
age Overhauser field, but the variation of the magnetization
((AM)?)=(1-p?)N/4 changes very little at small p, and,
correspondingly, the spread in the Overhauser fields is al-
most unchanged.

From Egs. (2) and (4), we see that o.(¢) always decays
with characteristic time 7,=8/(NA%). E.g., for Hy=0
(or p=0), we reproduce a well-known result o.(?)
=(1/3)+(2/3)(1-Dt*)exp(=Dt*/2), i.e., o,(t) first falls to
the value =0.036, then increases and saturates at 1/3. How-
ever, for Hy# 0 (or p #0), due to the oscillatory terms in Eq.
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FIG. 2. (Color online) The same as Fig. 1 but for N=2000
nuclear bath spins in zero magnetic field (a) and in A=2VN (b) with
initially unpolarized bath.
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(3), o.(t) can exhibit oscillations, provided that N (or «) is
comparable or larger than VD~ N. This transition, from
smooth decay at small field or polarization, to the oscilla-
tions at larger field or polarization, is similar to the well-
known transition in the dynamics of a damped oscillator: the
evolution of the central spin is overdamped (or under-
damped) depending on whether the decay time T; is larger
(or smaller) than the “bare” oscillation frequency determined
by N or . Note that the crossover value for magnetic field
(polarization) is of order of yN, beyond the range of appli-
cability of the perturbation theory.”-'°

For a typical GaAs QD with the electron delocalized
over N=10° nuclear spins, A~Ay/N~10"* ueV (where
Ay=0.1 meV is the hyperfine coupling for an electron local-
ized on a single nucleus®). The corresponding decoherence
time T;~ 10 ns (taking into account the /=3/2 spins of “Ga,
"'Ga, and "°As), as confirmed by recent experiments.”! To
observe oscillations for a single electron spin, a very modest
external field of order of 3 mT, or polarization of order of
0.5% is needed.

It is noteworthy that the decoherence time remains prac-
tically constant in the course of transition from smooth to
oscillatory decay. The decoherence time is determined by the
spread in the Overhauser fields, which is proportional to the
variation of the bath magnetization ((AM)?)=(1-p?)N/4,
and it is little affected by small bath polarizations p.”?> For a
moderate bath polarization, the equivalence between the ex-
ternal field and the nonzero bath polarization disappears, and
the analytical expression for o(f) becomes rather complex,
involving hypergeometric functions ,F,(a,b,c,z) of a com-
plex argument, so we do not present it here. In this regime,
the decoherence time does not increase much, as shown in
Figs. 1(e) and 1(f).

In order to substantially increase the decoherence time, an
extremely large bath polarization is required, as suggested by
the results from the perturbation method.””'” Such a large
bath polarization is beyond the scope of our paper. Currently,
strongly polarized baths are difficult to achieve experimen-
tally, and such methods as narrowing the nuclear-spin

distribution,'®  dynamical decoupling,!’ and spin-echo
techniques'!'?> may be more practical for suppression of de-
coherence.

The quasistatic bath approximation is far from reality.
E.g., for Hy=0 and p=0, the QSA predicts saturation of o(¢)
at 1/3 for t—oc, which is just an artifact of the approxima-
tion: the detailed analysis shows that o, slowly decays (as
1/1n 1) to zero.”'72% However, we expect QSA to be valid at
times of order of 75, when the bath’s internal dynamics is not
yet important.

For verification, we perform exact numerical simulation
with medium-size baths of N=20 spins. A real QD is ap-
proximated by taking nuclear spins located at the sites of the
4 X5 piece of a square lattice, with the lattice constant
a=1. Assuming a parabolic confining potential, the electron
density is approximated as two-dimensional (2D) Gaussian
with the widths of w,=w,=1.5, and with the center shifted
by d,=0.1 and d,=0.29 along the x and y axis, respectively.
For comparison with the analytical results above, the effec-
tive coupling constant is defined as A=(2,A7/N)"2. The de-
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coherence dynamics is simulated by directly solving the
time-dependent Schrodinger equation for the wave function
of the full many-spin system (central spin plus the bath),
using the Chebyshev polynomial expansion of the evolution
operator as described in Ref. 16.

Figures 1(a)-1(c) show analytical [obtained from Eq. (2)]
and numerical results for o(¢), for different magnetic fields.
The panels (d)—(f) present o(7) for polarized baths with dif-
ferent initial polarizations. For the analytical curve in panel
(d) the small-polarization formula Eq. (4) has been used,
while the analytical curves in panels (e) and (f) have been
calculated from the formula for moderate initial polarization.
The agreement of the analytics and the exact numerics is
good. The difference is caused only by the modest number
N=20 of the bath spins used for numerical simulations, but
exact simulations even for N=50 are beyond the capabilities
of modern computers (since the computation time and
memory grow exponentially with N).

To study large baths with N=2000, we use the coherent
state P-representation described in Ref. 17. Although ap-
proximate, this numerical approach demonstrates excellent
accuracy. Figure 2 presents the results for o.(r) obtained ana-
lytically, from Eq. (2), and numerically, from
P-representation simulations with N=2000 spins. For N
=2000, the agreement between the analytics and the numer-
ics is very good. Overall, the data presented in Figs. 1 and 2
justify the use of QSA, so that we expect our predictions to
be valid for real QDs with 10° nuclear spins.

III. TWO ELECTRON SPINS IN DOUBLE QD

Measurement of the Rabi oscillations for a single electron
spin in a QD has been achieved?® only very recently, while
the majority of recent experiments use two electron spins in
two neighboring QDs."!° The spins are prepared in the sin-
glet state, and the measured quantity is the probability Pgl(z)
to stay in the singlet state after time 7. The oscillations de-
scribed above can be also detected in this double-dot setup.
When the coupling between the two electron spins is negli-
gible, the Hamiltonian of the double-QD system is H
=HyS1,+HppSo, + S A8 - T+ 22, AiS, - T, where indices 1
and 2 denote the quantities describing left and right QD,
respectively (e.g., Hy, and Hyy, are the magnetic fields acting
on the left and right spins, respectively). Note that the evo-
lution of QD 1 and 2 is not independent because of the ini-
tially entangled singlet state, although the Hamiltonian is
separable. Using the quasistatic approximation, we get

1 1
Pg= EUO\],Dl)UO\z,Dz) + EW()\I’DI)WO\Z’D2)

+ F(N,D{)F(\y,D,) + G(\,D1)G(\,,D»), (5)

where the function W(\,D) is defined by Eq. (3),
and F(\,D)=1/2{1+[cos \i—(Dt/\)sin At]e P72},
G(\,D)=1-F(\,D)-W(\,D), U(N,D)=(1/\?)[D\t cos \t
+(\2=D)sin MJe"2. Figure 3(a) illustrates dynamics of
P(z) for unpolarized baths, in the case of uniform magnetic
field Hy=Hy =H,. P4(t) decays in the beginning, and satu-
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FIG. 3. (Color online) Time evolution of the probability of the
singlet state of the two electrons in a double QD by applying (a)
parallel magnetic fields A;=A;=\ and (b) antiparallel magnetic
fields A\;=—\,= 10N with N;=N,=N=10°. Underdamped Rabi os-
cillations appear once the difference in the magnetic fields applied
onto each QD is large enough.

rates at nonzero value at long times. The saturation value is
1/3 for zero field, and increases with the magnetic field,
reaching 1/2 for strong fields."”

However, if the difference between Hy; and Hy, is com-
parable or larger than AVN, , (which corresponds to few mT
for realistic GaAs QD), the probability Pg(r) exhibit oscilla-
tions [see Fig. 3(b)], analogous to the oscillations of o,(¢) in
the single-QD case above. In experiments, a nonuniform
magnetic field can be created, e.g., by micromagnets.?’ An-
other opportunity is using nonuniformly polarized nuclear-
spin baths in the left and right QDs. In analogy to the
single-QD calculations, it can be shown that P(f) in the case
of nonzero initial polarization is still given by Egs. (5), with
replacement of \;, by «;,. The difference in polarization
should be about 0.5% for the oscillations to appear.

IV. CONCLUSION

In summary, we study in detail the influence of magnetic
fields and bath polarization on the decoherence of a single
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spin in a quantum dot, and two spins located in neighboring
QDs. We focus on the regime of moderate fields and polar-
izations, where the perturbation theory is not yet applicable,
using both analytical tools (the quasistatic bath approxima-
tion) and the numerical simulations (exact for medium-size
baths with 20 spins, and approximate for large baths with
2000 spins). The agreement between all three approaches is
good, so we believe our results are applicable to real QDs
with millions of nuclear spins. The nonzero bath polarization
and the external magnetic field influence the decoherence
dynamics in exactly the same way, and lead to a transition
from smooth decay to oscillations once the field (polariza-
tion) exceeds a certain crossover value. This transition can be
observed in experiments with a single QD, and with two
quantum dots. Our results show that a substantial increase of
the decoherence time requires extremely large bath polariza-
tions, so that such methods as dynamical decoupling'-!'""1? or
control of the nuclear-spin distribution'® may be more prac-
tical for controlling decoherence of QD-based qubits.
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