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Underscreened Kondo impurities in a Luttinger liquid
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We study the problem of underscreened Kondo physics in an interacting electronic system modeled by a
Luttiger liquid (LL). We find that the leading temperature dependence of thermodynamical quantities such as
the specific heat, spin susceptibility are Fermi liquidlike in nature. However, anomalous power law exponents
are seen in the subleading terms. We also discuss possible realizations through single and double quantum dot
configurations coupled to LL leads and its consequences for electronic transport. The leading low temperature

transport behavior is seen to exhibit in general, non-Fermi liquid LL behavior unlike the thermodynamical

quantities.

DOI: 10.1103/PhysRevB.74.205304

I. INTRODUCTION

There has been a resurgence of interest in the study of
underscreened Kondo models in recent years due to their
possible role in the observed breakdown of Fermi liquid be-
havior in the neighborhood of a quantum critical point in
many heavy fermion materials'= as well as the possibility
that such underscreened models may be realized for quantum
dot configurations.®-® Although the thermodynamics of these
models are well known, the dynamical properties have been
studied only recently.? In particular, it has been emphasized
that at zero temperature, the presence of free spins in the
underscreened models gives rise to singular scattering lead-
ing to what has been termed as “singular” Fermi liquid
behavior.? Electronic transport through quantum dots which
has parameter regimes with underscreening have also been
studied.®® Correlations between the electrons can modify
impurity effects quite dramatically. An example is provided
by interacting electrons in one dimension (1D). Such systems
have the property that any arbitrary Coulomb repulsion be-
tween the electrons generically drives the system away from
Fermi liquid (FL) to a Tomonaga-Luttinger liquid (LL)°!!
behavior. In the low energy limit, the charge and spin de-
grees of freedom are separated and described by collective
charge and spin density excitations, each moving with a
characteristic Fermi velocity. As a result, electron correlation
functions show spin charge separation as well as anomalous
power law dependences. Such one dimensional Luttinger lig-
uids can be realized as very narrow quantum wires'? or edge
states in fractional quantum Hall liquids'? or single walled
carbon nanotubes,'* etc. The effects of scalar impurities in a
LL have been well studied and shown to lead to effects like
“breaking” or “healing” of the 1D chain.!> The problem of a
spin 1/2 magnetic impurity in a LL has also been largely
studied.'®?* It has been shown that while the ground state is
a singlet state just like for the ordinary Kondo problem, the
LL properties of the conduction electrons show up in the
anomalous power law scaling for the Kondo temperature as
well as the thermodynamics. An interesting question to ask is
how underscreened Kondo physics manifests itself in a LL.
In this paper, we study the problem of underscreened Kondo
physics in a LL using boundary conformal field theory meth-
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ods to analyze the renormalization group flows and to obtain
the thermodynamical properties. We find that the leading
temperature dependence of thermodynamical quantities such
as the specific heat, spin susceptibility is FL-like in nature.
However, the anomalous LL power law exponents are seen
in the subleading terms. We also discuss possible realizations
through single and double quantum dot configurations
coupled to LL leads and the consequences for electronic
transport. The low temperature transport behavior is seen to
exhibit non-Fermi liquid behavior unlike the thermodynami-
cal quantities.

The plan of our paper is as follows. In Sec. II, we analyze
the renormalization group flows of the effective low energy
model using boundary conformal field theory methods and
obtain the thermodynamical properties. In the next section
(Sec. III), we discuss possible realizations through single and
double dot configurations coupled to LL. We then discuss
electronic transport through such systems. We conclude by
summarizing our results.

II. FIXED POINT ANALYSIS: A BOUNDARY CONFORMAL
FIELD THEORY APPROACH

In the low energy, long wavelength limit, interacting elec-
trons moving in a finite size 1D space extending from —L to
L can be described by the linearized continuum Hamiltonian
with a four Fermi interaction:

L
Hy= f dxliv pif () i) + U () ()], (1)
L

where v is the Fermi velocity and U denotes the strength of
the repulsive density-density interaction. The one dimen-
sional fermion field ,(x)(o=1,]) can be expanded about
the Fermi points +ky in terms of the left moving and right
moving fields as follows:

lzba' = e_ikpxlpLo'(x) + eikwaRa'(x) . (2)

The left and right moving fermions may be bosonized as
(Ref. 25) follows:
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Here ¢C,s,$c,s are linear combinations of the bosons
&r.1),Prp introduced to represent the fermion fields
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In the absence of an external magnetic field, the parameter
g,=1. The parameter g, takes the value one for free fermions
and has a U dependent value less than one for repulsive
interaction. The low energy effective bulk Hamiltonian for
the interacting fermions can be written then in terms of a free
theory of charge and spin bosons with the interactions pa-
rametrized by g. and g, and moving with Fermi velocities v,
and vy, respectively as, as follows:

1 L
Hy=5 2 va| dxd,dad$s. ©)

a=c,s -L

Let us now consider the effect of a magnetic impurity of
magnitude S>> 1/2 placed at the origin. We can describe the

interaction of the impurity spin S with the conduction elec-
trons at the site 0 through the spin exchange interaction:

Hy= JKW(O)g O
= Jx wi«»% Y(0) + ¢;<o>g Y(0)

+¢Z(0)§wR(0)+¢;<0)ng<0) S, (10)

where the two terms in the second line of Eq. (11) describe
forward scattering and the terms in the third line of Eq. (11)
describe backward scattering. Finally, Jg is the Kondo cou-

pling.
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A. CFT analysis for free fermions

In the following we briefly recall some results for the
corresponding problem with noninteracting fermions.> For
free fermions, it is convenient to impose the boundary con-
ditions ¢(—L)=¢(L) and define a parity definite even-odd
basis: Y, (). r(X) =¥ r(X) £ g (=x), x>0. The fermion
fields satisfy the boundary conditions #,(,) 1(0)= % i}, r(0).
In this basis, the Hamiltonian can be written

H:H()+HK

L
=f dXivF[lp:,L,(r(x)axlzbe,L,a'(x) + lpj;,L,o(x)[?xlpo,L,a'(x)]
0

+JK¢ZL<0>§%L(0> S (11)

Thus, the odd channel electrons decouple from the interac-
tion and the theory can be described entirely in terms of the
left moving even channel electrons on the 1D space O to L
with the Kondo interaction at the origin. The problem re-
duces therefore to that of the usual single channel Kondo
problem interacting with a spin S impurity. In the absence of
the impurity, the free fermion theory can be described by the
SU(2) . 4=1 X SU(2) 4= WZW model with certain specified
“gluing” conditions for the charge and spin degrees of free-
dom. The Kondo interaction is a local interaction involving
only the spin degrees of freedom. The renormalization group
equations tell us that the Kondo interaction is marginally
relevant for antiferromagnetic (AFM) coupling while it is
marginally irrelevant for ferromagnetic (FM) coupling. The
weak coupling fixed point is therefore stable for FM
coupling but unstable for AFM coupling. For AFM Kondo
coupling, the theory flows to the strong coupling (SC)
fixed point Jxg=o with the Kondo scale set by
T,=D exp—(1/Jgp) (assuming a constant density of states p
for the conduction electrons). In the Jg=c° limit, the ground
state can be understood in terms of the Nozieres-Blandin?®
picture of quenching of part of the impurity spin by the con-
duction electrons which leads to a 7/2 phase shift for the
conduction electrons. The 77/2 phase shift corresponds to a
change in the boundary conditions for the even channel fer-
mions i, ;(0)=—, z(0). Therefore, the strong coupling FP
theory corresponds to that of a decoupled impurity spin of
magnitude s=S—-1/2 and a free fermion theory with renor-
malized boundary conditions. The renormalization of the
boundary conditions in the strong coupling limit leads to a
modification of the gluing conditions for the charge and spin
degrees of freedom which correspond here simply to “fu-
sion” with the spin 1/2 WZW primary field in the spin
sector.’> Such a renormalization of the effects of a local in-
teraction into boundary conditions lies at the heart of the
boundary critical phenomena. If the boundary condition
renormalizes to a fixed point (FP), then the effective theory
may be described by the appropriate boundary conformal
field theory (BCFT). The operator content of the BCFT can
be obtained by imposing modular invariance on the theory.
The stability as well as the physics around the FP can be

205304-2



UNDERSCREENED KONDO IMPURITIES IN A...

determined by analyzing all possible perturbations near the
FP with the boundary operators.?

The high temperature or the weak coupling limit physics
is governed by the marginally relevant Kondo interaction.
Standard perturbative methods can be used to obtain the be-
havior of various physical quantities like the entropy, specific
heat, spin susceptibility, etc.,2527 which show as expected, a
logarithmic divergence at temperature 7=Ty for AFM cou-
pling. In the low temperature or strong coupling limit for
AFM coupling, the leading perturbation around the strong
coupling FP is that of a ferromagnetic spin exchange cou-
pling between the leftover spin s=S—1/2 impurity and the
phase shifted conduction electrons via virtual nearest neigh-
bor hoppings.? Since the residual ferromagnetic Kondo cou-
pling is marginally irrelevant, the strong coupling fixed point
is stable. Leading corrections to the zero temperature entropy
can be obtained by a perturbative calculation in the margin-
ally irrelevant residual FM coupling.?>?’ This gives the low
temperature entropy as follows:

Simp(T < Tg) =In(2s + 1)
- ?s(s + 1)(2Np)[1 = (2Np)In(T/Ty)

+6(2Np)> InX(TITy) + -+ ], (12)

where the first term denotes the degeneracy of the residual
impurity spin and \ denotes the strength of the FM coupling
between the leftover impurity spin and the conduction elec-
trons. Usual scaling arguments show that Ap scales as
Ap~ m The specific heat then has the leading tempera-

ture dependence

Cimp(T <Tg) = ms(s+1) (13)

1
(Tl

In the presence of a weak magnetic field, the impurity spin
susceptibility can be computed as

(gup/'sG+ ) 1
3T [In(7/Ty)]
(14)

Ximp(T< TK) =

Thus the marginal exchange coupling between the residual
free impurity spin and the conduction electrons leads to the
singular Fermi liquid behavior.’

If a magnetic field H is added, at low temperature
T<H<Tg, the residual impurity spin becomes polarized
and the ground state degeneracy is lifted. Since there are no
impurity spin fluctuations, there is no FM coupling between
the residual impurity spin and the conduction electrons. The
leading boundary perturbation is now the spin two object
with dimension two just as in the ordinary Kondo problem
(Ref. 25):

O o (15)

which leads to the usual regular FL behavior for the various
physical quantities.
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B. CFT analysis for interacting electrons

It is not possible in general to describe the boundary con-
ditions for the interacting electron problem in a simple way
as for the free fermion theory, however, the possible confor-
mally invariant boundary conditions for the interacting elec-
tron theory with a magnetic impurity [see Eq. (11)] turn out
to be particularly simple within the bosonic language—the
only conformally invariant boundary conditions being either
the Dirichlet or Neumann boundary conditions. The bulk
theory (in the absence of the Kondo interaction) can be iden-
tified with both the charge and spin bosons satisfying the
Neumann boundary conditions.!®?® The operator content
around this fixed point can be identified, it turns out the
backscattering component of the electron spin operator in
Eq. (11) is the lowest dimensional parity invariant operator
which can couple to the impurity spin. This operator has
dimension (1+g,)/2 (Ref. 19) which is less than 1 for
g.<1. Hence this term is relevant for either sign of the
Kondo coupling. The weak coupling fixed point is therefore
unstable for both ferromagnetic and antiferromagnetic per-
turbations and flows to the strong coupling fixed points
Jx=+020 for AFM coupling and Jg=-% for FM coupling. The
corresponding Kondo scale is given by Tx|J Kp|2/ (I=gc) 16 At
the AFM SC FP, one can argue using the usual Nozieres and
Blandin picture that the impurity spin gets locked with the
electron at site 0 forming an effective spin of magnitude
s=8-1/2 which gets decoupled from the rest of the chain.
The effective theory therefore becomes that of an open chain
with one site removed and a decoupled impurity spin of
magnitude s=S-1/2. At the FM SC FP, the impurity spin is
ferromagnetically coupled to the electron at site O to form an
effective spin S+1/2 which in turn couples with the elec-
trons at the sites —1 and +1 to form an effective spin
s=S—1/2. The effective theory is that of an open chain with
three sites removed and a decoupled impurity spin of mag-
nitude s=S5-1/2. Thus, in the L— limit, both the AFM
and FM SC FP are described by an effective theory of two
decoupled semi-infinite LL and a decoupled spin of magni-
tude s=S-1/2. The two decoupled semi-infinite LL can be
described by a BCFT with Dirichlet boundary conditions on
the charge and spin bosons.'?® We now determine the sta-
bility of the SCFP by analyzing all possible perturbations
around the fixed point. The two decoupled channels can in-
teract with each other and with the remaining spin S—1/2
impurity via the boundary operators. From the boundary op-
erator content,?® one can see that the lowest dimensional
boundary interactions which can occur are: (i) the spin ex-
change coupling between the boundary spin current operator
in each decoupled chain and the leftover free impurity spin
of size s=5-1/2:

.0 .0 .
A ¢L,15¢L,1+¢L,25¢L,2 .S, (16)

with dimension 1. Since this coupling is generated as in the
usual FL case by virtual hopping’s between the nearest
neighbor site electrons (next nearest neighbor site electrons
for FM Kondo coupling) and the decoupled leftover impurity
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spin, it is ferromagnetic in nature and hence marginally irrel-
evant;

(ii) the hopping of fermions between the two channels via
spin flip scattering with the leftover impurity spin:

- ->

.0 . 7 .
Ay 'ﬁL,lE‘/’L,z*‘%,zElﬂL,l .S, (17)

which has dimension (1+g,)/2g. and is irrelevant for
ge<1;
(iii) the hopping of a fermion between the two channels:

7\3(<//IT,1¢LT,2+ lﬁzl,l‘ﬁu,z) +H.c., (18)

with dimension (1+g.)/2g,;
(iv) the hopping of a charge two spin singlet between the
two channels:

N (05 )1 (i )2) + He, (19)

with dimension 2/g,;
(v) the hopping of a charge neutral spin 2 object between
the two channels:

Ns(( 91 (84 9,)2) + Hee, (20)

which has dimension 2;
(vi) a potential scattering term:

M((ﬂﬁ/’uh + (lﬁzﬂﬂu)z), (21)

which has dimension 1;
(vii) and a spin two object:

ML) D+ (1)), (22)

which has dimension 2.

The potential scattering term is an exactly marginal op-
erator and can only lead to a shift of the ground state energy.
Since all these operators are irrelevant for g.<<1, the fixed
point is stable to these perturbations.

We next discuss the physics around the weak and strong
coupling FP. The Kondo backscattering term governs the
physics near the weak coupling FP. For T> T, the leading
temperature dependence of the entropy, specific heat and the
impurity spin susceptibility can be obtained as:

Simp(T> Tx) =In(2S + 1) + AS(S + 1)(T/T) 178 + -+,
(23)

Comp(T> T) = A(g, — )S(S + (T /)1 78 + -+,
(24)

(gup)’S(S+1)

7 [1 —B(TK/T)(]_g")+ -,

Ximp(T > TK) =
(25)

where A and B are nonuniversal dimensionless constants de-
pending on g, and the electron density of states and the dots
denote subleading terms.
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The lowest dimension boundary perturbation near the
strong coupling FP is the marginally irrelevant exchange
coupling between the boundary spin current operator in each
channel and the residual impurity spin. The next lowest di-
mensional boundary perturbation is the electron hopping
term between the two channels via spin flip scattering with
the residual impurity spin. The leading corrections to the low
temperature entropy can be expressed in terms of the irrel-
evant coupling parameters \; with i=1,...7 (redefined in
terms of dimensionless quantities) as follows:

71,2
Simp(T < Tg) =In(2s+ 1) - ?s(s + DN +en+ -]

+e N+ (26)

The first term in the above equation denotes the degeneracy
of the left-over impurity spin, the next two terms are due to
the two lowest dimension boundary operators interacting via
the residual impurity spin and the dots inside the bracket
indicate subleading terms due to interactions with the re-
sidual impurity. The next term indicates the boundary contri-
bution from electron tunneling between the two channels
without interaction with the residual impurity spin and the
final dots indicate higher order contributions from residual
spin impurity independent boundary operators. It is easy to
see from the scaling dimensions of the boundary operators
that \; scales as A\~ m while N\, and A\; scales as
(T/Tg) =828, The temperature behavior of the specific heat
can be obtained as follows:

Cimp(T <Tg) = s(s + 1){ + 0o (TIT ) 188

1
[In(7/T4)]*
+ ] +ca(TIT) 88 4 - (27)

Similarly, the zero field impurity spin susceptibility is given
as follows:

_ (g,uB)zs(s +1) 1
Ximp(T< TK) - 3T |: - ln(T/TK)

+0o(TIT) 188 4 - } +eo+

(28)

co,Cy,C3 in the above equations are nonuniversal constants
depending on g, and the electron density of states. We see
therefore that while the lowest dimension boundary pertur-
bation leads to the same singular low temperature thermody-
namic properties as for the underscreened Kondo problem in
a FL, the temperature dependence of the subleading terms
which come from the electron tunneling term between the
two channels with spin-flip scattering, are governed by the
anomalous LL exponents and reflect the non-Fermi liquid
nature of the system.

If we add a magnetic field H, the residual spin impurity
fluctuations are suppressed at low temperature T<H,
H <Tg. Therefore the leading boundary perturbation is now
the same as that in the fully screened case, namely the elec-
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tron tunneling operator between the two channels with no
spin-flip scattering [the term (iii) in the list of boundary op-
erators] with dimension (1+g.)/2g.. The leading behavior
of the thermodynamical quantities like the specific heat will
be the same as in the fully screened Kondo case.!”! In par-
ticular, the low temperature specific heat has a leading
anomalous LL power law behavior instead of the logarithmic
dependence while the impurity spin susceptibility shows to
leading order the expected paramagnetic behavior.

C. Zero backward Kondo scattering

More generally, we can distinguish between forward and
backward scattering strengths and express the interaction Eq.

(i
Hy= Jk,f{ V0T 01(0) + w};(0>§¢R(0)] s
+ JK,b{ V10 Ui(0) + wzm)gm(m} 5. 9)

For any generic values of Jg r,Jk , the couplings flow to the
strong coupling FP described above. But for Jg,=0, the
theory reduces to a two channel Kondo problem (with the
left and right moving electrons corresponding to the two
channels) interacting with a spin § magnetic impurity. The
charge sector decouples from the theory and it is sufficient to
consider only the spin sector to study the stability of the
weak coupling fixed point. As is well known, the weak cou-
pling fixed point is stable for ferromagnetic (FM) coupling
(Jk,s>0) while it is unstable for antiferromagnetic (AFM)
Kondo coupling (Jg y<0). The Kondo temperature has the
usual exponential coupling dependence. We can distinguish
between three different cases for the low temperature phys-
ics. While for S=1/2, the low temperature physics corre-
sponds to the two channel overscreened Kondo physics, for
S=1, the conduction electrons form a singlet with the impu-
rity spin leading to fully screened Kondo physics, for S>1,
the conduction electrons form a singlet with part of the im-
purity spin and the rest is left over as a decoupled spin of
size S—1. For S=1, the low temperature physics exhibits the
usual regular Fermi liquid behavior while for §> 1, the low
temperature physics is governed by the marginally irrelevant
ferromagnetic coupling between the residual spin of size
S—1 and the conduction electrons. The latter again leads in
the low temperature limit to the singular Fermi liquid behav-
ior [Egs. (12)—(14)] described earlier.

III. QUANTUM DOT REALIZATIONS

We now discuss possible scenarios where we might ob-
serve such physics. One possible realization would be to
couple a single quantum dot with spin S to an interacting
semiconducting wire (a LL wire) in the geometries shown in
Figs. 1(a) and 1(b). Another possibility is to couple two
quantum dots with spin S to a LL wire as shown in Fig. 1(c).
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FIG. 1. (a) A quantum dot coupled to one site of a LL lead. (b)
Quantum dot coupled to two sites of a LL lead and (c) two quantum
dots attached to a LL lead.

A. Quantum dot with spin S side coupled to one site
of a LL wire

Let us first consider transport through the spin impurity
realized as a QD coupled to LL lead in the geometry shown
in Fig. 1(a). In the side coupled geometry, the Kondo effect
appears as an anomalously strong reflection or backscattering
rather than as transmission. At high temperatures, the weak
coupling FP dictates the temperature dependence of the con-
ductance and is essentially governed by the behavior of the
backscattering Kondo scattering process. Therefore the high
temperature linear conductance has the leading temperature
dependence

G(T) - Gy~ — GoS(S + 1)(TITy) &V, (30)

where Gy=2¢?/h is the unitary conductance predicted in the
absence of the coupling to the QD. This is in contrast to the
FL lead case where the conductance has the temperature de-
pendence

S(S+1)

G(1)=Go~ - o (T

(31

due to the marginal nature of the Kondo exchange interac-
tion. The leading temperature dependence of the conductance
in the low temperature limit is governed by the hopping of an
electron between the two semi-infinite LL leads via spin flip
scattering and the electron tunneling operator with no spin
flip scattering. The low temperature conductance is therefore
of the form:

G(T) ~ Gy(als(s + 1) + a2)(T/Ty) =85, (32)
where a; and a, are some nonuniversal constants. This is in

contrast to the FL lead case which shows a logarithmic tem-
perature behavior
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ws(s+1)

G0~ Co in(ray?

(33)

Thus we find that the leading low temperature transport be-
havior is governed by the subleading electron tunneling
terms between the two channels without and with residual
impurity spin-flip scattering and therefore shows non-Fermi
liquid behavior with an anomalous power law behavior with
the power law exponent being dictated by the LL interaction
strength.

In a finite magnetic field, T<H <Ty, the leading tem-
perature dependence of the conductance is the same as that
for the fully screened case. However, since the dimension of
the boundary operator governing the transport process in the
two cases is the same, the conductance has the same tem-
perature dependence as for the underscreened case [see Eq.
(32)]. The main difference between the two cases being the
absence of the spin-dependent term.

B. Quantum dot with spin S side coupled to two sites
of a LL wire

We next consider electronic transport through a dot con-
figuration where the dot is coupled to two different sites of
the LL chain as shown in Fig. 1(b). When the electron den-
sity is at half-filling and for 1/2<<g <1, it is well known that
the charge sector in the LL model becomes massive but the
spin sector still remains massless. It can be then shown!'”:18
that this model is a realization of the case Jg ,=0 discussed
at the end of the previous section. As discussed in the previ-
ous section, the problem becomes then essentially that of a
two channel Kondo problem with a spin S impurity. Such a
model has been previously studied.?! For S=1/2, the low
temperature transport exhibits overscreened Kondo behavior:

G(T) ~ Gy(TIT) . (34)
For §=1, the transport shows FL behavior
G(T) ~ Gy(TITy)?, (35)

while for $>1, the conductance shows the underscreened
behavior given in Eq. (33) with s=S—1.

For electron densities away from half-filling, the problem
can be thought of that of a quantum dot in an embedded
geometry?? with potential scattering. A similar analysis as in
the S=1/2 case*** shows that for 0<g.<1/2, the strong
coupling fixed point is the same as that for the two channel
Kondo FP with a spin S impurity, while for 1/2<g.<1, one
obtains the strong coupling FP of the single channel LL with
a spin S impurity. We note that this implies that in contrast to
noninteracting electrons, one will not get a Kondo resonance
in general for interacting electrons (for 1/2<<g,.<1) except
at some particular value of the gate voltage where the back-
scattering term vanishes. Off resonance, the low T conduc-
tance has the same behavior as in 32. For gate voltages very
close to the resonance voltage, G(T)-Gy*x—Gylaz+a
—4(s(s+1)7"'=¢)  where a5 and a, are nonuniversal con-
stants. We note that such a scaling behavior was observed in
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earlier studies of the gate voltage dependence of the linear
conductance through a Kondo spin 1/2 quantum dot coupled
to LL leads.?*

C. Two spin S quantum dots side-coupled to a LL wire

Another possibility is to couple two quantum dots with
spin S to a LL wire as shown in Fig. 1(c). The latter problem
is equivalent to that of two magnetic impurities in a LL.3'-33
When there is more than one magnetic impurity, there are
two competing effects: the Kondo spin exchange interaction
between each impurity spin and the conduction electron spin
and the induced Ruderman-Kittel-Kasuya-Yosida (RKKY)
spin exchange interaction between the impurities (the RKKY
interaction is modified in the presence of electron
interaction®'). The ground state of the system depends on
which of these interactions dominate. If the Kondo interac-
tion strength is greater than the RKKY interaction, then one
expects single impurity physics. The impurity spin then
forms a singlet with the conduction electrons and gets decou-
pled. The electrons then see only an effective potential scat-
terer at each impurity site. So effectively, for two impurities,
the chain behaves as if there are two barriers. Generically,
one should expect the zero temperature conductance to be
zero. However, there is the interesting possibility of resonant
tunneling in the Kondo limit (for not very large distances
between the two impurities and if the resonant tunneling con-
ditions are satisfied) just like for symmetric double
barriers.!> On the other hand, if the RKKY interaction domi-
nates, there can be different kinds of physics depending on
whether there is FM or AFM interaction between the two
impurities. For AFM coupling between the spins, one ex-
pects the two impurities to lock into an effective singlet state
which is essentially like a nonmagnetic impurity. In the side
coupled configuration, one expects the nonmagnetic impurity
to have no effect on the conduction electrons and therefore
lead to the unitary value for the zero temperature conduc-
tance. Thus, while the Kondo limit and AFM exchange limit
both show a singlet phase, they exhibit different physics in
that in the Kondo limit, one expects breaking of the chain
except under some circumstances where resonant tunneling
can occur while in the RKKY AFM limit, one expects heal-
ing of the chain. For strong FM RKKY interaction, the prob-
lem effectively becomes that of a spin 2§ impurity interact-
ing with a LL, the problem therefore becomes effectively the
underscreened Kondo problem discussed in the previous sec-
tions. The low temperature conductance then has the tem-
perature dependence given in Eq. (32) reflecting LL behav-
ior. We also mention that recent experiments>*3> on quantum
dots with a nonlocal RKKY interaction have motivated stud-
ies of transport in such coupled quantum dot systems.3¢—3°
However, these studies do not consider the effect of electron-
electron interactions.

IV. CONCLUSION

To summarize, we have analyzed the problem of under-
screened Kondo physics in a LL. We find that the leading
temperature dependence of thermodynamical quantities like
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the specific heat, spin susceptibility are FL-like in nature.
However, the anomalous LL power law exponents are seen
in the subleading terms. We have also discussed possible
realizations through single and double quantum dot configu-
rations coupled to LL leads and the consequences for elec-
tronic transport. The leading low temperature transport be-
havior is seen to exhibit in general, non-Fermi liquid LL
behavior unlike the thermodynamical quantities.
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