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We theoretically investigate electron transport through an Aharonov-Bohm interferometer containing later-
ally coupled double quantum dots. We introduce the indirect coupling parameter «, which characterizes the
strength of the coupling via the reservoirs between two quantum dots. |a|=1 indicates the strongest coupling,
where only a single mode contributes to the transport in the system. Two conduction modes exist in a system
where |@|# 1. The interference effects such as the Fano resonance and the Aharonov-Bohm oscillation are
suppressed as the absolute value of the parameter « decreases from 1. The linear conductance does not depend
on the flux when =0 since it corresponds to independent coupling of the dots to the reservoir modes.
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I. INTRODUCTION

Quantum phase coherence in mesoscopic systems has at-
tracted the attention of many physicists. Quantum phase co-
herence is detectable by interference experiments. In inter-
ference experiments with an Aharonov-Bohm (AB) ring
containing a quantum dot (QD), quasiperiodic modulation of
the tunneling current as a function of the magnetic flux
through the ring has been experimentally demonstrated.!=3
This reflects the fact that the phase coherence is maintained
during the tunneling process through a QD. The Fano effect*
is another important interference effect in mesoscopic phys-
ics. The Fano effect occurs in a system in which discrete and
continuum energy states coexist.*?

Recently the AB oscillations of a tunneling current pass-
ing through a laterally coupled double quantum dot (DQD)
system were observed by Holleitner et al. using a lateral
DQD.% Such oscillations were also observed by a group in-
cluding two of the present authors using a vertical DQD
(Ref. 7) in a weak interdot tunnel coupling regime. Moti-
vated by these experimental results, electron transport
through such a system has been investigated theoretically.3-10
Moreover, such systems are very interesting since it has been
theoretically predicted that cotunneling currents passing
through spin-singlet and triplet states have different AB os-
cillation phases.!! DQD has been attracting attention as an
important device structure for entangled spin qubit
operations. >4

In this paper, we consider the transport through an AB
interferometer containing a laterally coupled DQD. Although
the electron spin and interaction effects are crucial in the
previous theoretical proposals, here we disregard them and
focus on the single-particle interference properties. Instead,
we introduce the indirect coupling parameter «, which char-
acterizes the strength of the coupling via the reservoirs be-
tween two QD’s.!> A system with a maximum coupling |a]
=1 has already been widely studied theoretically.®-!° In ac-
tual systems, however, such a case is very special and most
experimental situations correspond to |a| < 1. We found that
the number of conduction modes is 2 except when |a|=1,
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where only a single mode contributes to the transport. The
situation where =0 has also been explored in the context of
the orbital Kondo problem.!®!7 We calculate the tunneling
current through the DQD systems in terms of Green’s func-
tion techniques for noninteracting systems.'®!° By using an
exact expression of the tunneling current, we examine AB
oscillations through a DQD from the weak interdot tunnel
coupling regime to the strong interdot tunnel coupling re-
gime. The visibility of AB oscillation (i.e., the ratio of the
AB oscillation amplitude and the current maximum) de-
creases as the absolute value of the indirect coupling param-
eter a decreases. The current is independent of the flux at
a=0, and the visibility becomes zero. As a function of en-
ergy, the linear conductance indicates an asymmetric Fano
line shape when |a|=1, when the energy of the (anti)sym-
metric state is near the Fermi level of the reservoirs. How-
ever, the Fano resonance is suppressed as || decreases and
finally the linear conductance exhibits two peaks at a=0
corresponding to the Breit-Wigner resonances by the sym-
metric and antisymmetric states.

This paper is organized as follows. In Sec. II, a standard
tunneling Hamiltonian is employed to describe an AB inter-
ferometer containing a laterally coupled DQD. We introduce
the indirect coupling parameter « in Sec. III A. We derive
the linear conductance at zero temperature in Sec. III B. In
Sec. III C, we provide the energy dependences of the linear
conductance at zero temperature and we show that the Fano
resonance is suppressed in a system where |a|# 1. In Sec.
III D, we discuss the AB oscillations of the linear conduc-
tance at zero temperature. In Sec. IV, we extend the argument
where the magnetic flux and tunnel coupling between reser-
voirs and QD’s are asymmetric. All our results are summa-
rized in Sec. V. In Appendix A, we give the detailed deriva-
tion of the indirect coupling parameter « for the two-
dimensional and three-dimensional reservoirs. In Appendix
B, by diagonalizing the transmission matrix, we show that
there are two conduction modes when |a|# 1. However,
there is only a single conduction mode when |a@|=1. When
a=0, the two conduction modes correspond to the Breit-
Wigner resonances by the symmetric and antisymmetric
states.
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FIG. 1. Schematic diagram of an AB interferometer containing a
laterally coupled DQD. The magnetic fluxes threading the upper
and lower subcircuits are ®;; and ®;, respectively, and cause the
AB effect. s is the distance between the two QD’s.

II. MODEL

We consider an AB interferometer containing a DQD
coupled to two reservoirs as shown in Fig. 1. Only a single
energy level in each QD is assumed to be relevant, and we
ignore the spin degree of freedom. We model this system
with the Hamiltonian

H:HR+HDQD+HT’ (1)

where Hy describes Fermi seas of noninteracting electrons in
two reservoirs:

2 2 erchTch' (2)

ve{UL} k

Here €,, is the energy of conduction electrons with wave
number k in the reservoirs v=U, L and the operator ¢, (c,;,")
annihilates (creates) an electron in reservoirs. Hpgp is the
Hamiltonian of the isolated DQD:

2
HDQD = 2 60ddei + tc(ledZ + HC) . (3)
i=1

Here ¢ is the single-particle energy level of two QD’s (Ref.
20), and d, (diT) annihilates (creates) an electron in the ith
QD (i=1,2). The second term represents direct tunneling
between two dots. The energy levels of the dots split to form
symmetric and antisymmetric states because of interdot tun-
nel coupling 7. Their energy levels are €,=¢€;+f. and ¢,
=¢€)—1., where we choose the gauge such that ¢, is real and
negative. Hy describes the tunneling Hamiltonian between
reservoirs and QD’s:

Hp= 2 [1))e
k

+1\We %, Td) + He]

b2 . Q) —idy2. T Q) g2
Woleytdy + 10e™ Py, dy + 13 d,

2
> 22 [ANp)e, di+Hel, (4)

vel{UL} k i=1

where 17 is real. The factors ¢*%/? indicate the effect of the
magnetlc flux (¢p,=27D,/ P is an AB phase in each subcir-
cuit, where @, is the magnetic flux threading through each
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subcircuit as shown in Fig. 1, and ®y=h/e is the magnetic
flux quantum).

III. TUNNELING CURRENT

For noninteracting systems, the tunneling current can be
written as'®

1= f delfy(e) = fu(ITHG (T (G (T ()}

=%de[fu(6)—fL(€)]T(f)~ (5)

Here f,(€)=1/[1+e's*T] with v=U/L is the Fermi-
Dirac distribution function, wu, being the chemical potential
of the reservoir v. Boldface notations indicate 2 X 2 matrices,
where G"@(¢) is the retarded (advanced) Green’s function of
a DQD, T'V™® js the linewidth function defined by

I'ii(e) = 2772 (BB, e— ), (6)

and T(e) is the transmission probability at energy e.

A. Indirect coupling parameter «

Here we estimate the linewidth function based on Ref. 21
and focus on the three-dimensional (3D) reservoirs. The de-
tailed derivation of the indirect coupling parameter « for not
only 3D but also two-dimensional (2D) reservoirs is given in
Appendix A. According to Bardeen’s formula 22 the flux-

independent tunneling matrix element t « 1S given by
h? .
=5, ) AV ) D=4 DV $ud) ()

where u is the effective mass, the 2D area S for the integra-
tion is in the tunneling potential, ¢,,(r) is the wave function
of evanescent mode of the reservoir v, and q‘) » (r) is the wave
function of a localized electron in the dot i.

We calculate the tunneling matrix elements for the model
shown in Fig. 2, where we consider only the upper reservoir.
As shown in Fig. 2, the boundary of the reservoir is a flat
surface, the dot size is R, and the potential profile is

0 (in the reservoir, y < 0),
2

U(F) =\ 2 Ul F=7) ([F=F| <Ry),
=1

U (others including the area S),
(8)

where 7;=(x;,y;,0) is the center of the ith dot. Then the wave
functions of reservoir modes are

2 7]
dui(r) = 132 — ek Sln(i)e_’(’, 9)

where the decay constant « is
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FIG. 2. Model to estimate the tunneling coupling ti’lz between
the reservoirs and the two dots. S indicates the area in the tunneling
potential. The radius of the QD is R, and the center position of ith
dot is (x;,y;,0).

27 2
2M<U—ﬁkv ) (10)

. . . . 2k, .
and the scattering phase shift @ satisfies sin 0=ék3. L is the
system size and kﬁzkfﬁki. For the dot, we consider only the

symmetric mode, namely, the zero angular momentum state

(r > Ry) =D, el (11)

|77
where 02 +k; =« and D; is a constant related to the detail of
the potential inside the dot Uy,,. Using Eq. (7), the tunneling

matrix elements are

L R2 \E (9)47TD .
() S g 3 —kyq+ikx;
t = sin T 12
Uk 2,u,L3/2 2 o ¢ (12)

Then we calculate the linewidth function I" g(e) using Eq.
(6). The diagonal elements l"iLi[ (€) are real, which are equal

. -1
G'(o)= {[g«e)]-l + e+ r%)]}

- ( (e—e)/h+ilyyle) + v (€2

— t/h + L0 (O yy(De® + a(e) v, (e )2

PHYSICAL REVIEW B 74, 205310 (2006)

since we assumed y;=y,=y,. We define the indirect coupling
parameter as follows:

G (13)
VI (er%(e)

a’(e)=

We found the indirect coupling parameter at the Fermi en-
ZkFZ

% .
ergy my=3, with U> uy,

3
OZU(MU) ~ k_jl(sz)a (14)
)

where j; is the first-order spherical Bessel function and for
U= Mys

(Zyd)3
[s*+ (2y)° T

where s=|x;—x,|. We find |aV|<1 and decreases with s. The
oscillation with kps shown in Eq. (14) originates from the
assumptions of ballistic transport in the reservoirs and the
flat reservoir surface. This oscillation becomes weaker and «
decreases monotonically with s if we consider curved or
rough boundaries. We expect that the above discussions can
be extended into the general model as shown in Fig. 1. We
restrict our discussion to a symmetrically coupled DQD sys-
tem, I'},(e)=I",(e)=y,(€) for simplicity. Then, using a basis
of localized states, we use the linewidth functions

o~ i)
Yule)

a"(uy) ~ (15)

Yule)
aV(€)yy(e)e'?v

a(€)y (e)e'’:
yi(€)

yi.(€)
at(€)y (et

in the following argument.

FL(6)=< ) (16)

B. Linear conductance

We obtain the following retarded Green’s function using
the equation of motion

~ 1/ + [a (@ yy(ee v + a(&)y (e ®i]2

-1
(€= &)/ + iLyu(€) + 7 (]2 ) > (1D

where g” is the retarded Green’s function of an isolated DQD. The advanced Green’s function is G%(€)=[G'(€)]". The linear
conductance at zero temperature is given by the Green’s functions and the linewidth functions at the Fermi energy (uy
=pu;). In the following, we choose the Fermi energy as the origin of energy. To clarify the physical image, we consider the
symmetric situation where y,(0)=7,(0)=1v, a’=al=«, and ¢;= ¢, = ¢/2 except for in Sec. IV. Then, we have the follow-
ing transmission probability at the Fermi energy:
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7(0) = Tr{G"(0)T'Y(0)G*(0)T'*(0)}
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2(ﬁy)2|:602(1 + a? cos ) — 4aeyt, cos(?) +(1+ az)tc2 +(hy* 1 -a?)y 1 -2 cosz<;f) ]

2 2
|:602_ 1’ - (ﬁ)’)z{l -a? COSZ<§)}:| +4(ﬁ’)’)2[60— ar, Cos(;f):|

This is the main result of this paper. Then, the linear conduc-
tance is given by

Gleg torah) = G,T(0), (19)

where Gqu2/ h. This linear conductance has the symmetry
of G(—€y,1,.,a,d)=G(€y,t,,a, p+21). Therefore, in the fol-
lowing, we consider only €,>0 since we can obtain the re-
sults for €, <0 with adding 27 to the AB phase of the linear
conductance for €,>0. From the flux dependence of the con-
ductance, we find that the phases of the AB oscillations
change by 27 via the resonance except when a=0. Similarly,
we consider only =0 since the linear conductance has the
symmetry of G(&y,t,.,—a, p)=G(€y,1,,a, d+2). In particu-
lar, Eq. (19) provides the same result obtained in Ref. 9 when
a=1 and that in Ref. 15 when ¢=0.

C. Energy dependence

We define the total magnetic flux threading through the
AB interferometer as CID:CIDOf—Tgb. In Fig. 3, we show the en-
ergy €, and the interdot tunnel coupling 7. dependence of the
linear conductance for a fixed flux ®/®,=1/8. While we use
this flux value as an example, the following discussions are
qualitatively valid except when ®/® is an integer which is
discussed separately. Here we define the weak coupling re-
gime with the condition |€y| >|z.| and the strong coupling
regime with the condition |€y| <|z,|. The former corresponds
to regions I and III in Fig. 3(c), and the latter corresponds to
region Il in Fig. 3(c). When a=1 [see Fig. 3(a)], there is only
one mode that contributes to the conduction (see Appendix
B) and the conditions exist for a perfect transmission G/G
=1 whose curve has the shape of hyperbolas ef)—tc
=—(h7y)?sin?(¢/2) [black dashed curve in Fig. 3(a)] in the
strong coupling regime and of perfect reflection G/G,=0
whose curve has the shape of ¢;cos(¢/2)—1,=0 [white
dashed line in Fig. 3(a)] in the weak coupling regime.

When a # 1, effectively two modes contribute to the con-
duction (see Appendix B). Thus, the maximum value of
G/G, may exceed 1 [see Figs. 3(b) and 3(c) and the changes
in the scale]. Moreover, at a=0, the linear conductance be-
comes symmetric with respect to €,=0 as shown in Fig. 3(c)
since two conduction modes have transport properties
through the symmetric state (e,+7.) and antisymmetric state
(€9—1,), respectively [see Eq. (B8) with setting e=0].

We inspect the €, dependences of the linear conductance
in detail. Figure 4 shows the €, dependences of the linear
conductance when t./hy=—1 and ®/Py=1/8. When a=1

(18)

(solid curve), the linear conductance has an asymmetric Fano
line shape near the resonance via the antisymmetric state.
The behaviors of the linear conductance at =1 can be ex-
plained by the Breit-Wigner resonance via the symmetric
state (ey=—t,) and the Fano resonance via the antisymmetric
state (ey=t.) as discussed in Ref. 9. The Fano effect is sup-
pressed as a decreases and the independent Breit-Wigner
resonances via the symmetric and antisymmetric states real-
ized at a=0 lead to two peak structures as shown in the
dashed curve in Fig. 4. Although we considered 7./fiy=—1, .
merely decides the resonance positions of the symmetric and
antisymmetric states and the above discussion is valid for
any finite ¢.. In the following, we discuss the suppression of
the Fano effect. When the energy of the antisymmetric state
is near the Fermi energy, the transmission probability at the
Fermi energy shows the following generalized Fano form:?

(Ea+q)2+(l _a)Ta
&+1 '

7(0) =T, (20)

Here the renormalized energy of the antisymmetric state is
defined by Ea=%' We define the linewidth functions of the
symmetric and antisymmetric states, respectively, by

(2]} rof e}

21
and the transmission probability of the background channel
T, is the Breit-Wigner form via the symmetric state peaked

at €,=€,+2t,~2t, alone:

1

Ty=7"""5—""- 22
b ( 2lc )2 | ( )

+

al'
The Fano parameter ¢ is positive and given by
247 sin2<£5)
2 t,

q=- (23)

1-d? cosz<§)) AT

and the additional factor T, contributes to the transport only
when a# 1 and is given by
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FIG. 3. Gray-scale plots of the normalized linear conductance
G/G, for ®/Py=1/8. (a) a=1. (b) a=0.5. (c) a=0. The gray
dotted lines indicate the boundaries between the weak coupling re-
gime (regions I and 111, |&| > |t.|) and strong coupling regime (re-
gion 11, |&| <|t|).
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FIG. 4. The ¢, dependences of the linear conductance when
t./hy=—1 and ®/Py=1/8. The solid, dotted, and dashed curves
indicate =1, 0.5, and 0, respectively.

l+a l1-a?cos ¢ |?
T,= ) ) gl +1).
1-a? cosz<—> o? sin2<—)
2 2

According to Eq. (20), when a=1, the transmission probabil-
ity at the Fermi energy provides the Fano line shape and
reproduces the result of Ref. 9. Moving away from a=1,
however, the transmission probability deviates from the Fano
line shape because of the additional term in Eq. (20). There-
fore, the Fano effect is suppressed and the Fano antireso-
nance disappears as shown in detail in Fig. 5. For smaller
|#|, the contribution of T, is larger as seen in Eq. (24). Al-
though here we discuss the situation of ®/®,=2n, where n
is an integer, the roles of the symmetric and antisymmetric
states are interchanged when ®/®,=(2n+1) and the Fano
parameter is negative and given by

202 sin® ( ? )
2 t,

—_— T
1—azcosz<%§)h “

24)

q= (25)

&,/ Ny

FIG. 5. The suppression of Fano antiresonance due to the indi-
rect coupling parameter & when 7./hy=—1 and ®/dPy=1/8. The
solid, dotted, and dashed curves indicate a=1, 0.99, and 0.98,
respectively.
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reservoir

reservoir

FIG. 6. The tunnel coupling between reservoirs and QD’s. The
tunneling parameter ¢ represents t(V’Z in Eq. (7). (a) The tunnel cou-
pling between reservoirs and QD’s at ®/®y,=2n. (b) The tunnel
coupling between reservoirs and QD’s at ®/Py=2n+1.

Then we discuss the special situation that arises when
O/d, is an integer. First, we consider a=1 where only a
single conduction mode contributes to the transport. When
®/dy=2n electrons can only couple with the symmetric
state since electrons tunnel from reservoirs into QD’s with
the same tunnel coupling under this condition as shown in
Fig. 6(a). Similarly, when ®/®,=2n+1, electrons can only
couple with the antisymmetric state [see Fig. 6(b)]. We con-
sider the effects of « on the energy dependence of the linear
conductance when ®/®Py=2n. When a=1, the linear con-
ductance exhibits the line shape of a Breit-Wigner- type
transmission via the symmetric state as shown in Fig. 7.
However, when a # 1, the linear conductance has a side peak
structure via the antisymmetric state in addition to the Breit-
Wigner like transmission via the symmetric state. This is
because transport becomes possible by both the symmetric
and antisymmetric states. The linewidth functions in the
symmetric and antisymmetric base are

(1+a)y 0 )

U_TL_
r=r < 0 (1-a)y

(26)

This is equivalent to Eq. (21) with ¢p=4nr. Thus, electrons
can couple with both the symmetric and antisymmetric states
when a# 1. The ratio of the full width at half maximum of
the two conductance peaks shown in Fig. 7 is the ratio of
I+« and 1-qa. Similarly, when ®/®y=2n+1, the roles of
the symmetric and antisymmetric states are reversed.

D. AB oscillations

In this section, we discuss the magnetic flux dependence
of the linear conductance. In particular, the linear conduc-
tance is independent of the flux at a=0 and the visibility of

1.5

1254

0.75F

G/G,

05
0.25F
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FIG. 7. The linear conductance as a function of single-electron
energy level ¢,. The solid curve indicates the linear conductance for
a=1, t./hy=-1, and ®/Py=2n. The dotted and dashed curves
indicate the linear conductances of two modes 7 and 7, defined by
Eq. (B1), respectively, for a=0.8, r./fhiy=-1, and ®/Dy=2n.

AB oscillation (i.e., the ratio of the AB oscillation amplitude
and the current maximum) becomes zero in all situations.

1. Zero coupling

First, we consider the weak coupling limit, namely, the
absence of direct tunneling, #.=0. AB oscillations are shown
in Fig. 8. When a=1, the linear conductance shows a usual
AB oscillation with a visibility of 1 and a period of 27
because of the effect of the interference between the prob-
ability amplitude associated with one path through QD 1 and
the probability amplitude associated with another path
through QD 2.

For general «, the visibility v is given by

_(-){e’ - (y)*(1 - )} +4(hy)e’]
[ + () lle’(1 + @) + (y)*(1 = a?)*] |
27

=

The indirect coupling parameter dependences of the visibility
is shown in the inset to Fig. 8. The visibility decreases as «
decreases. In particular, when |ey/%y|>1, v=20a%/(1+a?),
while, when |€,/%y| <1, v=a?. For any ¢, the visibility v is
monotonically increasing function of a.

2. Weak coupling regime

Here we consider the weak coupling regime || >|z.|. AB
oscillations in this regime are shown in Fig. 9 for various

FIG. 8. AB oscillations in the absence of in-
terdot tunnel coupling. The solid, dotted, and
dashed curves indicate =1, 0.5, and 0, respec-
tively, when €y/fy=0.5. Inset: « dependence of
the visibility of zero coupling. The solid, dotted,
and dashed curves indicate €,/fy=0.5, 1, and 2,
respectively.
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FIG. 9. AB oscillations in the weak coupling regime, €,/%y
=2 and 7./hry=-1. The solid, dotted, and dashed curves indicate
a=1, 0.5, and 0, respectively.

parameters a. There are completely destructive interferences
for a=1. The visibility decreases as « decreases as found in
the weak coupling limit. The AB oscillation period becomes
41 since the linear conductance has an alternating peak
structure via the symmetric and antisymmetric states because
of the finite interdot tunnel coupling. In this situation, the
peak heights of the conductance via the symmetric state are
higher than those via the antisymmetric state since the en-
ergy of the latter is further from Fermi energy than that of the
former.
3. Strong coupling regime

Next, we consider the strong coupling regime |ey|<|z.|.
When a=1, there is one conduction mode and the perfect
transmission G/G,=1 is realized. For the parameters shown
in Fig. 10, the resonant condition € —1>=—(#y)? sin?(¢/2) is
satisfied at ®/Dy=(2n+1)/4, where n is an integer. Unlike
the weak coupling regime, there are no completely destruc-
tive interferences in the AB oscillations. The visibility de-
creases as «a decreases, which is similar to the results for the
weak coupling regime.

It is interesting to note that the conductance is maximum
at integer ®/®P,, for weak coupling, while the conductance is
minimum at that flux for strong coupling. This is more evi-
dent by comparing the data at @=0.5 in Figs. 9 and 10. Such
a change of the AB oscillation phase by ¢, bears intriguing
analogy to the AB oscillation phase change by the energy
difference between the two QD’s pointed out in Ref. 8.

4. Double-resonant levels

Here we consider a special case when €,=7.=0, namely,
when two energy levels of the DQD are aligned with the

1.2F

1
0.8

G/G,

o6
04F
0.2F

0 1 2 3 4
&/,

FIG. 10. AB oscillations in the strong coupling regime, €/#y
=1 and t./fy=—v3/2. The solid, dotted, and dashed curves indicate
a=1, 0.5, and 0, respectively.
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FIG. 11. AB oscillations in the double-resonant levels, €,/%y
=t./fy=0. The solid, dotted, dashed, and dash-dotted curves indi-
cate =1, 0.9, 0.5, and 0, respectively.

Fermi level (resonant levels). The linear conductance shows
a singular flux dependence at =1 as discussed in Refs. 8
and 15 (see Fig. 11); namely, the linear conductance becomes
zero except for ®/Py=n where G=G, is realized. As in the
previous sections, the visibility decreases as a decreases and
finally the perfect transmission (G/G,=2) is realized at a
=0 since two conduction modes satisfy the resonant condi-
tion (&,=0).

IV. TUNNELING CURRENT IN AN ASYMMETRIC
AB INTERFEROMETER

In this section, we discuss the tunneling current in an
asymmetric AB interferometer, namely, vy, # ¥, or ¢y # ¢;.
However, it is well known that the asymmetry of the line-
width functions suppresses the Breit-Wigner resonance be-
cause of the asymmetric factor 'VT'L/(I'Y+T'L). Therefore, in
this section, we only study the asymmetry of the flux. As in
the previous sections, there are two conduction modes in the
asymmetric systems except when a=1 where only a single
conduction mode contributes to the transport. The behavior
of the Fano effect due to the asymmetry of the flux has been
already investigated.’* In their analysis of a=1, the conduc-
tance can be expressed as the Fano form with flux-
imbalance-dependent energy scaling and Fano parameter q.
We studied the effect of a less than 1 and found that the
Fano resonance is very sensitive to the parameter « similar
to the results in Sec. III C (not shown). Here we only show
the AB oscillation results with several @ parameters empha-
sizing the difference for regimes of interest.

In the situation of zero coupling (z,=0), only the total flux
influences the relative phases of the electrons tunneling
through the two dots since there is no direct tunneling be-
tween dots. Thus, the visibility of the AB oscillations is in-
dependent of the asymmetry of the flux in the weak coupling
limit.

A. Weak coupling regime

Here we consider the weak coupling regime | €| > z,|. The
AB oscillations for ®;=1/48 and ®;=5/48 are shown in
Fig. 12. When we compare Figs. 9 and 12, the period of the
AB oscillations changes due to the asymmetry of the flux.
The periods of the AB oscillations are determined by the flux

205310-7
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FIG. 12.

q)U/q)(): @/6@0,
€/hy=2, and t./hiy=—1. The solid, dotted, and dashed curves in-
dicate =1, 0.5, and 0, respectively.

Yu=YL=Ys q)L/q)O:Sq)/6CI)0,

threading through a smaller subcircuit. In Fig. 12, the flux
threading through a smaller subcircuit is ®/6®,, and the pe-
riod is 127r. When the ratio of the flux is an irrational num-
ber, the AB oscillations no longer have a well-defined
period.?> For |a| <1, the visibility of the AB oscillation de-
creases as the || decreases as well as the symmetric situa-
tion.

B. Strong coupling regime

Here we consider the strong coupling regime |€)| <|t,|.
The AB oscillations for ®;,;=1/48 and ®;=5/48 are shown
in Fig. 13. When we compare Figs. 10 and 13, the period of
the AB oscillations changes due to the asymmetry of the flux.
The periods of the AB oscillations are determined by the flux
threading through a smaller subcircuit as found in the weak
coupling regime. Unlike the situation of the symmetric flux
as discussed in Sec. IIl D 3 where completely destructive
interference was absent, we could observe sharp zero-
conductance dips when a=1. The visibility of the AB oscil-
lation decreases as the « decreases, which is similar to the
symmetric situation.

V. CONCLUSION

In this paper, we investigated the electron transport
through a DQD system with the indirect coupling parameter
a. We found that there are two conduction modes except
when |a|=1. The Fano antiresonance is suppressed for |a/|
< 1. The visibility of AB oscillations decreases as |a| de-

0 2 4 6 8 10

FIG. 13. Yu= ‘yLzL(I)U/(D():(I)/6q)07 (I)L/(D():S(I)/6q)0,
€/hy=1, and t./hiy=—\3/2. The solid, dotted, and dashed curves
indicate a=1, 0.5, and 0, respectively.

PHYSICAL REVIEW B 74, 205310 (2006)

creases and the visibility reaches zero when a=0 since the
tunneling conductance is independent of the flux. Moreover,
we have investigated the effects of the asymmetry of the flux
and the tunnel coupling between reservoirs and dots. The
asymmetry of the flux leads to a change in the period of the
AB oscillations.
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APPENDIX A: DERIVATION OF INDIRECT COUPLING
PARAMETER «

Here we show the detailed derivation of the indirect cou-
pling parameter a discussed in Sec. IIl A. For the model
given in Sec. IIT A, the wave functions of reservoir modes
and their eigenvalues are

h . (6
Gulr) =~ ze? sin<5>e_"y, (A1)
fik, i
ep=""+U-——", (A2)
21 2u
where the decay constant « is
1 W2k ,2>
=—\2ulU-—-], A3
K=o M( 5 (A3)
and the scattering phase shift 6 satisfies sin 6= :2:];'2 derived

by matching wave functions {(y)=e® + re~% for y <0 and
((y)=Ce™ for y>0. We found r=—e’ and C
=—2ie'™ sin £. L is the system size and d is the dimension-
ality of the reservoir, 3D [k;=(k,,k.) and p=(x,z)] or 2D
[k,=(k,,0) and p=(x,0)]. For the dot, we consider only the
symmetric mode, namely, the zero-angular-momentum state,

1
D;—e ™" (3D),
b (r>Rp) = or

DyKy(or) (2D),

(A4)

where o”+ki=«?, D, is a constant related to the detail of the
potential inside the dot, and K, is the zeroth-order modified
Bessel function. The origin should be shifted to the center of
each dot 7;. To calculate the tunneling matrix element, it is
convenient to obtain the Fourier transform of them: for 3D,

2,“.D3J‘ qu e—\““‘172+512(yi—y)
(

e 1ax=x))+q.2) ,
2m)? No?+ ¢

¢ () =

o
(AS)
and for 2D,
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(0] dg, e~V 0m)
(l’l(”):WDzj_—/— e
¢ 27 ot + kx2

—ik (x—x;)

(A6)

Using Eq. (7) for the 3D system, the tunneling matrix ele-
ments are

NS
t(i) — ﬁ_ Lzz sin( f) 4LD3€—K}’i+ikxxi’

= A7
vk 2u L 2] o (A7)
and for 2D system are
. K2 \E 0 .
£ = ——=sin| = |27D,e ik, (A8)
2u L 2

Therefore, using the dimensionality-dependent constant A,
we have in general

. (7 .
1 =Aq sin< 5)5“%“’%. (A9)

Using Eq. (6) for the 3D system, the general formula of
72k .
o IS

linewidth functions at the Fermi energy uy,=

(277)2A32<£>3

rv =
l](ILLU) U 27T

kg —
X f dle - k2 = ke VTR0 (k).
0

(A10)

where s=|x,-—xj , which have a limiting form for U> u,,

QaPAP (LY L ke
Tluy) ~ | S o k),
(A11)
and for U= uy,
(2w)2A32< L )3 ki(y; +y))
rv ~— | | L (A]2
)~ T\ ) [ ey A1

Similarly, the formula for the 2D system is
277A22( L )2 K

U =

26—\0“‘02+kxz(y,‘+yj)+ikxs
2 '

dkeNki* =k,

Fg(MU) =

—kp
(A13)
and a limiting form for U> uy,
271'1422
U

L \*7k
(_) WTF"_"‘”*'VJ"JI(sz), (A14)

U
Fz‘j(MU) ~ .

and for U= uy,
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274, ( L\ 2kp(yi+y)
rf;(uu>~—2(—> S (ALS)

U \2m s2+(y,-+yj)2'
We define the indirect coupling parameter as follows:
Th(e)
VI (aT5(e)

Therefore, the parameter at the Fermi energy for the 3D sys-
tem with U> uy,

aY(e) = (A16)

3
a’(uy) ~ —ji(kps), (A17)

k S

where j; is the first-order spherical Bessel function and for
U=y

(2yd)3

a¥(uy) ~ 7% Q) T (A18)

where we consider the symmetric configuration y,=y,=y,.
For the 2D system with U> u,

2
a¥(uy) ~ k—Jl(sz), (A19)
FS

where J, is the first-order Bessel function and for U= uy,

U __ (2yd)2

2+ (29 (A20)

where we consider symmetric configuration. In Ref. 15, al-
though a similar derivation of the parameter « of the 2D
system was discussed, their result [ Jy(kps)] is different
from ours. Our result is more general since the authors of
Ref. 15 ignored the k, dependence of the scattering phase
shift.

APPENDIX B: TRANSMISSION PROBABILITY

We diagonalize the transmission matrix at the Fermi en-
ergy T(0)=G"(0)I'Y(0)G*(0)T':(0) found in Eq. (18). We
then obtain two eigenvalues of the transmission matrix

Tyo(€) = [Ty(e) + Ty(e)],

with the two positive functions

(B1)

T,(€) = (e— €)*(1 + o? cos ¢) + 4ale— €y)t, cos| —

NAASS
~

N -

)

(B2)

+(1+ az)tc2 + (hy)*(1 - az){ 1-o? cosz<

Ty(e)=2|a(e— e&cos(?) +1,

When |a|=1,

\/az(ﬁ'y)z(l - az)sin2(§> +(e- 60)2{1 - sin2<§)} +2a(e- €)1, cos(éi)) + aztcz.

(B3)
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and the transmission probabilities are

PHYSICAL REVIEW B 74, 205310 (2006)

4) 2
Ty(e)=Tg(e) =27 (e- eo)cos(5> +t.(, (B4)
T\(e)=0, (B5)
¢ 2
4(ﬁy)2[(e— eo)cos(—> + tc}
2
5. (B6)

T(e) =

Therefore, we have single conduction mode at |a|=1. When
|a| <1, T, # Ty and the number of the conduction modes is
2. In fact, we have the following relation:

T2-Ti=(1-A)1+aR-a) +(e-e—1,)°]
X[1-aR-a)+(e-e+1)*]1>0, (B7)

where a=« cos(%’).

2
(e~ &)’ ~ 1>~ (hy)’ Sinz(%))J + 4(ﬁ7)2{(6— €) +1, cos(%s)J

In particular, when a=0, the transmission probabilities
are

(hy)*
(e— & F 1.)*+(hy)?*

Tip(€) = (B3)
T, and T, represent Breit-Wigner resonances through the
symmetric and antisymmetric states, respectively. These are
independent of the flux.
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